文档库 最新最全的文档下载
当前位置:文档库 › 苹果谷胱甘肽还原酶cDNA片段的克隆及表达分析_师守国

苹果谷胱甘肽还原酶cDNA片段的克隆及表达分析_师守国

苹果谷胱甘肽还原酶cDNA片段的克隆及表达分析_师守国
苹果谷胱甘肽还原酶cDNA片段的克隆及表达分析_师守国

西北农业学报2007,16(6):97~101

A cta A gr icultur ae Bor eali-occidental is Sinica

苹果谷胱甘肽还原酶cDNA片段的克隆及表达分析*

师守国,梁东,马锋旺*,张军科

(西北农林科技大学园艺学院,陕西杨凌712100)

摘要:从嘎啦苹果叶片中提取分离mRN A,然后根据报道的多种植物谷胱甘肽还原酶保守区设计引物, RT-P CR获得1条长度为594bp的条带,回收该条带并进行克隆,蓝白斑筛选,得到阳性克隆。经过质粒大小比较和PCR验证序列测定和分析发现,该序列与嘎啦苹果果实序列同源性为97%,与其他植物的相似性也达85%。该片断编码130个氨基酸,推导的氨基酸序列与其他植物同源性高达75%~82%。

关键词:苹果;叶片;谷胱甘肽还原酶;克隆

中图分类号:S634文献标识码:A文章编号:1004-1389(2007)06-0097-05

Cloning and Analysis of Glutathione

Reductase cDNA from Apple

SH I Shou-guo,LIANG Dong,M A Feng-w ang*and ZHANG Jun-ke

(College H orticulture,Northw es t A&F Un iversity,Yangling Shaanxi712100,China)

Abstract:RNA w as ex tracted and separated from the fresh leaves o f Roy al Gala apple(M alus p umila Mill cv.Royal Gala),primers w er e designed accor ding to tw o co nser ved r eg io ns of g lutathio ne r educ-tase repor ted in many species.A ban of594bp w as obtained by RT-PCR.T he recovery as w ell as clo-ning,w hite/blue scr eening w as conducted to obtained a positiv e clone.T he plasm id size compar ison and PCR identification and sequence analy sis show ed that85%~97%identity in nucleotide sequence and75%~82%identity in amino acid sequence to that the fruit o f Ro yal Gala apple and other plants w as o bserv ed.It enco ded130amino acid.

Key words:Apple;Leaf;Glutathione reductase;Cloning

谷胱甘肽还原酶(Glutathio ne reductase, GR)是植物细胞抗氧化酶系统中的一个重要酶,在抗坏血酸-谷胱甘肽循环中催化氧化型谷胱甘肽(GSSG)还原生成还原型谷胱甘肽(GSH),从而维持GSH的含量,同时参与抗坏血酸-谷胱甘肽循环,在植物生长发育及抗性生理中起重要作用[1]。到目前为止,谷胱甘肽还原酶已从多枝赖草(L ey m us multicaulis)[2]、豌豆(Pisum sativum L.)[3]、大豆(G ly cine m ax L.)[4]、水稻(Ory z a sativ a L.)[5]、烟草(N icotiana tabucum L.)[6]、白菜(B rassica camp estr is)等[7]生物中得到克隆和鉴定。

苹果是世界四大果树之一,也是我国主栽果树之一,但苹果的生产和发展常受到干旱、高温、盐碱等逆境的影响。本试验根据其他植物上已报道GR序列的保守区域设计引物,提取苹果叶片RNA,通过RT-PCR方法从苹果叶片中克隆到GR基因cDNA片段,并对该基因进行半定量RT-PCR分析,为进一步研究GR的功能、作用机理奠定基础。

*收稿日期:2007-04-28修回日期:2007-06-05

基金项目:陕西省重大科技专项计划项目(2006kz05-G4);西北农林科技大学/拔尖人才支持计划0。

作者简介:师守国(1973-),男,山西运城人,在读硕士,主要从事园艺生物技术研究。Email:sh ishouguo@https://www.wendangku.net/doc/fb7429580.html, ﹡通讯作者:马锋旺,Email:fwm64@https://www.wendangku.net/doc/fb7429580.html,

1 材料与方法

1.1 材料

苹果(Malus p umila M ill.)品种/皇家嘎啦0(Ro lay Gala)叶片取自西北农林科技大学园艺站,分别取生长5d,10d,20d,35d 叶片,用液氮处理后放入超低温冰箱待用。1.2 方法

1.2.1 总RNA 的制备 采用改良SDS 热酚法提取总RNA [8]

。方法为:取0.2g 苹果叶片,在液氮中充分研碎成粉末,加入到600L L Tr is -酚试剂(65e )中,而后加入20L L B -巯基乙醇,800L L Buffer 混匀,4e 12000r/m in 离心20min 。上清液移至另一EP 管中,加入等体积酚B 氯仿B 异戊醇=25B 24B 1混合液,上下颠倒震荡混匀,4e 12000r/min 离心20m in 。将上清液转移至新EP 管中,加入等体积氯仿B 异戊醇=24B 1混合液,混匀,4e 12000r/min 离心20min 。吸取上清液,加入2.5倍体无水乙醇和0.1倍体积的醋酸钠,放置3h 至过夜。而后4e 10000r/m in 离心15~20m in,弃上清液,加入l mL 75%乙醇清洗沉淀2次,干燥沉淀后,溶于30~50L L DEPC 水中-20e 保存备用。

1.2.2 引物设计及RT 反应 根据豇豆、葡萄等植物保守区序列设计兼并引物,GRS:5c -CTT CCT CCT ACA T CG TT G CT T A -3c ;GRA:5c -GAC CAA CT A T CT T G/T C CCT CT/G -3c 。引物由上海生物工程公司合成。20L L 反转录反应体系包括:3~5L g 总RNA,加入10mmo l/L dNT P 混合物l L L ,10mmo l/L 六碱基随机引物l L L,40U/L L Rnasin 0.5L L,Mg Cl 2加DEPC 水至20L L ,加入10@Bufer 4L L ,200U /L L 反转录酶1L L ,加DEPC 水至20L L,轻轻摇匀,短暂离心。25e 孵育10min,42e 孵育15min,然后95e 孵育5min,-20e 保存待用。

1.2.3 GR 基因cDNA 片段的PCR 扩增 以苹果总RNA 的反转录产物为模板进行PCR 扩增。反应体积为25L L,包括10@Bufer 2.5L L,Mg Cl 225m mol/L 2L L,dNT Ps10mm ol/L 1L L ,GRS10mmo l/L 1L L,GRA 10mmo l/L 1L L,5U/L L T aq DNA 聚合酶0.3L L,模板cDNA 2L L ,灭菌双蒸水补齐至25L L 。反应条件为:94预变性4m in,94C 变性1min,55e 1min,72e

延伸2min,35个循环,然后72e 延伸l0min 。

PCR 产物经1.0%琼脂糖凝胶电泳检查后,切下目的条带,用PCR 产物纯化试剂盒回收DNA 。1.2.4 PCR 产物的克隆和测序 回收的PCR 产物与pM D l8-T Vector 连接,转化E.coli DH 5A ,菌斑在含有X -gal 和IPT G 的平板上进行蓝白斑筛选,挑取若干白斑溶于10mL LB 培养10~12h,提取质粒后,酶切鉴定和PCR 鉴定,经鉴定得到的正确克隆用于测序,测序工作由上海生工完成。

1.2.5 序列分析 将DNA 序列及其对应的氨基酸序列与GenBank 中已有相应的序列进行比较分析,同时用DNASTAR 软件对结果进行比较分析。

1.2.6 半定量RT -PCR 分析 每样品吸取相同量(1L L)的反转录液作为模板,用已知的引物在25L L 的反应体系进行PCR 扩增,扩增的反应体系和反映程序同1.2.3。其中在优化PCR 循环次数的预备实验中,GR 基因在20,22,24,26,28,30,32,34,36,38,40,42个循环次数结束时吸取20L L 在含EB 的1%的琼脂糖凝胶电泳上进行检测,内参基因18S rRNA 基因在11,13,15,17,19,21,23,25,27,29,31,33个循环次数结束时吸取10L L 进行电泳检测,以筛选最佳的循环次数。

