文档库 最新最全的文档下载
当前位置:文档库 › GMP物料平衡与收率

GMP物料平衡与收率

GMP物料平衡与收率
GMP物料平衡与收率

实施《药品生产质量管理规范》(GMP)的一个重要目标是减少可能存在的混淆和交叉污染,保证药品质量。物料平衡是生产管理过程中防止差错、混淆的一项重要措施,加强物料平衡的管理,有利于及时发现物料的误用和非正常流失,确保药品的质量。

我国《药品生产质量管理规范》(1998年修订) 第六十七条明确规定“每批产品应按产量和数量的物料平衡进行检查,如有显著差异,必须查明原因,在得出合理解释,确认无潜在质量事故后,方可按正常产品处理”。因此,每批产品在生产过程中各个关键工序都应进行物料平衡的计算,印刷性包装材料在使用时也应进行数额平衡的计算以达到防止差错的目的。

1.物料平衡与收得率

物料平衡是指产品或物料的理论产量或理论用量与实际产量或用量之间的比较,并适当考虑可允许的正常偏差。根据物料平衡的概念,可得出物料平衡的计算公式:

实际产量或用量

物料平衡= ×100 %

理论产量或用量

物料平衡与收得率是两个不同的概念,在应用上是有所区别的,收得率的计算是为了取得批次生产产品(中间产品) 的收得比率进行成本核算,收得率的计算有时会有很大的差别,因为生产过程中产品的数量会受到多种因素的影响,如内包材质量、人员操作、机器原因以及批次数量的大小都会改变废品数的数量。

当生产过程处在正常受控的情况下,物料平衡的计算结果是相对比较稳定的,应接近100%。一旦生产过程中物料出现差错,物料平衡的结果将超出正常范围,所以物料平衡比收得率更能体现差错的发生。下面举一实例说明物料平衡在生产中的应用:有一批银翘散进行分装,计算产品投入的理论产量为20000袋,分装后中间产品数为19400袋,清场后得到产品的废料量为5600袋,同时进行收得率和物料平衡的计算,得到收得率为97%,物料平衡为125%。由计算结果可看出,产品的收得率在正常范围内而物料平衡大大超出100%,出现了异常情况,可见该批产品在生产过程中可能出现差错,所以应对整个分装工序的每一个步骤进行认真查找,核对数据,检查出差错发生的原因,如可能是生产前投料量计算错误,或前批产品废品数未及时清除,或其他批号产品混入本批产品产生混批。如检查出的事故原因无质量问题,才能对该批产品进行外包装,发放产品。产品在生产过程中应对各个关键工序进行物料平衡管理,及时发现物料的误用,如在散剂生产过程中的关键工序粉碎、过筛、分装、包装以及成品入库前应进行物料平衡的计算,对产品的整个生产过程进行监控。印刷性包装材料进行物料平衡管理,可防止物料的混用,特别是贴签工序,标签的使用是最容易发生混淆的地方。

《药品生产质量管理规范》中对标签的管理特别严格,明确要求标签的使用数、残损数及剩余数之和应与领用数相符,绝不允许有一张差错出现,所以标签的使用应特别注意核对数据,防止同其它产品发生混淆。

2.物料平衡限度

《药品生产质量管理规范》中规定,物料平衡可允许存在正常的偏差。当生产处于正常受控情况下,物料平衡的结果应在正常的偏差范围内,这个范围即是物料平衡限度,物料平衡限度应从生产经验中得出,取在正常情况下连续生产的几十批产品计算其物料平衡,根据数据所处的范围,制定出该产品的平衡限度,按以上方法取几次数据,调整平衡限度,即可得出所要产品的平衡限度。影响平衡限度的主要原因有机器的使用年限,机器使用年代越久,原辅料在生产过程中的损耗越多,平衡限度会越小,所以应定期更正平衡限度。印刷性包装材料中标签的平衡限度应是100%,并不充许存在偏差,所以在计算中应加以特别注意,避免出现差错。

指按反应物进行量计算,生成目的产物的百分数。用质量百分数或体积百分数表示。

即收率=(目的产物生成量/反应物进料量)×100%。

收率与转化率及选择性的关系为:收率=转化率×选择性。

反应物料一次通过催化剂床层转化为目的产物的百分数称为单程收率。常用来衡量催化剂活性。

生成某产物的实际产量占按加入的某一反应物计算生成该产物的理论产量的百分数。

新版GMP--物料供应商管理系统规程

物料供应商管理规程 文件编码:SMP-QA-001 版本:02 页码:1/9 颁发部门:质管部禁止复印分发号: 分发范围 质管部〔〕QA处〔√〕QC处〔√〕生技部〔√〕前处理车间〔〕洁净区车间〔〕外包装车间〔〕设备处〔〕物料供应处〔√〕人资部〔〕综合管理部〔〕财务部〔〕注册部〔〕营销中心〔〕行政部〔〕 审批表起草审核审核批准 部门 姓名 签名 日期 生效日期

