文档库 最新最全的文档下载
当前位置:文档库 › 第一章 有机化合物的电子结构理论

第一章 有机化合物的电子结构理论

第一章

有机化合物的电子结构理论

?价键理论

–Lewis的电子配对学说、共价键的属性?杂化轨道理论

?共振论

?分子轨道理论

?氢键

结构和性质的关系是有机化学的精髓。

有机化合物的结构:指分子的组成、分子中原子相互结合的顺序和方式、价键结构、分子中电子云分布、三维结构和分子中原子或原子团之间相互影响等。

1.1 经验式与分子式

?经验式:表示化合物中各种原子的最小整数比,可以由各元素的含量(元素定量分析)算出。

?分子式:表示分子中各种原子的数目,可以由经验式和分子量推出。

C2H6O就可以代表乙醇和甲醚两种不同的化合物!

1.2 克库勒(Kekule)结构理论

?1858年,德国化学家Kekule和英国化学家Couper,提出了有机化合物分子中碳原子是四价的概念。有机化学从十九世纪前的无维概念经过了十九世纪早期的一维概念而发展到了二维概念。这一概括构成了有机物经典结构理论的核心。?Kekule结构理论为解决原子在分子中的排布顺序或关系而提出。主要内容:

(1)每一种元素有一定数目的化合价;

(2)原子在分子中按他们的化合价依一定顺序连接起来;

(3)碳为四价,碳碳之间可相互成键。

1.3 有机化合物中的共价键

共价键

有机化合物中的原子主要是以共价键结合起来的,从本质上讲,有机化学是研究共价键化合物的化学,因此,要研究有机化学应先了解有机化学中普遍存在的共价键。

a. 价键理论(电子配对法)(Valence Bond Theory)

1927年由Heitler和Londen提出氢分子的形成,由Pauling 推广到双原子、多原子分子。

价键的形成是原子轨道的重叠或电子配对的结果,如果两个原子都有未成键电子,并且自旋方向相反,就能配对形成共价键。

共价键的形成在于成键原子的原子轨道的相互交盖。

+

1s 1s 轨道交盖 氢分子

共价键具有方向性

共价键具有饱和性

x

y

1s - 2p x

2p y - 2p y y y x 键π 键

碳原子的核外电子排布式:C: 1S22S22Px12Py1

在有机化合物中,C为四价?

b. 杂化轨道理论由Pauling提出

基本要点:

(a)元素的原子在成键时可变成激发态,能量相近的原子轨道可以重新组合成新的原子轨道,称杂化轨道。

(b)杂化轨道的数目等于参与杂化的原子轨道数目,并包含原子轨道的成分。

(c)杂化轨道的方向性更强,成键能力增大。

a) sp 3 Hybridization

可形成四个 键C

H H

H H 基态激发2S 2

2P

2SP 3杂化2S 2P 激发态SP 3杂化轨道C C H H H H H H σ 键特点: 比较牢固 可绕对称轴自由旋转甲烷乙烷

b) sp 2 Hybridization

可形成三个σ 键和一个π键

H H

H H C C

H

H H H C C H H H H C C 如:乙烯 CH 2=CH 2

基态激发

2S 2

2P 2

SP 2杂化SP 2杂化轨道P 轨道2S 2P

激发态C =C 由一个σ键

和一个π键组成π 键特点:? 容易断裂

? 不能绕轴自由旋转

2个C 和4个H 在同一个平面上

c) sp Hybridization

基态激发

2S 2

2P

2

2S 2P

激发态SP 杂化SP 杂化轨道P 轨道可形成两个σ 键和两个π键

H H C C 叁键由一个σ键和两个互相垂直的π组成

有机化合物的碳架就是以碳碳单键、双键、三键为基本结构单元构建而成的C H

H

乙炔的电子云

1.4 共价键的属性:

1、键长:以共价键键合的两个原子核间的距离为键长。

2、键角:同一原子上的两个共价键之间的夹角。

3、键能:气态时原子A和原子B结合成1mol A-B双原子分子(气态)所放出的能量。

4、键的极性和键矩

键矩:极性共价键正或负电荷中心的电荷(q)与两个电荷中心之间的距离(d)的乘积叫键矩(u)。

键矩:极性共价键正或负电荷中心的电荷(q)与两个电荷中心之间的距离(d)的乘积叫键矩(u)。

键的极性:键的极性大小取决于成键两原子电负性的差值,与外界条件无关,是永久的性质。

键的极化性:键的极化性是共价键在外电场的作用下,使键的极性发生变化。键的极化性用键的极化度来度量,其大小除与成键原子的体积、电负性和键的种类有关外,还与外电场强度有关,是暂时的性质。

《有机化合物的结构特点》教案

第二节有机化合物的结构特点 教学目标: 1.知识与技能:掌握有机化合物的结构特点 2.过程与方法:通过练习掌握有机化合物的结构。 3.情感态度和价值观:在学习过程中培养归纳能力和自学能力。教学重点:有机化合物的结构特点 教学难点:有机化合物的结构特点法 教学过程: 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型