2 结果与分析

2.1 苹果GR 基因片段的RT -PCR 、重组质粒的鉴定

通过RT -PCR,从苹果叶片中得到一条大小为594bp 的片断(图1)。将该片断克隆至pM D18-T 后,对重组质粒进行双酶切和PCR 鉴定。双酶切鉴定见图2。

1.RT -PC R 产物RT -PCR product;M.DNA 分子量标准DL1200mar ker

图1 RT -PC R 扩增结果Fig.1 RT -PC R products

#98#西 北 农 业 学 报 16卷

1.菌液PCR 产物product of PCR;M.DNA 分子量标准DL2000mar ker

图2 菌液PC R 产物电泳

Fig.2 Electrophoresis of PC R product of GR

2.2 测序结果及其序列分析

测序后发现该片段长594bp,编码130个氨基酸,其碱基序列及其推导的氨基酸序列见图3。序列分析后发现,该片段与皇家嘎拉苹果果实GR cDNA 的同源性最高为97%,与豇豆、豌豆、拟南芥中GR 氨基酸序列分别为82%、82%、78%。2.3 半定量RT -PCR 分析

图4为内参基因和目的基因最佳循环次数的筛选,GR 基因在34个循环后达到平台期,18S

rRNA 在26个循环后达到平台期,因此选用26和34个循环分别作为18S rRNA 和GR 的最佳循环次数。由图5可以看出,GR 基因在10d 左右表达,

在其余的时间几乎不表达或表达的量很少。

图3 GR cDNA 核苷酸序列及其推测的氨基酸序列

Fig.3

The nucleotide sequence of GR cDNA and deduced amino acid

sequence

左图1,2,3,4,5,6,7,8,9分别为18S rRNA18,20,24,26,28,30,32,34,36cycles 的电泳图 M.DNA 分子量标准

右图1,2,3,4,5,6,7,8,10,11,12分别为GR 基因20,22,24,26,28,30,32,34,36,38,40,42cycles 的电泳图 M.DNA 分子量标准

图4 苹果叶片18S rRNA(左),GR(右)基因不同PCR 循环次数的扩增产物Fig.4 RT -PCR reaction of GR,18S rRNA with diff erent cycling numbers for selecting

optimal amplification cycles in the exponential range

#

99#6期 师守国等:苹果谷胱甘肽还原酶cD NA 片段的克隆及表达分析

A,B,C,D为18S rRNA5d,10d,20d,35d表达量(左图),5d,10d,20d,35d GR基因表达量(右图)图5GR基因在叶片不同生长时间表达的半定量RT-PCR分析

Fig.5Semiquantitative RT-PCR analysis of GR and GST expression in leaves during development

3讨论

高质量的RNA是进行分子克隆的关键所在,也是进行分子表达的前提条件。含多糖的RNA沉淀难溶于水,且多糖可以抑制许多酶的活性,影响后续的PCR反应[9],为此笔者在提取RNA的过程中采用热酚法就是出去多糖的污染。酚类物质随着植物的生长而增加[10],材料选取幼嫩的植物组织叶片,以减轻酚类物质的污染。

PCR扩增反应是酶促反应,遵循酶促反应定律,开始的循环内扩增产物呈指数累积,产物和模板呈线性关系;当达到平台效应时,随着循环次数的增加,产物产率不再增加。半定量RT-PCR正是利用产物和模板的这一线性关系,通过扩增来对比目的基因的表达,该技术已被用来检测许多基因的表达。由于内参基因和目的基因的最佳循环次数不同,而内参基因的过量累计会对目的基因的产率产生影响,因此在进行PCR扩增时只能选择同批异管扩增,而不能进行同管扩增,并在不同的循环次数下取出各个产物进行电泳检测。

GSH和ASA作为植物体内重要的抗氧化剂,在细胞中是通过自身的氧化来行使其抗氧化功能的。不仅它们的含量的高低与自身防御能力及生长发育有关,而且氧化态与还原态的比值在细胞氧化还原状态的调控中起重要的作用。GR 是植物体内抗氧化酶中的重要成员之一,它主要功能是利用NADPH作为电子供体催化GSSG 向GSH还原,进而维持胞内GSH的含量及其氧化还原状态。同时高的GSH能通过抗坏血酸-谷胱甘肽循坏促进A SA的再生。资料表明,植物体内的GR在植物抗逆境胁迫中起重要作用,逆境胁迫引起GR活性[11]和相关基因表达量明显的变化,过量表达的谷胱甘肽还原酶也可以提高植物对逆境的抗性[12]。

对不同生长时间的叶片进行表达分析,有助于进一步研究该基因的作用机理,以利于弄清GR的具体作用机制,为GR基因改造植物带来希望。干旱、高盐等胁迫都能引起植物体内GR 活性也提高,使GSH含量提高,引起植物明显的生理生化变化,清除活性氧的危害,使植物正常生长。

参考文献:

[1]M ullineaux P M,Cres sen G P.Glutathione reductase:Reg-

ulation and role in oxidative stres s[M].Oxidative s tress and th e molecular biology of an tioxidant defen ses.United Kingdom:Cold Spring H arb or Laboratory Pres s,1997. [2]史仁玖,赵茂林,杨清.多枝赖草谷胱甘肽还原酶基因的克

隆及分析[J].西北农林科技大学学报(自然科学版),2006, 34(2):61~67.

[3]Steven R G,Cres sen G P,M ullineau x P M.Cloning an d

characteriz ation of a cytos olic glutathion e redu cas e cDNA fr om pea and its expres sion in res pon se to s tress[J].Plant M ol boil,1997,35:641~654.

[4]T ang X,W eb b M A.Soybean root n odule cDNA encodin g

glutath ione redu ctas e[J].Plant Physiol,1994,104:1081 ~1088.

[5]Kaminaka H,M orita S,Nakajima M,et al.Gene clonin g an d

exp ress ion of glutathione reductase in rice[J].Plant Cell Physiol,1998,39(12):1269~1280.

[6]Cr eiss en G P,M ullineaux P M.Cloning,sequencing,an d

regulation of glutath ion e redu ctas e cDNAs an d id entifica-tion of tw o genes en coding the tobacco enzyme[J].Planta, 1995,270:22882~22889.

[7]Lee H,Won S H,Lee B H,et al.Genomic cloning an d

characteriz ation of glutathion e r eductase gen e from Brass ica campes tris var.pek inen sis[J].M ol Cell,2002,13(2): 245~251.

[8]候义龙,张开春,吴禄平,等.果树组织中总RNA提取的新

方法[J].沈阳农业大学学报,2002,33(2):122~125. [9]于远,张显,于蓉,等.适宜西瓜mRNA差异显示分

析的几种总RNA提取方法的比较[J].西北农业学报,

#

100

#西北农业学报16卷

2006,15(6):107~110.

[10] Schneiderbauer A,Sanderm ann H,e t al .Isolation of

functional RNA from plant tissu es rich in phen olic com -pounds[J].Anal Biochem,1991,197:91~95.

[11] Smimoff N.The role of active oxygen in th e respons e of

plants to w ater deficit an d des iccation [J ].New Phytolo -gist,1993,125:27~58.

[12] Foyer C.E ffects of elevated cytosolic glutath ion e reduc -tas e activity on the cellular glutathione pool and photo -synth esis in leaves under normal and stres s conditions [J].Plant Physiol,1991,97:863~872.