目的 明确物料供应商的管理要求,通过对供应商的评估,批准,年度回顾,确保其满 足物料供应的质量要求,确保供应物料质量和供应渠道的稳定,减少采购风险。范围 本标准适用于对药品生产过程使用的主药成分、辅料、内外包装材料供应商管理。责任 ●物料供应处:负责筛选供应商,收集供应商资质,完成供应商调查,提供样品; 从合格供应商处采购物料;评价供应商物料运输及包装质量状况,供货及时性。 ●QA处:组织评估对供应商质量评估和供应商供货质量年度综合评价;建立、 更新供应商档案,更新供应商台帐。 ●QC处:负责对样品检验和供应商检验报告结果的一致性进行评估,以及试验 药品稳定性考察;评价供应商供货质量状况。 ●生技部:负责组织物料现场试验;评价物料在使用过程中的质量状况。 相关术语 无 相关文件 无 程序 1供应商分类 1.1关键供应商:供应的物料是活性药物成分、内包材或供应量大、涉及产品多、且 对多个产品质量有关键影响因素的辅料供应商。 1.2非关键供应商:除关键供应商以外的原(辅)料供应商。 2物料供应商评估 2.1初选 物料供应处接到采购新物料指令或物料需变更供应商时,依据批准的质量标准, 了解有哪些生产厂家的产品能达到本公司的质量要求,意向性选出2~3家。2.2初步调查 2.2.1物料供应处对意向选择的生产厂家的供货能力、质量保证能力进行初步调查。调 查的方式可由采购人员收集该供应商的一般信息,必要时与质管部人员一同 去生产厂家进行实地考察。供应商一般信息的主要内容:

高炉冶炼物料平衡计算

高炉冶炼综合计算 1.1概述 组建炼铁车间(厂)或新建高炉,都必须依据产量以及原料和燃料条件作为高炉冶炼综合计算包括配料计算、物料平衡计算和热平衡计算。从计算中得到原料、燃料消耗量及鼓风消耗量等,得到冶炼主要产品(除生铁以外)煤气及炉渣产生量等基本参数。以这些参数为基础作炼铁车间(厂)或高炉设计。 计算之前,首先必须确定主要工艺技术参数。对于一种新的工业生产装置,应通过实验室研究、半工业性试验、以致于工业性试验等一系列研究来确定基本工艺技术参数。高炉炼铁工艺已有200余年的历史,技术基本成熟,计算用基本工艺技术参数的确定,除特殊矿源应作冶炼基础研究外,一般情况下都是结合地区条件、地区高炉冶炼情况予以分析确定。例如冶炼强度、焦比、有效容积利用系数等。 计算用的各种原料、燃料以及辅助材料等必须作工业全分析,而且将各种成分之总和换算成100%,元素含量和化合物含量要相吻合。 将依据确定的工艺技术参数、原燃料成分计算出单位产品的原料、燃料以及辅助材料的消耗量,以及主、副产品成分和产量等,供车间设计使用。配料计算也是物料平衡和热平衡计算的基础。 依据质量守恒定律,投入高炉物料的质量总和应等于高炉排出物料的质量总和。物料平衡计算可以验证配料计算是否准确无误,也是热平衡计算的基础。物料平衡计算结果的相对误差不应大于0.25%。 常用的热平衡计算方法有两种。第一种是根据热化学的盖斯定律,即按入炉物料的初态和出炉物料的终态计算,而不考虑炉内实际反应过程。此法又称总热平衡法。它的不足是没有反应出高炉冶炼过程中放热反应和吸热反应所发生的具体空间位置,这种方法比较简便,计算结果可以判断高炉冶炼热工效果,检查配料计算各工艺技术参数选取是否合理,它是经常采用的一种计算方法。 第二种是区域热平衡法。这种方法以高炉局部区域为研究对象,常将高炉下部直接还原区域进行热平衡计算,计算其中热量的产生和消耗项目,这比较准确地反应高炉下部实际情况,可判断炉内下部热量利用情况,以便采取相应的技术措施。该计算比较复杂。要从冶炼现场测取大量工艺数据方可进行。 1.2配料计算 一.设定原料条件 1、矿石成分: 表 1-1原料成分,%

物料平衡计算公式

物料平衡计算公式 This model paper was revised by the Standardization Office on December 10, 2020

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围: %~100 % 物料平衡= %100?+a c b a-粉筛前重量(kg) b-粉筛后重量(kg) c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围: %~ % 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg) b-干颗粒总重(kg) c-尾料总重(kg) d-取样量(kg) 3.压片工序的物料平衡范围: %~ % 压片工序的物料平衡=a d c b ++×100% 压片工序的收率=a b ×100%

a-接收颗粒重量(kg) b-片子重量(kg) c-取样重量(kg) d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围: %~ % 包衣工序的物料平衡 = b a e d c +++ 包衣工序的收率 = b a c + a-素片重量(kg) b-包衣剂重量(kg) c- 糖衣片重量(kg) d-尾料重量(kg) e-取样量(kg) 5.内包装工序物料平衡 内包装工序物料平衡范围: %~ % 包材物料平衡=%100?++++A a d c b B a- PTP 领用量(kg) b- PTP 剩余量(kg) A- PVC 领用量(kg) B- PVC 剩余量(kg) c-使用量(kg) d- 废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg) b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡

转炉物料平衡与热平衡计算

氧气转炉炼钢物料平衡计算与热平衡计算 1物料平衡计算 1.1计算原始数据 基本原始数据铁水和废钢成分、终点钢水成分(表1);造渣用溶剂及炉衬等原材料的成分(表2);脱氧和合金化用铁合金的成分及其回收率(表3);其他工艺参数(表4) 表合金成分及其回收率 2

表 其他工艺参数设定值 1.2物料平衡基本项目: 收入项目:收入量=铁水+废钢+溶剂+氧气+炉衬蚀损+合金 支出项目:支出量=钢水+炉渣+烟尘+渣中铁珠+炉气+喷溅。 1.3计算步骤 以100kg铁水为基础进行计算。 第一步:计算脱氧和合金化前的总渣量及其成分。 总渣量包括铁水中元素氧化,炉衬蚀损和加入溶剂的成渣量。其各项成渣量分别列于表5 表7。总渣量及其成分如表8所示。 第二步:计算氧气消耗量。 氧气实际消耗量系消耗项目与供入项目之差。见表9.

表 铁水中元素的氧化产物及其成渣量 表炉衬蚀损的成渣量 石灰加入量计算如下:由表7-5—表7-7可知,渣中已含(CaO) =-0.014+0.004+0.002+0.910=0.902kg ;渣中已含(SiO2) =1.50+0.009+0.028+0.020=1.557kg。因设定的终渣碱度 R=3.5 ,故石灰加入量为:[R E Q(SiO2)- E Q(CaO)]/[3 (CaO 石灰)-R )]=(3.5X 1.557-0.902)/ (88%-3.5 X 2.5%)=5.73kg。 X3 (SiO 2石灰 由CaO还原岀来的氧量,计算方法同表 5的注

表 总渣量及成分 ① 由表 1-8 知,除 FeO 和 Fe 2O 3 外的渣量 6.799+1.724+1.052+0.137+0.63+0.44+0.63+0.028=11.56kg 而终渣刀 w (FeO) =15% (表 1-4),故渣的总量 11.56-86.75%=13.326kg 。 ② 所以,w (FeO) =13.326 X 8.25%=1.099kg ③ w(Fe 2O 3)= 13.066 X 5%-0.033-0.005-0.008=0.620kg 表9实际耗氧量 2

浅谈收率与物料平衡

浅谈"收率与物料平衡 首先看看“质量表” ——“物料平衡”;GMP规范附则中,物料平衡的定义是:产品或物料的理论产量或理论用量与实际产量或用量之间的比较,并适当考虑可允许的正常偏差。就这句话,字面理解并没有什么难度,无非是两个值的比较罢了,可具体比较起来,就花样多多了。 其次,我们再来瞧瞧“生产表”——“收率”是怎么个说法。收率是合格品(交下道工序的量或入库量)与理论产量或理论用量的比值。即合格的产出与投入量的比较。 我们可通过以下表来看看这两表的异同点: 1、相同点:最终都是两个值的比较;都是以百分比来表示的;从两个不同的方面(生产控制及质量控制)反映生产过程是否符合规定、受控及稳定;企业经营目标实现必须关注的内容。 2、不同点:收率的分子是合格品数;物料平衡的分子是可见的产出,即物料平衡的分子内涵与外延均大于收率的分子的内涵与外延;理论上:收率可以>100%;而物料平衡≤100%。实际生产中:收率(100%投料,不低限投料。)大多情况下<100%,物料平衡大多情况下<100%。(涉及到印字包材时必须为100%) 收率:是生产过程控制中的经济指标。物料平衡:是生产过程控制中的质量指标。 物料平衡是GMP要解决是否有混药和差错的质量问题,而收率是企业生产成本的经济问题。 那么理论产量,实际产量在具体计算时,就各有不同的理解。如:内包中药颗粒,分装前颗粒总量为Akg,分装好的中间产品总重量为Bkg,复合膜使用量为Ckg,可收集损耗量为Dkg (地面、台面撒落的,内包过程抽检及不合格、压药等报损的)。计算本工序物料平衡:若按产品的实际产量和理论产量之间的比较来进行物料衡算,则实际产量为Bkg,此乃不争事实。 物料平衡: 计算颗粒的物料平衡,理论用量为A是不争事实,而实际用量也分别被认为,观点一:(B-C+D),观点二:(B-C)。 “观点一”是我们常采用的方法。 “观点二”假如生产过程中出现异常(例如闭料器出现故障,合不上,大量药粉外漏至地面。),至使D值大大增加,并已影响到产品质量(出现空袋,半袋)时,此时若再加上D,则永远有如下等式:(B-C+D)≈A,物料衡算几乎永远都在接近100%。正常范围内,事实上生产过程已发生了异常,却被书面上所反映的“正常”掩盖住了,根本无法及时准确反映出可能影响产品质量的生产隐患信息。 个人同意观点一,物料平衡不同于偏差调查,更多的还是对物料使用的一种计量和核对,防止物料在使用过程中出现混淆和差错,是一种追溯性的计算记录吧;对于损耗增大,而物料平衡结果却一致的问题,损耗增大自然是按照偏差处理的方式进行,启动偏差调查,偏差调查是发现问题纠正预防,但是物料平衡还是应该趋向理论的100%,否则还要合理的解释物料的流失是否有问题、无法追溯。

干燥过程的物料平衡与热平衡计算

干燥过程的物料与热平衡计算 1、湿物料的含水率 湿物料的含水率通常用两种方法表示。 (1)湿基含水率:水分质量占湿物料质量的百分数,用ω表示。 100%?= 湿物料的总质量 水分质量 ω (2)干基含水率:由于干燥过程中,绝干物料的质量不变,故常取绝干物料为基准定义水分含量。把水分质量与绝干物料的质量之比定义为干基含水率,用χ表示。 100%?= 量 湿物料中绝干物料的质水分质量 χ (3)两种含水率的换算关系: χ χ ω+= 1 ω ω χ-= 1 2、湿物料的比热与焓 (1)湿物料的比热m C 湿物料的比热可用加与法写成如下形式: w s m C C C χ+= 式中:m C —湿物料的比热,()C kg J ?绝干物料/k ; s C —绝干物料的比热,()C kg J ?绝干物料/k ; w C —物料中所含水分的比热,取值4、186()C kg J ?水/k (2)湿物料的焓I ' 湿物料的焓I '包括单位质量绝干物料的焓与物料中所含水分的焓。(都就是以0C 为基准)。 ()θθχθχθm s w s C C C C I =+=+='186.4 式中:θ为湿物料的温度,C 。