欢迎订阅2008年5西南农业学报6

5西南农业学报6是由西南六省、市农科院联合主办的国内外公开发行的综合性农业学术期刊。2003年正式被国际农业生物中心文摘数据库(CABI)作为全世界212种中文收录期刊。2004年起入选国家科技部"中国科技论文统计源期刊"(中国科技核心期刊),52005年度中国科技期刊引证报告6公布了全国5600种中国科技论文统计源期刊的文献计量指标,5西南农业学报6影响因子为0.506,在全国农业科学(总论)学报中列第6位,在西部地区及全国大区农业科学(总论)和农业大学学报中列第1位。本刊立足大西南,面向国内外,主要刊登农学、林学、植(森)保、园艺、土壤农化、畜牧、兽医、农业机械与电子工程、水利和建筑工程、食品科学等方面体现大西南地方特色的农牧业各专业学科在基础理论研究和应用技术理论研究方面具有创见的学术论文、领先水平的科研成果、学术报告、研究简报,有新意的文献综述及学术动态、科研成果、新品种介绍等。

5西南农业学报6为双月刊,136页,大16开,彩色封2、3,每期定价10元,全年60元。邮发代号62-152,全国各地邮局均可订阅。欢迎广大读者踊跃投稿和订阅。

地址:成都市静居寺路20号省农科院情报所内邮编:610061 电话:(028)84504192E -mail:Jx uebao @https://www.wendangku.net/doc/fb7429580.html,

#

101#6期 师守国等:苹果谷胱甘肽还原酶cD NA 片段的克隆及表达分析

谷胱甘肽简介

谷胱甘肽 1.定义 谷胱甘肽(glutathione GSH)CAS号:70-18-8。谷胱甘肽是一种存在于自然界中的氨基酸复合物,由谷氨酸、半胱氨酸、甘氨酸等三种氨基酸组合而成的寡肽。谷胱甘肽在体内以两种形态存在,即还原型谷胱甘肽和氧化型谷胱甘肽(oxidized glutathione,简称GSSG)。通常人们所指的谷胱甘肽是还原型谷胱甘肽。还原型谷胱甘肽很容易被氧化,两分子谷胱甘肽的活泼巯基氧化脱氢后以二硫键相连得到的二聚体,即是氧化型谷胱甘肽。其中只有还原型谷胱甘肽才具有生理活性,而生物体内的氧化型谷胱甘肽需经还原后才能发挥生理功能。 2.结构和理化性质 谷胱甘肽是一种白色晶体,化学名为γ-L-谷氨酰-L-半胱氨酰-甘氨酸,其结构如图1所示。相对分子质量为307.33,熔点是192~195 °C (分解),等电点为5.93。比旋光度[α]D20为+17.60°(C=0.05,H2O),易溶于水、稀醇、液氨和二甲基甲酰氨,不溶于乙醚和丙酮。谷胱甘肽固体较为稳定,而水溶液在空气中易被氧化,谷胱甘肽在高水分活度下不易保存,只有将水分活度控制在0.3以下才能长期稳定保存。 3.生理功能

谷胱甘肽是细胞内存在最丰富的小分子硫醇类化合物,其分子中含有一个特异的γ-肽键,由谷氨酸的γ-羧基与半胱氨酸的α-氨基缩合而成,并且半胱氨酸侧链基团上连有一个活泼巯基,是谷胱甘肽许多重要生理功能的结构基础。 3.1抗氧化作用 还原型谷胱甘肽结构中含有一个活泼的巯基—SH,易被氧化脱氢。它在体内能够保护许多蛋白质和酶等分子中的巯基不被如自由基等有害物质氧化,让蛋白质和酶等分子发挥其生理功能。同时清除自由基。 机体内新陈代谢产生的许多自由基会损伤细胞膜,毁坏免疫系统,侵袭生命大分子,促进机体衰老,并诱发肿瘤或动脉粥样硬化的产生。由此,谷胱甘肽具有抗衰老和强化免疫系统等作用。 3.2整合解毒作用 谷胱甘肽半胱氨酸上的巯基为其活性基团(故谷胱甘肽常简写为G-SH),易与碘乙酸、芥子气(一种毒气)、铅、汞、砷等重金属盐或致癌物质等相结合,并促进其排出体外,起到中和解毒作用。4. 应用 4.1 谷胱甘肽在临床上的应用 谷胱甘肽在临床上有广泛的作用,对细胞有保护作用,可防止红细胞溶血,从而减少高铁血红蛋白的损失;抑制脂肪肝的形成,改善中毒性肝炎和感染性肝炎的症状;对丙烯腈、氟化物、一氧化碳、有机溶剂、重金属等中毒具有解毒作用;对缺氧血症的不适、恶心、呕

谷胱甘肽含量测定

【实验目的】 了解植物组中中抗坏血酸-谷胱甘肽循环代谢过程,学习还原型谷胱甘肽含量的测定原理和方法。 【实验原理】 谷胱甘肽是有谷氨酸(Glu)、半胱氨酸(Gly)组成的天然三肽,是一种含巯基(—SH)的化合物,广泛存在于动物组织、植物组织、微生物和酵母中。谷胱甘肽能和5,5’-二硫代-双-(2-硝基苯甲酸)(5,5’-dithiobis-2-nitrobenoic acid,DTNB)反应产生2-硝基-5-巯基苯甲酸和谷胱甘肽二硫化物(GSSG)。2-硝基-5-巯基苯甲酸为一黄色产物,在波长412nm处具有最大光吸收。因此,利用分光光度计法可测定样品中谷胱甘肽的含量。 【器材与试剂】 1.实验仪器与用具 研钵、高速离心机、移液管、离心管、试管、分光光度计 2.实验试剂 还原型谷胱甘肽标准液;偏磷酸溶液;磷酸溶液缓冲液(pH7);二硫代硝基苯甲酸(5,5’-dithiobis-2-nitrobenoic acid,DTNB)溶液;蒸馏水。 3.实验材料 小麦叶片 【实验步骤】 1.标准曲线制作 取7支试管,编号,按照下表加入各种试剂,混匀,25℃保温反应10min。以1号管为参比调零,测定显色液在412nm处的吸光度。以吸光度为纵坐标,还原型谷胱甘肽物质的量(μmol)为横坐标,绘制标准曲线。 试管号 试剂(ml) 1 2 3 4 5 6 7 10μg/ml GSH标准液0 0.1 0.2 0.4 0.6 0.8 1.0

蒸馏水 2.0 1.9 1.8 1.6 1.4 1.2 1.0 pH7磷酸缓冲液 4.0 4.0 4.0 4.0 4.0 4.0 4.0 DTNB试剂0.4 0.4 0.4 0.4 0.4 0.4 0.4 GSH浓度μg/2ml 0 1 2 4 6 8 10 2.提取 取材后,称取0.2g样品置于研钵中,加入少量5%偏磷酸研磨成匀浆后,定容至6ml, 8000转离心10min。收集上清液来测定谷胱甘肽含量,测量提取液体积。 3.测定 取上清液2ml,显色,操作同标准曲线。重复3次。 显色反应后,分别记录样品管混合液的吸光度和空白对照管反应混合液的吸光度。根据吸光度差值,从标准曲线上查出相应的还原型谷胱甘肽量,计算还原型谷胱甘肽含量(μmol/g)。 4.计算 GSH含量(μmol/g)=(C x×V t)/ (FW×V S) 式中,C x为2ml样品中GSH的含量(μg);V t为样品提取液总体积(ml);V s为显色时样品液体积(ml);FW为样品质量(g)。 【实验结果】 1.标准曲线 试管编号 1 2 3 4 5 6 7 GSH浓度(μg/2ml)0 1 2 4 6 8 10 吸光度值A 0 0.067 0.134 0.314 0.452 0.579 0.723 以GSH浓度(μg/2ml)为横坐标,吸光度值为纵坐标,建立标准曲线。