3、空气的焓I 空气中的焓值就是指空气中含有的总热量。通常以干空气中的单位质量为基准称作比焓,工程中简称为焓。它就是指1kg 干空气的焓与它相对应的水蒸汽的焓的总与。 空气的焓值计算公式为: ()χ1.88t 24901.01t I ++= 或()χχ2490t 1.881.01I ++= 式中;I —空气(含湿)的焓,绝干空气kg/kg ; χ—空气的干基含湿量,绝干空气kg/kg ; 1、01—干空气的平均定压比热,K ?kJ/kg ; 1、88—水蒸汽的定压比热,K ?kJ/kg ; 2490—0C 水的汽化潜热,kJ/kg 。 由上式可以瞧出,()t 1.881.01χ+就是随温度变化的热量即显热。而χ2490则就是0C 时kg χ水的汽化潜热。它就是随含湿量而变化的,与温度无关,即“潜热”。 4、干燥系统的物料衡算 干燥系统的示意图如下: (1)水分蒸汽量W 按上述示意图作干燥过程中的0水量与物料平衡,假设干燥系统中无物料损失,则: 2211χχG LH G LH +=+ 水量平衡 G 1

物料平衡计算公式:

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围: %~100 % 物料平衡= %100?+a c b a-粉筛前重量(kg) b-粉筛后重量(kg) c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围: %~ % 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg) b-干颗粒总重(kg) c-尾料总重(kg) d-取样量(kg) 3.压片工序的物料平衡范围: %~ %

压片工序的物料平衡= a d c b ++×100% 压片工序的收率=a b ×100% a-接收颗粒重量(kg) b-片子重量(kg) c-取样重量(kg) d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围: %~ % 包衣工序的物料平衡 = b a e d c +++ 包衣工序的收率 = b a c + a-素片重量(kg) b-包衣剂重量(kg) c-糖衣片重量(kg) d-尾料重量(kg) e-取样量(kg) 5.内包装工序物料平衡 内包装工序物料平衡范围: %~ % 包材物料平衡=%100?++++A a d c b B a- PTP 领用量(kg) b- PTP 剩余量(kg) A- PVC 领用量(kg)

B- PVC 剩余量(kg) c-使用量(kg) d-废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg) b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡 包装材料的物料平衡范围:100% 包装材料物料平衡=%100?+++e a d c b e-上批结存 a-领用量 b-使用量 c-剩余量 d-残损量 7.生产成品率 成品率范围:90%~102% 片剂收率= %100?++a d c b a-计划产量 b-入库量 c-留样量 d-取样量

回转窑系统热平衡计算资料

回转窑系统热平衡计算 1 热平衡计算基准、范围及原始数据 1.1 热平衡计算基准 物料基准:一般以1kg 熟料为基准; 温度基准:一般以0℃为基准; 1.2 热平衡范围 热平衡范围必须根据回转窑系统的设计或热工测定的目的、要求来确定。在回转窑系统设计时,其平衡范围,可以回转窑、回转窑加窑尾预热分解系统、或再加冷却机和煤磨作平衡范围。范围选得大,则进出口物料、气体温度较低,数据易测定或取得,但往往需要的数据较多,计算也烦琐。因此一般选回转窑加窑尾预热分解系统作为平衡范围。 1.3 原始数据 根据确定的计算基准和平衡范围,取得必要的原始数据,这是一项非常重要的工作。计算结果是否符合实际情况,主要取决于所选用的数据是否合理。对新设计窑或改造窑来说,主要是根据同类型窑的生产资料,结合工厂具体条件和我国实际情况、合理地确定各种参数;对于生产窑来说,主要通过热工测定取得实际生产中各种参数。若以窑加窑尾预热系统为平衡范围,一般要取得如下原始数据:生料用量、化学组成、水分、入窑温度;燃料成分、工业分析和入窑温度;一、二次空气的比例和温度;空气过剩系数、漏风系数;废气温度;飞灰量、灰温度及烧失量;收尘器收尘效率;窑体散热损失;熟料形成热等等。熟料形成热可根据熟料形成过程中的各项物理化学热效应求得,也可用经验公式计算或直接选定。 2 物料平衡与热量平衡 计算方法与步骤说明于下: 窑型:预分解窑 基准:1kg 熟料;0℃ 平衡范围:窑+预热器系统 根据确定的平衡范围,绘制物料平衡图和热量平衡图,如图1和图2所示。 图1 物料平衡图 图2 热量平衡图

2.1 物料平衡计算 2.1.1 收入项目 (1)燃料消耗量 m r (kg/kg 熟料) 设计新窑或技术改造时,m r 是未知量,通过热平衡方程求得,已生产的窑,通过热工测定得到。 (2)入预热器物料量 ① 干生料理论消耗量 s ar r gsL 100100L a A m m --= 式中,m gsL —干生料理论消耗量,kg/kg 熟料;A ar —燃料收到基灰分含量,%;a —燃料灰分掺入熟料中的量,%;L s —生料的烧失量,%。 ② 入窑回灰量和飞损量 ηfh yh m m = )1(fh Fh η-=m m 式中,m yh —入窑回灰量,kg/kg 熟料;m fh —出预热器飞灰量,kg/kg 熟料;m Fh —出收尘器飞灰损失量,kg/kg 熟料;η—收尘器、增湿塔综合收尘效率,%。 ③ 考虑飞损后干生料实际消耗量 s fh Fh gsL gs 100100L L m m m --?+= 式中,m gs —考虑飞损后干生料实际消耗量,kg/kg 熟料;L fh —飞灰烧失量,%。 ④ 考虑飞损后生料实际消耗量 s gs s 100100W m m -?= 式中,m s —考虑飞损后生料实际消耗量,kg/kg 熟料;W s —生料中水分含量,%。 ⑤ 入预热器物料量 yh s m m +=入预热器物料量(kg/kg 熟料) (3)入窑系统空气量 ① 燃料燃烧理论空气量 )O 0.033(S 0.267H 0.089C ar ar ar ar LK -++='V LK LK 293.1V m '='

GMP认证物料与产品

GMP认证之物料与产品第一篇 采用符合质量标准的物料(原料、辅料和包装材料)进行药品生产是保证药品质量的基本要素,合格的药品是其使用价值的体现。——因此,必须从采购、入库、贮存及发放各环节对物料与产品严格把控,做到管理有章可循,使用有标准可依,记录有据可查,确保始终如一的将合格优质的物料用于药品生产,将合格优质的药品提供给患者使用。 原则 新版GMP指出,直接影响药品安全性和有效性的物料应符合相应的质量标准,进口原辅料应当符合国家相关的进口管理规定(见第一百零二条)。 “相应的质量标准”即注册标准,包括药品标准、食品添加剂标准;包装材料标准、生物制品规程或其他有关标准。 “符合国家相关的进口规定”即《药品进口管理办法》、《进口药材管理办法》。 专用于在药品(硬胶囊、软胶囊、片剂等)上印文字或图案的油墨“应当符合食用标准”是最基本要求,要尽可能使用已取得药用油墨批件的药用油墨。与药品直接接触的包装材料主要是指国家食药局颁布的《直接接触药品的包装材料和容器管理办法》所规定注册药包材产品目录中包含的品种。 具体实施中要特别注意,物料质量标准必须包括物料包装、印刷包装材料的实样或样稿。原料和辅料必须按照质量标准进行全项检验。药品生产中所用辅料如果没有国家批准文号应执行注册申报时核准的标准和规格。药品包装材料和容器企业可根据自身情况和对产品的影响程度自行制定控标准,同时索取药品包装材料和容器生产企业的出厂检验报告书和型式报告书。

中成药制剂处方中的药量系指中国药典规定正文(制法)项规定的切碎、破碎或粉碎后的药量,生产中使用的中药材根据工艺要求执行。如工艺要求生产投料前只做了挑拣和清洗,也应视为用中药饮片投料生产,未经任何处理的原药材不得直接投料生产。 与欧美GMP相似,为了确保持续实现GMP防止污染,交叉污染,混淆和差错的目标,新版GMP对物料和产品管理提出了最基本的要求。明确了对物料和产品关键操作环节(接收、标识、贮存、处理、取样、检测、批准使用或拒收)还应进行记录,以便于质量追溯(见第一百零三条);明确了质量管理部是确定供应商的主要责任部门,供应商的确定及变更必须经过质量评估,并经质量管理部门确认批准(见第一百零四条)。 新增物料供应商时,涉及法规(如《药品注册管理办法》)要求的变更,试验结束后再申请办理;属于企业部变更的,按企业部变更管理程序执行。 新版GMP对物料和产品延长了管理围,从厂延伸到厂外,对运输环节各种影响质量的因素(运输工具、装载方式、装载数量、运输时限及注意事项等)提出了质量保证要求(见第一百零五条)。如对贮藏条件有特殊要求的,就必须对运输条件进行确认;对于危险化学品物料和产品的运输必须注意安全;对于特殊管理的药品及物料的运输应按相关规定执行。进一步突出了对物料和产品保护要求。 在具体实施“运输确认”的过程中,首先应对运输有特殊要求的物料和产品,其运输条件要求(如符合相应的批准文件、质量标准中的规定、企业的要求)向供应商予以明确。另外,应当对运输涉及的影响因素进行挑战性测试,尽可能明确运输途径(包括运输方式和路径)。长途运输还应当考虑季节变化的因素。除温度外还应当考虑和评估运输过程中的其它相关因素对产品的影响(如湿度、震动、操作、运输延误、数据记录器故障、使用液氮储存、产品对环境因素的敏感性等)。另外,运输确认应当对关键环境条件进行连续监控。

炼钢过程中的物料平衡与热平衡计算

炼钢过程的物料平衡与热平衡计算 炼钢过程的物料平衡与热平衡计算是建立在物质与能量守恒的基础上。其主要目的是比较整个冶炼过程中物料、能量的收入项和支出项,为改进操作工艺制度,确定合理的设计参数和提高炼钢技术经济指标提供某些定量依据。应当指出,由于炼钢系复杂的高温物理化学过程,加上测试手段有限,目前尚难以做到精确取值和计算。尽管如此,它对指导炼钢生产和设计仍有重要的意义。 本章主要结合实例阐述氧气顶吹转炉和电弧炉氧化法炼钢过程物料平衡和热平衡计算的基本步骤和方法,同时列出一些供计算用的原始参考数据。 1.1 物料平衡计算 (1)计算所需原始数据。基本原始数据有:冶炼钢种及其成分(表1);金属料—铁水和废钢的成分(表1);终点钢水成分(表1);造渣用溶剂及炉衬等原材料的成分(表2);脱氧和合金化用铁合金的成分及其回收率(表3);其它工艺参数(表4). ①本计算设定的冶炼钢种为H15Mn。 ②[C]和[Si]按实际生产情况选取;[Mn]、[P]和[S]分别按铁水中相应成分含量的30%、10%和60%留在钢水中设定。 表2 原材料成分

①10%C与氧生产CO2 表4 其它工艺参数设定值 收入项有:铁水、废钢、溶剂(石灰、萤石、轻烧白云石)、氧气、炉衬蚀损、铁合金。 支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。 (3)计算步骤。以100kg铁水为基础进行计算。 第一步:计算脱氧和合金化前的总渣量及其成分。 总渣量包括铁水中元素氧化、炉衬蚀损和加入溶剂的成渣量。其各项成渣量分别列于表5、6和7。总渣量及其成分如表8所示。 第二步:计算氧气消耗量。 氧气实际消耗量系消耗项目与供入项目之差,详见表9。 ①由CaO还原出的氧量,消耗的CaO量=0.013×56/32=0.023kg