阿拓莫兰(注射用还原型谷胱甘肽)

阿拓莫兰(注射用还原型谷胱甘肽) 【药品名称】 商品名称:阿拓莫兰 通用名称:注射用还原型谷胱甘肽 英文名称:Reduced Glutathione for Injection 【成份】 主要成分:还原型谷胱甘肽,化学名:N(N-L-r谷氨酰基-L—半胱氨酰基)甘氨酸 【适应症】 用于:①化疗患者:包括用顺氯铵铂、环磷酰胺、阿霉素、红比霉素、博来霉素化疗,尤其是大剂量化疗时;②放射治疗患者;③各种低氧血症:如急性贫血,成人呼吸窘迫综合症,败血症等;④肝脏疾病:包括病毒性、药物毒性、酒精毒性及其它化学物质毒性引起的肝脏损害。⑤亦可用于有机磷、胺基或硝基化合物中毒的辅助治疗。 【用法用量】 1.给药途径①静脉注射:将之溶解于注射用水后,加入100ml生理盐水中静脉滴注,或加入少于20ml的生理盐水中缓慢静脉注射;②肌肉注射给药:将之溶解于注射用水后肌肉注射。2.用量:①化疗患者:给化疗药物前15分钟内将1.5g/m2本品溶解于100ml生理盐水中,于15分钟内静脉输注,第2~5天每天肌注本品600mg。使用环磷酰胺(CTX)时,为预防泌尿系统损害,建议在CTX 注射完后立即静脉注射本品,于15分钟内输注完毕;用顺氯铵铂化疗时,建议本品的用量不宜超过35mg/mg顺氯铵铂,以免影响化疗效果。②肝脏疾病:每天肌肉注射本品300 mg或600mg。③其它疾病:如低氧血症,可将1.5g/m2 本品溶解于100ml生理盐水中静脉输注,病情好转后每天肌肉注射300~600mg维持。3.疗程:肝脏疾病一般30天为一疗程,其它情况根据病情决定。

【不良反应】 偶见脸色苍白,血压下降,脉博异常等类过敏症状,应停药。偶见皮疹等过敏症状,应停药。偶有食欲不振、恶心、呕吐、胃痛等消化道症状,停药后消失。注射局部轻度疼痛。【禁忌】 对本品过敏者禁用。 【注意事项】 ①在医生的监护下,在医院内使用本品。②注射前必须完全溶解,外观澄清、无色;溶解后的本品在室温下可保存2小时,0~5 ℃保存8小时。③放在儿童不易触及的地方。【特殊人群用药】 儿童注意事项: 新生儿、早产儿、婴儿和儿童应谨慎用药,尤其是肌内注射。 妊娠与哺乳期注意事项: 老人注意事项: 老年患者应适当减少用药剂量。并在用药过程中严密监视。 【药物相互作用】 本品不得与维生素B12、甲萘醌、泛酸钙、乳清酸、抗组胺制剂、磺胺药及四环素等混合使用。 【药理作用】 还原型谷胱甘肽(GSH)是人类细胞质中自然合成的一种肽,由谷氨酸、半胱氨酸和甘氨酸组成,含有巯基(-SH),广泛分布于机体各器官内,为维持细胞生物功能已呈有重要作用。它是甘油醛磷酸脱氢酶的辅基,又是乙二醛酶及丙糖脱氢酶的辅酶,参与体内三羧酸循环及糖代谢。本品能激活多种酶[如巯基(-SH)酶等],从而促进糖、脂肪及蛋白质代谢,并

注射用还原型谷胱甘肽说明书

注射用还原型谷胱甘肽 以下内容仅供参考,请以药品包装盒中的说明书为准。 妊娠:在医疗监护下使用 儿童:新生儿、早产儿、婴儿和儿童应谨慎用药,尤其是肌内注射 注射用还原型谷胱甘肽说明书 【说明书修订日期】 核准日期:2007年01月30日 修改日期:2013年01月04日 【药品名称】 注射用还原型谷胱甘肽 【英文名】 Reduced Glutathione for Injection 【汉语拼音】 Zhusheyong Huanyuanxing Guguanggantai 【成份】

本品主要成份:还原型谷胱甘肽 化学名称:N-(N-L-γ-谷氨酰基-L-半胱氨酰基)甘氨酸 辅料:氢氧化钠 【性状】 本品为白色多孔的块状物或粉末。 【适应症】 ①化疗患者:包括用顺氯铵铂、环磷酰胺、阿霉素、红比霉素、博来霉素化疗,尤其是大剂量化疗时;②放射治疗患者; ③各种低氧血症:如急性贫血,成人呼吸窘迫综合症,败血症等;④肝脏疾病:包括病毒性、药物毒性、酒精毒性(包括酒精性脂肪肝、酒精性肝纤维化、酒精性肝硬化、急性酒精性肝炎)及其他化学物质毒性引起的肝脏损害;⑤亦可用于有机磷、胺基或硝基化合物中毒的辅助治疗;⑥解药物毒性(如肿瘤化疗药物,抗结核药物,精神神经科药物,抗抑郁药物,扑热息痛等)。 【规格】 0.3g、0.6g、0.9g、1.0g、1.2g、1.5g、1.8g、2.0g 【用法用量】

1.给药途径:①静脉注射:将之溶解于注射用水后,加入100ml、250~500ml生理盐水或5%葡萄糖注射液中静脉滴注。 ②肌内注射给药:将之溶解于注射用水后肌内注射。 2.用量:①化疗患者:给化疗药物前15分钟内将1.5g/m2本品溶解于100ml生理盐水中,于15分钟内静脉输注,第2~5天每天肌注本品0.6g。使用环磷酰胺(CTX)时,为预防泌尿系统损害,建议在CTX注射完后立即静脉注射本品,于15分钟内输注完毕;用顺氯铵铂化疗时,建议本品的用量不宜超过35mg/mg顺氯铵铂,以免影响化疗效果。②肝脏疾病的辅助治疗。对于病毒性肝炎,1.2g,qd,iv,30天;重症肝炎:1.2-2.4g,qd,iv,30天;活动性肝硬化:1.2g,qd,iv,30天;脂肪肝:1.8g,qd,iv,30天;酒精性肝炎:1.8g,qd,iv,14-30天;药物性肝炎:1.2-1.8g,qd,iv,14-30天;滴注时间为1~2小时。③用于放疗辅助用药,照射后给药,剂量1.5g/ m2,或遵医嘱。④其他疾病:如低氧血症,可将1.5g/m2本品溶解于100ml生理盐水中静脉输注,病情好转后每天肌内注射0.3~0.6g维持。 3.疗程:肝脏疾病一般30天为一疗程,其他情况根据病情决定。 【不良反应】

谷胱甘肽还原酶检测试剂盒简介

谷胱甘肽还原酶检测试剂简介 谷胱甘肽还原酶的作用: 一、谷胱甘肽还原酶(GR)在人类细胞中具有极其重要的生理功能,广泛存在于人体肝、肾、心红细胞、单核巨噬细胞等组织细胞中。它可及时地清除人体代谢过程中产生的氧自由基(OFR),是维持细胞中还原型谷胱甘肽(GSH)含量的主要黄素酶。对保护肝细胞膜完整具有非常重要的作用意义。 在《临床肝病实验诊断学》和《临床检验诊断解析》中明确标示,血清谷胱甘肽还原酶活性测定可用于协助诊断肝脏疾病,血清谷胱甘肽还原酶活性上升可以辅助诊断肝炎、肝硬化、梗阻性黄疸及相当数量引发的肝肿瘤。原发性肝细胞癌和广泛转移性肝肿瘤时,血清谷胱甘肽还原酶活性明显升高,急性病毒性肝炎或中毒性肝炎中度升高,而肝硬化是血清GR轻度升高。 二:检测谷胱甘肽还原酶的临床意义 1、急性肝炎早期阶段,血清谷胱甘肽还原酶敏感性最高,可用于肝损的早期检测; 2、急性肝炎患者GR比转氨酶更早增加达到峰值,早早期肝脏损伤判断的首选指标; 3、GR有助于判断亚临床DILI,提高临床DILI的诊断率 4、不同于ALT和AST在肝细胞膜破裂和线粒体破裂时才能检测出来,GR填补肝细胞受损早期自我修复阶段至破裂进程中诊断的空白,将更有利于早期肝炎的诊断和治疗

三、临床解读: 谷胱甘肽和谷丙、谷草在化验单上的具体解读,谷胱甘肽的血清血浆正常值是33-73U/L,共有四种情况。 1、谷胱甘肽指标升高,谷丙和谷草指标正常,提示有肝损伤的风险,建议加强对肝脏的检测频率,有利于发现早期肝损伤。 2、谷胱与谷丙,谷草同时升高,提示进入肝损伤爆发期,建议临床治疗措施干预。 3、谷胱甘肽升高,谷丙、谷草下降,提示正在进行肝损伤修复,可以结合三者评估临床治疗情况。 4、当三者都出现下降,情况有两种极端提示:(1)是修复完成,临床好转。(2)是重型肝炎出现严重情况,出现胆酶分离现象。 另外一种是红细胞的检测,正常值4.7-13.2U/gHb 红细胞主要针对“蚕豆病”和遗传性伯氨喹溶血病人,谷胱甘肽还原酶降低,红细胞的细胞膜容易被氧化和分解,导致溶血性贫血和溶血性黄疸。

谷胱甘肽过氧化物酶

本科生毕业论文(设计)
题 姓 学 专 班 学
目: 名: 院: 业: 级: 号:
谷胱甘肽过氧化物酶(GPX)对灵芝生长发育中 的活性氧物质(ROS)的改变及理化性的质影响 于南 生命科学学院 生物科学 生物科学 101 班 13210101 师亮 职称: 讲师
指导教师:
2013 年 5 月 20 日 南京农业大学教务处制
1

目录
摘要 .......................................................................................................... 错误!未定义书签。 关键词 ...................................................................................................... 错误!未定义书签。 Abstract ................................................................................................... 错误!未定义书签。 Key words ................................................................................................ 错误!未定义书签。 引言 .......................................................................................................... 错误!未定义书签。 1 材料与方法 ........................................................................................ 错误!未定义书签。 1.1 材料 ....................................................................................... 错误!未定义书签。 1.1.1 菌种 .......................................................................... 错误!未定义书签。 1.1.2 CYM 培养基 ............................................................ 错误!未定义书签。 1.1.3 PDA 固体培养基 ..................................................... 错误!未定义书签。 1.1.4 试剂 .......................................................................... 错误!未定义书签。 1.1.5 主要仪器设备 .......................................................... 错误!未定义书签。 1.2 实验方法 ............................................................................... 错误!未定义书签。 1.2.1 ROS 的测定 ............................................................. 错误!未定义书签。 1.2.2 NBT 测定 ................................................................. 错误!未定义书签。 1.2.3 DAB 染色 ................................................................. 错误!未定义书签。 1.2.4 菌株对氧化物耐受性的检测 .................................. 错误!未定义书签。 1.2.5 胞内 Ca2+的荧光检测 .............................................. 错误!未定义书签。 1.2.6 三萜的测定 .............................................................. 错误!未定义书签。 1.2.7 菌丝分叉检测 .......................................................... 错误!未定义书签。 2 结果与分析 ........................................................................................ 错误!未定义书签。 2.1 GPX 沉默转化子胞内 ROS 含量上升 ......................... 错误!未定义书签。 2.2 NBT 染色显示 GPX 沉默转化子胞内超氧根离子含量上升错误!未定义书签。 2.3 DAB 染色显示 GPX 沉默转化子胞内 H2O2 含量下降...... 错误!未定义书签。 2.4 GPX 沉默转化子的菌株对氧化性物质的耐受力下降 ...... 错误!未定义书签。 2.5 GPX 沉默转化子胞内 Ca2+的含量下降 .............................. 错误!未定义书签。 2.6 GPX 沉默转化子菌株的三萜含量下降: .......................... 错误!未定义书签。 2.7 GPX 沉默转化子菌丝的分叉数减少 .................................. 错误!未定义书签。 3 讨论 .................................................................................................... 错误!未定义书签。 致谢 .......................................................................................................... 错误!未定义书签。 参考文献 .................................................................................................. 错误!未定义书签。
2

还原型谷胱甘肽的稳定性研究

919 还原型谷胱甘肽的稳定性研究 朱义福 (星湖生物科技股份有限公司,广东肇庆 526040) 摘要:本文研究了pH 、温度、光照以及外加抗氧化剂等因素对还原型谷胱甘肽(GSH)纯品溶液稳定性的影响。结果表明,GSH 水溶液在pH=2.0~4.0范围内最为稳定;在30 ℃以下,24 h 内自身氧化较少;应避光处理或保存;外加抗氧化剂在pH=6.0时,保护作用明显。 关键词:谷胱甘肽;稳定性;抗氧化剂 文章篇号:1673-9078(2011)8-919-923 Stability of Reduced Glutathione under Different Conditions ZHU Yi-fu (Star Lake Bioscience Co., Inc., Zhaoqing 526040, China) Abstract: The effects of pH, temperature, sunlight and antioxidant on the stability of reduced glutathione (GSH) solution were studied in this paper. Results indicated that GSH solution was relative stabile under the following conditions: pH 2.0~4.0 and temperature <30℃. And it should be kept in dark place. Besides, the GSH solution showed the highest stability in the presence of antioxidant at pH 6.0. Key words: glutathione; stability; antioxidant 谷胱甘肽(Glutathione ,GSH ),即γ-L-谷氨酰-L-半胱氨酰-甘氨酸,是由L-谷氨酸、L-半胱氨酸和甘氨酸经肽键缩合而成的生物活性三肽化合物。GSH 是许多酶反应的辅基,在生物体内具有清除体内自由基、解毒等多种重要的生理功能,特别是对于维持生物体内适宜的氧化还原环境具有重要意义[1]。国内外关于GSH 的研究主要集中在菌种选育[2]、培养条件优化[3]、分离纯化[4]和临床应用上[5],其工业化生产技术一直被国外极少数发达国家所垄断,国内尚未实现工业化生产,从而造成GSH 的市场价格居高不下,影响了GSH 的推广和应用。 GSH 易溶于水、稀醇、液氨和N,N-2甲基甲酰胺,而微溶于或不溶于醇、醚和酮。GSH 的固体较稳定,而水溶液在外界环境中受温度、pH 、光照等条件影响,易氧化,产生氧化型谷胱甘肽(即GSSG ),GSSG 是由两分子GSH 脱氢后通过二硫键相连的二聚体,其反应如下: 氧化型GSSG 不具有生理活性,只有还原型GSH 才能发挥重要的生理功能。GSH 的不稳定性是造成较难分离纯化、产品纯度不高的重要原因。因此,本文通过大量的试验对GSH 稳定性进行研究,为国内GSH 的工业化生产提供参考。 收稿日期:2011-03-26 作者简介:朱义福(1976-),男,工程师,研究方向:生物医药分离纯化技术 1 材料与方法 1.1 材料与试剂 GSH 纯品(纯度>98%):日本Kyowa 公司。四氧嘧啶(Alloxan ):美国sigma ; 二硫苏糖醇(DTT ):上海生工所;抗坏血酸(Vc ):广州化学试验厂;保险粉(Na 2S 2O 4):上海国药集团化学试剂公司;其它试剂为国产分析纯。 1.2 主要仪器 SC-15数控超级恒温槽:宁波新芝生物科技公司;CR21G 高速冷冻离心机:日本Hitachi 公司;752型紫外可见光分光光度计:南京第四分析仪器公司;S40 pH 精密测量仪,AB54-S 分析天平:瑞士METTLER TOLEDO 公司;RW20D 搅拌器:德国IKA 公司;Agilent LC1100液相色谱仪:美国HP 公司。 1.3 分析方法 GSH 含量测定采用四氧嘧啶Alloxan 试剂法 [6]:(1)标准曲线的制作:准确称取6.146 mg 的GSH 标准品,用40%乙醇溶解,定容至100 mL ,得到浓度为200 μmol/L 的标准液。取0 mL 、0.2 mL 、0.4 mL 、0.6 mL 、0.8 mL 、1.0 mL 上述标准液于试管中,补加去离子水至1.0 mL ,配成浓度为0 μmol/L 、40 μmol/L 、80 μmol/L 、120 μmol/L 、160 μmol/L 、200 μmol/L 的GSH 溶液。然后依次加入pH 7.6的磷酸缓冲液2.5 mL ,0.1 mol/L 的甘氨酸溶液0.5 mL ,以及Alloxan 试剂1.0 mL ,反应20