【精品】物料平衡与热平衡计算

钢铁冶金专业设计资料 (炼铁、炼钢) 本钢工学院冶化教研室 二00三年八月

第一章物料平衡与热平衡计算 物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1—1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算.通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”.对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义.由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。 物料平衡和热平衡计算,一般可分为两面种方案.第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测.本计算是采用第一种方案。 目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0。40%)和中磷的(0.40~1。00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算. 1.1原始数据

1。1.1铁水成分及温度 表1—1—1 1.1.2原材料成分

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除 2 / 56 表1-1—2原材料成分

炼钢过程中的物料平衡与热平衡计算复习课程

炼钢过程中的物料平衡与热平衡计算

炼钢过程的物料平衡与热平衡计算 炼钢过程的物料平衡与热平衡计算是建立在物质与能量守恒的基础上。其主要目的是比较整个冶炼过程中物料、能量的收入项和支出项,为改进操作工艺制度,确定合理的设计参数和提高炼钢技术经济指标提供某些定量依据。应当指出,由于炼钢系复杂的高温物理化学过程,加上测试手段有限,目前尚难以做到精确取值和计算。尽管如此,它对指导炼钢生产和设计仍有重要的意义。 本章主要结合实例阐述氧气顶吹转炉和电弧炉氧化法炼钢过程物料平衡和热平衡计算的基本步骤和方法,同时列出一些供计算用的原始参考数据。 1.1 物料平衡计算 (1)计算所需原始数据。基本原始数据有:冶炼钢种及其成分(表1);金属料—铁水和废钢的成分(表1);终点钢水成分(表1);造渣用溶剂及炉衬等原材料的成分(表2);脱氧和合金化用铁合金的成分及其回收率(表3);其它工艺参数(表4). 表1 钢种、铁水、废钢和终点钢水的成分设定值 ①本计算设定的冶炼钢种为H15Mn。 ②[C]和[Si]按实际生产情况选取;[Mn]、[P]和[S]分别按铁水中相应成分含量的30%、10%和60%留在钢水中设定。

表2 原材料成分 表3 铁合金成分(分子)及其回收率(分母) ①10%C与氧生产CO2 表4 其它工艺参数设定值 (2)物料平衡基本项目。 收入项有:铁水、废钢、溶剂(石灰、萤石、轻烧白云石)、氧气、炉衬蚀损、铁合金。支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。

(3)计算步骤。以100kg铁水为基础进行计算。 第一步:计算脱氧和合金化前的总渣量及其成分。 总渣量包括铁水中元素氧化、炉衬蚀损和加入溶剂的成渣量。其各项成渣量分别列于表5、6和7。总渣量及其成分如表8所示。 第二步:计算氧气消耗量。 氧气实际消耗量系消耗项目与供入项目之差,详见表9。 表5 铁水中元素的氧化产物及其成渣量 ①由CaO还原出的氧量,消耗的CaO量=0.013×56/32=0.023kg 表6 炉衬蚀损的成渣量 表7 加入溶剂的成渣量

物料平衡

表1 闪速炉物料平衡表(60%) 项目 物料t/Bd C U% S Fe S i O2CaO+Mg Co % t/Bd % t/Bd % t/Bd % t/Bd % t/Bd % t/Bd 装入 铜精矿1578.05 20.00 315.61 32.00 504.98 29.00 457.63 6.00 94.68 1.50 23.67 1.00 15.78 石英砂199.96 1.00 2.00 90.00 179.96 闪速炉返 尘 161.87 13.33 21.58 11.20 18.13 15.50 25.10 8.99 14.56 1.36 2.20 转炉返尘17.20 55.00 9.46 17.00 2.92 13.00 2.24 4.60 0.79 0.30 0.05 氧539.90 合计2496.98 346.65 526.03 486.97 289.99 25.92 15.78 产出 低铁富钴 铜锍 501.83 60.00 301.10 22.00 110.40 14.10 70.76 0.00 0.00 1.57 7.89 闪速炉渣1042.61 2.30 23.98 0.70 7.30 37.51 391.11 26.42 275.43 2.27 23.67 0.76 7.89 闪速炉返 尘 125.48 17.19 21.57 9.60 12.05 20.00 25.10 11.60 14.56 1.80 2.26 SO2+CO2 827.06 396.28 合计2496.98 346.65 526.03 486.97 289.99 25.92 15.78

物料平衡与热平衡计算

钢铁冶金专业设计资料(炼铁、炼钢) 本钢工学院冶化教研室 二00三年八月

第一章物料平衡与热平衡计算 物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。它以转炉作为考察对象,根据装入转炉或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1-1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算。通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”。对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义。由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。 物料平衡和热平衡计算,一般可分为两面种方案。第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测。本计算是采用第一种方案。 目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0.40%)和中磷的(0.40~1.00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算。 1.1原始数据 1.1.1铁水成分及温度 表1-1-1 1.1.2原材料成分

表1-1-2 原材料成分 表2-1-1铁水成分与温度 转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD3钢考虑,其成分见表2-1-3