谷胱甘肽还原酶(glutathione reductase, GR)活性测定试剂盒说明书

货号:QS1111 规格:50管/48样 谷胱甘肽还原酶(glutathione reductase, GR)活性测定试剂盒说明书 紫外分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: GR是广泛存在于真核和原核生物中的一种黄素蛋白氧化还原酶,是谷胱甘肽氧化还原循环的关键酶之一(通常昆虫中GR被TrxR取代)。GR催化NADPH还原GSSG生成GSH,有助于维持体内GSH/GSSG比值。GR在氧化胁迫反应中对活性氧清除起关键作用,此外GR还参与抗坏血酸-谷胱甘肽循环途径。 测定原理: GR能催化NADPH还原GSSG再生GSH,同时NADPH脱氢生成NADP+;NADPH在340 nm有特征吸收峰,相反NADP+在该波长无吸收峰;通过测定340 nm吸光度下降速率来测定NADPH脱氢速率,从而计算GR活性。 自备实验用品及仪器: 紫外分光光度计、低温离心机、水浴锅、移液器、1mL石英比色皿和蒸馏水 试剂组成和配置: 试剂一:液体×1瓶,4℃保存。 试剂二:粉剂×1瓶,4℃保存。临用前加入5.0 mL蒸馏水,混匀。 试剂三:液体×1支,4℃保存。 粗酶液提取: 1.组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加 入1mL试剂一)进行冰浴匀浆。8000g,4℃离心15min,取上清,置冰上待测。 2.细菌、真菌:按照细胞数量(104个):提取液体积(mL)为500~1000:1的比例(建议500 万细胞加入1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000g,4℃,离心15min,取上清置于冰上待测。 3.血清等液体:直接测定。 操作步骤: 1. 分光光度计预热30 min,调节波长到340 nm,蒸馏水调零。 2. 试剂一置于25℃(普通物质)或者37℃(哺乳动物)中预热30min。 3. 空白管:取1mL石英比色皿,加入850μL试剂一,100μL试剂二,50μL试剂三,充分混匀,于340nm 处测定10 s和190 s吸光度,记为A空1和A空2,△A空白管= A空1﹣A空2。 4. 测定管:取1mL石英比色皿,加入750μL试剂一,100μL试剂二,100μL上清液,50μL 试剂三,充分混匀,于340nm测定10 s和190 s吸光度,记为A测1和A测2,△A测定管= A 测1﹣A测2。 注意:空白管只需要测定一次。 计算公式: 第1页,共2页

谷胱甘肽过氧化物酶活性检测试剂盒说明书 可见分光光度法

谷胱甘肽过氧化物酶(GSH-Px/GPX)活性检测试剂盒说明书可见分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。货号:BC1190规格:50T/24S 产品简介: 谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px/GPX)是机体内广泛存在的一种重要的过氧化物分解酶。GPX 能够催化还原型谷胱甘肽(GSH)生成氧化型谷胱甘肽(GSSG),使有毒的过氧化氢还原成无毒的羟基化合物。 GPX 催化H 2O 2氧化GSH,产生GSSG,GSH 能与DTNB 生成在412nm 处有特征吸收峰的化合物,412nm 下吸光度的下降即可反应GPX 的活性。试验中所需的仪器和试剂: 可见分光光度计、天平、台式离心机、1mL 玻璃比色皿、可调式移液枪、研钵/匀浆器、EP 管。产品内容: 提取液:液体40mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入5.5mL 蒸馏水溶解;试剂二:粉剂×1瓶,4℃保存;临用前加入6.6mL 蒸馏水溶解备用; 试剂三:液体20μL×1支,临用前按1μL 试剂三:499μL 蒸馏水的比例稀释试剂三,4℃保存。现用现配; 试剂四:液体60mL×1瓶,4℃保存;瓶底若有结晶可50℃水浴溶解,此溶液为饱和溶液,若底部最终还有结晶,吸取上清使用即可; 试剂五:液体15mL×1瓶,4℃保存; 试剂六:粉剂×1瓶,4℃保存;临用前加入15mL 蒸馏水溶解备用; 标准品:粉剂×1支,10mg 还原型谷胱甘肽,4℃保存。临用前加入1.62mL 蒸馏水溶解为20μmol/mL 的标准溶液备用。操作步骤:

一、粗酶液的提取: 1、组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取0.05g组织,加入1mL提取液)进行冰浴匀浆。10000rpm,4℃离心10min,取上清置冰上待测(如上清不清澈,再离心3min)。 2、细菌、真菌:按照细胞数量104个:提取液体积(mL)500~1000:1的比例,建议500万细胞加入1mL提取液),冰浴超声波破碎细胞(率300w,超声3s,间隔7s,总时间3min)然后10000rpm,4℃,离心10min,取上清置冰上待测(如上清不清澈,再离心3min)。 3、血清(浆)等液体:直接测定。 二、测定步骤: 1、分光光度计预热30min以上,调节波长至412nm,蒸馏水调零。 2、将20μmol/mL标准液用提取液稀释为0.25μmol/mL的标准溶液。再吸取100μL标准溶液与400μL试 剂四混匀待用,此标准液混合物的浓度为0.05μmol/mL。标准液混合物现用现配。 3、将150μL样本与150μL试剂一混合后室温放置5min。 4、操作表:(在1.5mL离心管中依次加入下列试剂) 测定管对照管样品混合物(μL)100- 试剂二(μL)100100 37℃下预热5min 试剂三(μL)100100 37℃下反应5min 试剂四(mL)11 样品混合物(μL)-100 4000rpm常温离心5min,取上清。 试剂名称(μL)测定管对照管标准管空白管上清液500500--标准液混合物--500-试剂四---500 试剂五200200200200 试剂六200200200200 蒸馏水100100100100