新版GMP对物料平衡与收率的定义

(新版GMP语) 物料平衡的定义是:产品或物料实际产量或实际用量及收集到的损耗之和与现论产量或理论用量之间的比较,并考虑可允许的偏差范围。物料平衡=[实际用量(实际产量)+收集的损耗]÷理论用量(理论产量) 收率是合格品(交下道工序的量或入库量)与理论产量或理论用量的比值。即合格的产出与投入量的比较。 收率=实际合格品÷理论用量(理论产量) 物料平衡反映的是你的物料控制水平,是为了控制差错问题而制定。它反映的是你在生产过程中有无异常情况出现,比如异物混入、跑料等。单纯从GMP角度,物料平衡是重要的控制指标。是判断你的生产过程是否正常的重要依据。 当生产过程处在受控的情况下,物料平衡的结果是比较稳定的。一旦生产过程中物料出现差错,物料平衡的结果将超出正常范围,所以物 料平衡比收得率更能体现差错的发生。由此可见:物料平衡应该每个工序都做。 收率是技术指标,反映的是你的物料的利用及损耗情况,是成本核算问题。也就是投多少料出来多少产品,是为了取得批次生产产品(中间产品) 的收得比率进行的成本核算,收率的计算有时会有很 大的差别,因为生产过程中产品的数量会受到多种因素的影响,如内 包材质量、人员操作、机器原因以及批次数量的大小都会改变废品数

的数量。一般情况下收率越高证明你的生产控制水平越好、工艺越成熟。 收率关键工序做就可以了。 制剂的物料平衡和收率与合成药的算法区别很大.合成药的收率是按照主要原料的摩尔数计算的,还要折纯,产品也同样,其中杂质都扣除了,计算精度较高.制剂恐怕只能按照物质不灭定律包含杂质一起计算,因为中间体检验数据很少,无法扣除杂质,计算的结果只能和理论得率比较, 对于药品生产企业来说,物料平衡和收率两者同等重要。收率是技术水平的反映,物料平衡是控制水平的反应。相对来说,生产车间可能更关注的是收率,而质量管理部门则更关注于物料平衡。

物料平衡与收率

s:43] 不辩不明,共同进步。 物料平衡与收率两块“表” 小A埋着头将厚厚的一本记录翻的西里哗啦的,一只纤细的手上下翻飞,熟练地噼噼啪啪按着计算器。许久,小A长出一口气,“物料平衡”、“收率”两块表都不太好,该多啄磨一下……。 首先看看“质量表” ——“物料平衡”;GMP规范附则中,物料平衡的定义是:产品或物料的理论产量或理论用量与实际产量或用量之间的比较,并适当考虑可允许的正常偏差。就这句话,字面理解并没有什么难度,无非是两个值的比较罢了,可具体比较起来,就花样多多了。 其次,我们再来瞧瞧“生产表”——“收率”是怎么个说法。收率是合格品(交下道工序的量或入库量)与理论产量或理论用量的比值。即合格的产出与投入量的比较。 我们可通过以下表来看看这两表的异同点: 序号相同点不同点 1最终都是两个值的比较收率的分子是合格品数;物料平衡的分子是可见的产出,即物料平衡的分子内涵与外延均大于收率的分子的内涵与外延。 2 都是以百分比的形式表达理论上:收率可以>100%;而物料平衡≤100%。 3 从两个不同的方面(生产控制及质量控制)反映生产过程是否符合规定、受控及稳定。实际生产中:收率(100%投料,不低限投料。)大多情况下<100%。物料平衡大多情况下<100%。(涉及到印字包材时必须为100%) 4 企业经营目标实现必须关注的内容收率:是生产过程控制中的经济指标。物料平衡:是生产过程控制中的质量指标。 物料平衡是GMP要解决是否有混药和差错的质量问题,而收率是企业生产成本的经济问题。 GMP定义是这样表述的:产品或物料的理论产量或理论用量与实际产量或用量之间的比较,并适当考虑可允许的正常偏差。那么理论产量,实际产量在具体计算时,就各有不同的理解。 如:内包中药颗粒,分装前颗粒总量为Akg,分装好的中间产品总重量为Bkg,复合膜使用量为Ckg,可收集损耗量为Dkg (地面、台面撒落的,内包过程抽检及不合格、压药等报损的)。计算本工序物料平衡:若按产品的实际产量和理论产量之间的比较来进行物料衡算,则实际产量为Bkg,此乃不争事实。 物料平衡:观点一()X100%观点二、()X100% 观点一认为:可收集损耗量Dkg,应加入分子中进行计算。 观点二认为:可收集损耗量Dkg,不应加入分子中进行计算。 计算颗粒的物料平衡,理论用量为A是不争事实,而实际用量也分别被认为,观点一:(B-C+D),观点二:(B-C)。“观点一”是我们常采用的方法。“观点二”假如生产过程中出现异常(例如闭料器出现故障,合不上,大量药粉外漏至地面。),至使D值大大增加,并已影响到产品质量(出现空袋,半袋)时,此时若再加上D,则永远有如下等式:(B-C+D)≈A,物料衡算几乎永远都在接近100%正常范围内,事实上生产过程已发生了异常,却被书面上所反映的“正常”掩盖住了,根本无法及时准确反映出可能影响产品质量的生产隐患信息。 以上观点,希望能起到抛砖引玉的作用,欢迎各位批评指正。

水泥回转窑物料平衡热平衡与热效率计算方

水泥工业窑热能平衡 4.1.6.1 水泥工业窑热能平衡的基本概念 熟料烧成综合能耗 comprehensive energy consumption of clinker burning 熟料烧成综合能耗指烧成系统在标定期间内,实际消耗的各种能源实物量按规定的计算方法和单位分别折算成标准煤的总和,单位为千克(kg)。 熟料烧成热耗 heat consumption of clinker burning 熟料烧成热耗指单位熟料产量下消耗的燃料燃烧热,单位为千焦每千克(kJ/kg)。 回转窑系统热效率 heat efficiency of rotary kiln system 回转窑系统热效率指单位质量熟料的形成热与燃料(包括生料中可燃物质)燃烧放出热量的比值,以百分数表示(%)。 根据热平衡参数测定结果计算,热平衡参数的测定按JC/T733规定的方法进行。窑的主要设备情况及热平衡测定结果记录表参见附录A。 熟料形成热的理论计算方法参见附录B 4.1.6.2 水泥回转窑物料平衡 物料平衡计算的范围是从冷却机熟料出口到预热器废弃出口(即包括冷却机、回转窑、分解炉和预热器系统)并考虑了窑灰回窑操作的情况。 物料基础:1kg熟料 1.收入部分