还原性谷胱甘肽与复方甘草酸苷注射液的疗效及经济学评价

龙源期刊网 https://www.wendangku.net/doc/fb7429580.html, 还原性谷胱甘肽与复方甘草酸苷注射液的疗效及经济学评价 作者:阮志稳崔亚梅 来源:《中外医疗》2016年第05期 [摘要] 目的探究还原性谷胱甘肽与复方甘草酸苷注射液的疗效及经济学价值对比。方法回顾性分析2013年1月—2015年1月该院182化疗药物引发的肝损害患者资料,根据用药不同进行分组,其中应用还原性谷胱甘肽治疗96例,设为A组,应用复方甘草酸苷注射液治疗86例,设为B组,对比两组患者的临床疗效及经济学评价。结果 A组和B组的治疗总有效率分别为91.7%和86.1%,成本分别为(798.3±43.9)元和(859.9±55.7)元,价效比为 (870.8±41.6)和(999.3±66.9),A组成效比明显优于B组,差异有统计学意义(P [关键词] 药物性肝损害;还原性谷胱甘肽;复方甘草酸苷注射液;价效比 [中图分类号] R595 [文献标识码] A [文章编号] 1674-0742(2016)02(b)-0162-02 [Abstract] Objective To discuss the effect and economic value comparison of reduced glutathione and compound glycyrrhizin injection. Methods The clinical data of 182 cases of patients with liver lesion caused by chemotherapeutics treated in our hospital from January 2013 to January 2015 were retrospectively analyzed and divided into two groups according to the different drug uses, the group A (n=96) were treated with reduced glutathione, the group B (n=86) were treated with compound glycyrrhizin injection, the clinical curative effect and economic evaluation of the two groups were compared. Results The total effective rate, cost and price efficiency ratio in the group A and the group B were respectively 91.7% and 86.1%,(798.3±43.9 )yuan and (859.9±55.7 )yuan,(870.8±41.6) and (999.3±66.9), the effect ratio in the group A was obviously better than that in the group B, the difference was statistically significant (P [Key words] Drug-induced liver lesion; Reduced glutathione; Compound glycyrrhizin injection; Price efficiency ratio 绝大多数药物对机体存在一定的不良反应,尤其是抗肿瘤药物[1]。在化疗治疗中,肝脏 作为大多数药物的代谢场所,药物浓度相对集中,是代谢产物损害的主要靶器官,因此恶性肿瘤患者在治疗过程中往往会存在不同程度的肝损害,严重者甚至会危及生命[2-3]。因此,针对化疗药物引起的肝损害的治疗,是十分必要的。此类药物种类多、数量大,选择范围也较大,因此有必要加强对此类药物的研究工作。该研究整群选取2013年1月—2015年1月期间该院应用还原性谷胱甘肽与复方甘草酸苷注射液这两种常用药物治疗肝损害的患者资料,进行了疗效和经济学角度的对比,以期为临床合理用药提供依据,现报道如下。

谷胱甘肽含量测定

植物生理学模块实验指导 玲主编 科学 还原型谷胱甘肽含量的测定方法(分光光度计法) 【实验目的】 了解植物组中中抗坏血酸-谷胱甘肽循环代过程,学习还原型谷胱甘肽含量的测定原理和方法。 【实验原理】 谷胱甘肽是有谷氨酸(Glu)、半胱氨酸(Gly)组成的天然三肽,是一种含巯基(—SH)的化合物,广泛存在于动物组织、植物组织、微生物和酵母中。谷胱甘肽能和5,5’-二硫代-双-(2-硝基苯甲酸)(5,5’-dithiobis-2-nitrobenoic acid,DTNB)反应产生2-硝基-5-巯基苯甲酸和谷胱甘肽二硫化物(GSSG)。2-硝基-5-巯基苯甲酸为一黄色产物,在波长412nm处具有最大光吸收。因此,利用分光光度计法可测定样品中谷胱甘肽的含量。 【器材与试剂】 1.实验仪器与用具 研钵、高速冷冻离心机、微量移液枪、离心管、试管、水浴锅、容量瓶(100ml、200ml、1000ml)、分光光度计 2.实验试剂 50g/L三氯乙酸(TCA)溶液(含5mmol/L Na 2 -EDTA):称取5g三氯乙酸,用蒸馏水溶 解稀释至100ml。再称取186mg Na 2-EDTA·2H 2 O,加入到100ml 50g/L三氯乙酸溶液中溶解。 0.1mol/L磷酸钠溶液缓冲液(pH7.7):配制方法见附录。 0.1mol/L(pH6.8)磷酸钠缓冲液:配制方法见附录。 4mmol/L二硫代硝基苯甲酸(5,5’-dithiobis-2-nitrobenoic acid,DTNB)溶液:称取15.8mg DTNB,用0.1mol/L、pH6.8磷酸缓冲液溶解,定容至10ml,混匀,4℃保存。现用现配。

GSH注射用还原型谷胱甘肽说明书

注射用还原型谷胱甘肽说明书 【药品名称】 通用名:还原型谷胱甘肽 商品名: 英文名:Reduced glutathione for Injection 汉语拼音:Zhusheyong Huanyuanxing Guguanggantai 其主要成份为还原型谷胱甘肽 其结构式为: 分子式:C10H18O6N3S 分子量:308.33 【性状】 【药理毒理】 还原型谷胱甘肽(GSH)是人类细胞质中自然合成的一种肽,由谷氨酸、半胱氨酸和甘氨酸组成,含有巯基(-SH),广泛分布于机体各器官内,为维持细胞生物功能已呈有重要作用。它是甘油醛磷酸脱氢酶的辅基,又是乙二醛酶及丙糖脱氢酶的辅酶,参与体内三羧酸循环及糖代谢。本品能激活多种酶[如巯基(-SH)酶等],从而促进糖、脂肪及蛋白质代谢,并能影响细胞的代谢过程;它可通过巯基与体内的自由基结合,可以转化成容易代谢的酸类物质从而加速自由基的排泄,有助于减轻化疗、放疗的毒副作用,对化疗、放疗的疗效无明显影响,如保护肾小管免受顺铂损害的主要机制为肾小管细胞内含谷胱肽解毒时所需的r-谷酰氨转肽酶,而痛细胞却无此酶,故在不影响本品的细胞毒效应同时保护了,正常组织但器官。且对放射性肠炎治疗效果较明显;对于贫血、中毒或组织炎症造成的全身或局部低氧血症患者应用,可减轻组织损伤,促进修复。通过转甲基及转丙氨基反应,GSH还能保护肝脏的合成、解毒、灭活激素等功能,并促进胆酸代谢,有利于消化道吸收脂肪及脂溶性维生素(A、D、E、K)。 【药代动力学】 小鼠肝注约5小时达血浓峰位,t1/2约24小时,在肝、肾、肌肉分布最多。 【适应症】 用于: ①化疗患者:包括用顺氯铵铂、环磷酰胺、阿霉素、红比霉素、博来霉素化疗,尤其是大剂量化疗时;

谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展

动物医学进展,2008,29(10):53-56 Pr ogress in Veterinary Medicine 文献综述 谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展* 马森 (武夷学院化学系福建省高校绿色化工技术重点实验室,福建武夷354300) 摘要:谷胱甘肽过氧化物酶(GSH-Px)和谷胱甘肽转硫酶(GST)是一对抗氧化酶。GSH-Px为含硒半胱氨酸,至少有4种同工酶,催化还原H2O2和有机氢过氧化物。GST不含硒,有多种同工酶,不能分解H2O2,但具有清除过氧化物和解毒的双重功能。二者广泛存在于组织细胞、红细胞、血浆和乳中,与细胞损伤、缺氧、中毒、衰老、多种疾病的发生有关;GSH-Px活性也与机体硒水平密切相关。文章综述了GSH-Px 和GST的分类与结构、性质、作用、检测原理、动物临床方面的应用及研究进展。 关键词:谷胱甘肽过氧化物酶;谷胱甘肽转硫酶;研究进展 中图分类号:Q554.6文献标识码:A文章编号:1007-5038(2008)10-0053-04 谷胱甘肽过氧化物酶(g lutathione pero xidase, GSH-Px)于1957年由M ills从牛红细胞中发现,分子结构中含硒,故又名硒谷胱甘肽过氧化物酶(Se-GSH-Px),是体内清除H2O2和许多有机氢过氧化物的重要酶。1976年,Law rence等发现组织中还存在一种不含硒的GSH-Px,命名为谷胱甘肽转硫酶或不含硒的谷胱甘肽过氧化物酶(g lutathio ne-S-tr ansferase,GST或on-Se-GSH-Px),在体内具有清除过氧化物及解毒的双重功能。文章对GSH-Px和GST的分类与结构、性质、作用、检测原理、动物临床方面的应用及研究进展进行了阐述。 1分类与结构 从人和动物组织或细胞中提纯的GSH-Px,分子质量为76ku~95ku,为水溶性四聚体蛋白,4个亚基相同或极为类似,每个亚基有1个硒原子。目前发现GSH-Px至少有4种同工酶,其在机体中的分布、亚基结构、一级序列和酶学特点上有显著不同。第1种为细胞谷胱甘肽过氧化物酶(cGPx),主要分布在组织细胞的细胞区、线粒体和红细胞中,催化还原H2O2和有机氢过氧化物,对各类氢过氧化物都有较好的催化作用。第2种为磷脂过氧化氢谷胱甘肽过氧化物酶(PH GPX),主要分布在各种组织细胞外的细胞液内,部分分布在细胞膜上,主要还原磷脂过氧化氢、脂肪酸过氧化氢和甾体过氧化氢, PH GPX是必需的生物膜组成成分,可阻止生物膜非专一性的磷脂过氧化。第3种为血浆谷胱甘肽过氧化物酶(pGPx),主要分布在血液中,既能还原磷脂氢过氧化物又能还原H2O2。第4种为消化系统谷胱甘肽过氧化物酶(GIGPX),高表达于胃肠道黏膜上皮细胞。牛红细胞GSH-Px有178个氨基酸,第35位是1个硒半胱氨酸。在其亚基结构中有4处A-螺旋和4处B-折叠。整个酶分子中,4个亚基处在一个平面,具有催化活性的硒半胱氨酸位于酶分子表面凹穴的活性部位,易于接触有机氢过氧化物等底物。后者虽然不溶于水,但由于活性基团周围存在一些疏水性芳香环氨基酸残基,形成脂溶性底物可进入的疏水区域,可以与硒半胱氨酸反应,从而使GSH-Px显示很高的反应性。GST是分子质量40ku~50ku的二聚体蛋白质,随着亚基的不同组合而有多种同工酶,如哺乳动物的GST分为A, L,P,H,R等5类水溶性GST,另外还有一类是脂溶性的微粒体同工酶。随着对GST的深入研究,新GST种类不断被发现。已确定了上述5种主要的酶家族中至少一个成员的三维结构,这些结构都具有包括两个结构域的基本蛋白质折叠。大鼠肝胞浆GST是由Ya、Yb、Yc3种不同亚基组合成的YaYa、YcYc、YaYc、YbYb等同工酶,亚基的分子质量为22.5ku~25ku;大鼠肝微粒体GST的亚基分子质量却为14ku;不同来源的GST中氨基酸组成可能有差异,分子质量常不一致[1-5]。 *收稿日期:2008-05-04 基金项目:福建省教育厅/乳谷胱甘肽过氧化物酶研究0项目(JB03266) 作者简介:马森(1947-),男,青海西宁人,教授,主要从事动物生理生化研究。

谷胱甘肽

谷胱甘肽(glutathione) 谷胱甘肽(glfftathione)是由Hopkins发现并命名,1929年Hopkins及Kendall等各自独立的发现其为含有甘氨酸的三肽。谷胱甘肽化学名为:N-(N-L-r-Glutamyl-L-cysteninyl)glycine,即N(N-L-r-谷氨酰-L-半胱氨酰)甘氨酸。谷胱甘肽可分为还原型谷胱甘肽(reduced glutathione,GSH)和氧化型谷胱甘肽(oxidizided glutathione,GSSG)。通常所说的谷胱甘肽是指还原型谷胱甘肽,是由r一谷氨酸、半胱氨酸、甘氨酸组成的三肽。谷胱甘肽是机体内的重要活性物质,它具有清除自由基、解毒、促进铁质吸收及维持红细胞膜的完整性、维持DNA的生物合成、细胞的正常生长及细胞免疫等多种生理功能。 1 GSH的理化特性 谷胱甘肽分子量为307.33,熔点189~193℃(分解),晶体是无色透明细长柱状(板状),等电点(PI)为5.93,成品见光易分解,易氧化,谷胱甘肽分子中有一特殊的6-肽键,即由谷氨酸的6-COOH与半胱氨酸的a-NH:缩合而成,这样的肽键与蛋白质分子中的一个氨基酸中Q-COOH和另一个氨基酸中α-NH2失水缩合而成的肽键显然不同。由于谷胱甘肽中含有一个活泼的巯基极易被氧化,2分子还原型谷胱甘肽(简称GSH),脱氢以二硫键-S-S-)相连便成为氧化型的谷胱甘肽(简称GSSG),所以谷胱甘肽可分为氧化型和还原型两大类,在生物体中起重要功能作用的是还原型谷胱甘肽。 2 GSH在自然界中的分布 谷胱甘肽广泛分布于自然界的生物体中(Wierzbicka等,1989),主要存在于酵母、动物肝脏、肌肉、血液中,许多植物,如蔬菜、豆类、谷物、薯类、菇类及细菌中也含有一定量的谷胱甘肽。在动物细胞中还原型谷胱甘肽水平达5mmol/L,而氧化型仅为0.1mmol/L,细胞内高水平的GSH对动物机体维持正常机能是十分重要的。据测定,谷胱甘肽在未加工的肉中含量是50~200mg/kg,在新鲜水果和蔬菜中的含量是50~150mg/kg,干燥酵母中含有约.15%的谷胱甘肽,在乳制品、谷物和熟食品中含量较低。 3 GSH的代谢过程 谷胱甘肽在体内的代谢过程现已基本清楚。进入血液循环的GSH可被一些组织直接吸收入细胞,也可被组织细胞膜上的r-谷氨酰转肽酶(rGT)降解为r-谷氨酰氨基酸(氨基酸来自细胞外液中的游离氨基酸)和半胱氨酰甘氨酸,而后被二肽酶降解为半胱氨酸和甘氨酸或以二肽的形式转运到细胞内后再被降解为半胱氨酸和甘氨酸。大多数哺乳动物的肾、肝脏、小肠、肺组织中有较高的r-GT和二肽酶活性,它们是清除循环系统中GSH的主要器官。在细胞内,GSH的组成氨基酸在r-谷氨酰环化转移酶、r-谷氨酰半胱氨酸合成酶、谷胱甘肽合成酶催化下生成谷胱甘肽。GSH的合成通过其自身对r-谷氨酰半胱氨酸合成酶的反馈抑制来调控。肝脏是体内合成GSH的主要场所。细胞内的谷胱甘肽在谷胱甘肽硫转移酶(GST)的催化下,可与细胞内外产生的活性亲电子基、有机氢过氧化物(x)结合成GSH-S-复合物,经一系列反应生成N-乙酰-Cys-(x)后运出细胞而排出体外。GSH清除细胞内自由基、过氧化物、ROOH的同时,2分子的GSH转变为GSSG,GSSG在谷胱甘肽还原酶(GR)作用下由NADPH供氢还原为GSH。上述反应形成r-谷氨酰循环。由于猪肾脏中的r-GT与肝脏中的r_GT活力比较低,因此对于猪,肝脏和胆管分支在GSH周转中起重要作用。 4 GSH的生物学功能 谷胱甘肽的生理功能十分广泛,其主要功能有:(1)清除自由基、过氧化物、重金属及黄曲霉毒素等毒物;(2)参与氨基酸(谷氨酰氨、半胱氨酸及其它中性氨基酸)的转运;(3)利于铁的吸收、硒的吸收、钙的吸收,谷胱甘肽还可以使饲料中的过氧化脂肪酸在吸收时或吸收后恢复为正常的脂肪;(4)保护胃肠道黏膜上皮,防止因炎症、局部缺血、氧化物质等对肠黏膜的损伤;(5)贮存并提供其组成氨基酸(1尤其是半胱氧酸);(6)参与蛋白质和DNA的合成;(7)作为还原物质,利于维生素E、维生素c的还原,维持巯基酶活性,并可作为甘油醛磷酸脱

相关文档
相关文档 最新文档