(1)燃料消耗量 1)固体或液体燃料消耗量 +=yr Fr r sh M M m M ………………………… (4-1) 式中: m r ——每千克熟料燃料消耗量,单位为kg/kg ; M yr ——每小时如窑燃料量,单位为kg/h ; M Fr ——每小时入分解炉燃料量,单位为kg/h ; M sh ——每小时熟料产量,单位为kg/h 。 2) 气体燃料消耗量 ρ=?r r r sh V m M …………………………………(4-2) 式中: V y ——每小时气体燃料消耗体积,单位为Nm 3/h ; ρr ——气体燃料的标况密度,单位为kg/Nm 3。 ρρρρρρρρ?+?+?+?+?+?+?= 2 2 2 2 2 22O 222O C 100 m m CO CO m m C H H N H O r CO CO H H N H O

物料平衡计算公式

物料平衡计算公式 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围:97.0%~100% 物料平衡=%100?+a c b a-粉筛前重量(kg)b-粉筛后重量(kg)c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围:98.0%~104.0% 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg)b-干颗粒总重(kg) c-尾料总重(kg)d-取样量(kg) 3.压片工序的物料平衡范围:97.0%~100.0% 压片工序的物料平衡= a d c b ++×100% 压片工序的收率=a b ×100% a-接收颗粒重量(kg)b-片子重量(kg) c-取样重量(kg)d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围:98.0%~100.0% 包衣工序的物料平衡= b a e d c +++ 包衣工序的收率=b a c + a-素片重量(kg)b-包衣剂重量(kg)c-糖衣片重量(kg)d-尾料重量(kg)e-取样量(kg)

5.内包装工序物料平衡 内包装工序物料平衡范围:99.5%~100.0% 包材物料平衡=%100?++++A a d c b B a-PTP 领用量(kg)b-PTP 剩余量(kg)A-PVC 领用量(kg) B-PVC 剩余量(kg)c-使用量(kg)d-废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg)b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡 包装材料的物料平衡范围:100% 包装材料物料平衡=%100?+++e a d c b e-上批结存a-领用量b-使用量c-剩余量d-残损量 7.生产成品率 成品率范围:90%~102% 片剂收率=%100?++a d c b a-计划产量b-入库量c-留样量d-取样量 1.粉碎过筛和称配岗位物料平衡检查: 配料量 ╳100% 粉碎过筛后原辅料总重 (物料平衡范围应控制在99.8~100.2%) 2.制粒干燥、整粒总混岗位物料平衡检查: 总混后重量+不良品 ╳100% 干颗粒净重+润滑剂+崩解剂 (物料平衡范围应控制在99.0~100.0%)

第2章炼钢过程的物料平衡和热平衡计算

第2章炼钢过程的物料平衡和热平衡计算炼钢过程的物料平衡和热平衡计算是建立在物质与能量守恒的基础上的。其主要目的是比较整个过程中物料、能量的收入项和支出项,为改进操作工艺制度,确定合理的设计参数和提高炼钢技术经济指标提供定量依据。由于炼钢是一个复杂的高温物理化学变化过程,加上测试手段有限,目前还难以做到精确取值和计算。尽管如此,它对指导炼钢生产和设计仍有重要的意义。 2.1物料平衡计算 2.1.1 计算原始数据 基本原始数据有:冶炼钢种及其成分,铁水和废钢的成分,终点钢水成分(见表2.1);造渣用溶剂及炉衬等原材料的成分(见表2.2):脱氧和合金化用铁合金的成分及其回收率(表2.3);其他工艺参数(表2.4)。 表2-1 钢种、铁水、废钢和终点钢水的成分设定值

表2-2 原材料成分 表2.3 铁合金成分(分子)及其回收率(分母)

2 表2.4 其他工艺参数设定值 2.1.2 物料平衡基本项目 收入项有:铁水、废钢、溶剂(石灰、萤石、轻烧白云石)、氧气、炉衬蚀损、铁合金。 支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。 2.1.3 计算步骤 以100Kg铁水为基础进行计算。 第一步:计算脱氧和合金化前的总渣量及其成分。 总渣量包括铁水中元素氧化、炉衬蚀损和计入溶剂的成渣量。其各项成渣量分别列于表2.5、2.6和2.7。总渣量及其成分列于表2.8中。 第二步:计算氧气消耗量。 氧气实际耗量系消耗项目与供入项目之差。见表2.9。

表2.5 铁水中元素的氧化产物及其渣量 表2.6 炉衬蚀损的成渣量

表2.7 加入溶剂的成渣量 ①石灰加入量计算如下:由表4.6~4.8可知,渣中已含=-0.026+0.004+0.002+0.910=0.890㎏;渣中已含(SiO2)=1.071+0.009+0.028+0.020=1.128㎏。因设定的终渣碱度R=3.5;故石灰的加入量为: [RΣω(SiO2)- Σω(CaO)]/ [ω(CaO石灰)-R×ω(SiO2石灰)]=3.95/(88.66%-3.5×2.70%)=4.99kg ②(石灰中CaO含量)-(石灰中S→CaS消耗的CaO量)。 ③由CaO还原出来的氧量,计算方法同表2-6的注。

相关文档