第二课时 [思考回忆]同系物、同分异构体的定义?(学生思考回答,老师板书) [板书] 二、有机化合物的同分异构现象、同分异构体的含义 同分异构体现象:化合物具有相同的分子式,但具有不同的结构现象,叫做同分异构体现象。 同分异构体:分子式相同, 结构不同的化合物互称为同分异构体。 (同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物。) [知识导航1] 引导学生再从同系物和同分异构体的定义出发小结上述2答案,从中得出对“同分异构”的理解: (1)“同分”——相同分子式(2)“异构”——结构不同 分子中原子的排列顺序或结合方式不同、性质不同。 (“异构”可以是象上述②与③是碳链异构,也可以是像⑥与⑦是官能团异构)“同系物”的理解:(1)结构相似———一定是属于同一类物质; (2)分子组成上相差一个或若干个CH2原子团——分子式不同[学生自主学习,完成《自我检测1》] 《自我检测1》 下列五种有机物中,互为同分异构体;互为同一

物质; 互为同系物。 ① ② ③ ④ CH 2=CH -CH 3 ⑤ CH 2=CH -CH=CH 2 [知识导航2] (1)由①和②是同分异构体,得出“异构”还可以是位置异构; (2)②和③互为同一物质,巩固烯烃的命名法; (3)由①和④是同系物,但与⑤不算同系物,深化对“同系物”概念中“结构相似”的含义理解。(不仅要含官能团相同,且官能团的数目也要相同。) (4)归纳有机物中同分异构体的类型;由此揭示出,有机物的同分异构现象产生的本质原因是什么?(同分异现象是由于组成有机化合物分子中的原子具有不同的结合顺序和结合方式产生的,这也是有机化合物数量庞大的原因之一。除此之外的其他同分异构现象,如顺反异构、对映异构将分别在后续章节中介绍。) [板书] 二、同分异构体的类型和判断方法 1.同分异构体的类型: a.碳链异构:指碳原子的连接次序不同引起的异构 b.官能团异构:官能团不同引起的异构 CH 3-CH -CH=CH 2 ︱ CH 3 CH 3︱ CH 3-C=CH -CH 3 CH 3-CH=C ︱ CH 3 CH 3 ︱

《有机化合物的分类》教案

课题第一节有机化合物的分类时间班级 教学目标知识与技能 1、了解有机化合物常见的分类方法 2、了解有机物的主要类别及官能团 过程与方法 根据生活中常见的分类方法,认识有机化合物分类的必要性。 利用投影、动画、多媒体等教学手段,演示有机化合物的结构简 式和分子模型,掌握有机化合物结构的相似性。 情感态度与 价值观 体会物质之间的普遍联系与特殊性,体会分类思想在科学研究中 的重要意义 教学重点了解有机物常见的分类方法; 教学难点了解有机物的主要类别及官能团学生状况与对策因材施教 教学流程新课导入 有机物种类繁多,分门别类的去研究有机物,有利于对有机物性质的 理解。 新课讲解 [讲]高一时我们学习过两种基本的分类方法—交叉分类法和树状 分类法,那么今天我们利用树状分类法对有机物进行分类。今天我 们利用有机物结构上的差异做分类标准对有机物进行分类,从结构 上有两种分类方法:一是按照构成有机物分子的碳的骨架来分类; 二是按反映有机物特性的特定原子团来分类。 [板书]一、按碳的骨架分类 链状化合物(如CH3-CH2-CH2-CH2-CH3) (碳原子相互连接成链) 有机化合物 脂环化合物(如)不含苯环 环状化合物 芳香化合物(如)含苯环[讲]在这里我们需要注意的是,链状化合物和脂环化合物统称为脂 肪族化合物。而芳香族化合物是指包含苯环的化合物,其又可根据 所含元素种类分为芳香烃和芳香烃的衍生物。而芳香烃指的是含有

苯环的烃,其中的一个特例是苯及苯的同系物,苯的同系物是指有一个苯环,环上侧链全为烷烃基的芳香烃。除此之外,我们常见的芳香烃还有一类是通过两个或多个苯环的合并而形成的芳香烃叫做稠环芳香烃。 [过]烃分子里的氢原子可以被其他原子或原子团所取代生成新的化合物,这种决定化合物特殊性质的原子或原子团叫官能团,下面让我们先来认识一下主要的官能团。 [板书]二、按官能团分类 [投影]P4表1-1 有机物的主要类别、官能团和典型代表物 认识常见的官能团 [讲]官能决定了有机物的类别、结构和性质。一般地,具有同种官能团的化合物具有相似的化学性质,具有多种官能团的化合物应具有各个官能团的特性。我们知道,我们把这种结构相似,在分子组成上相关一个或若干CH2原子团的有机物互称为同系物。 常见有机物的通式 烃链烃 (脂肪 烃) 烷烃(饱和烃) C n H2n+2无特征官能团,碳碳 单键结合 不饱 和烃 烯烃C n H2n 含有一个 炔烃C n H2n-2含有一个—C≡C— 二烯 烃 C n H2n-2 含有两个 饱和环 烃 环烷烃C n H2n单键成环 不饱和 环烃 环烯烃C n H2n-2成环,有一个双键 环炔烃C n H2n-4成环,有一个叁键 环二烯烃C n H2n-4 苯的同系物C n H2n-6 稠环芳香烃 [小结]本节课我们要掌握的重点就是认识常见的官能团,能按官能

结构设计原理 第一章 材料的力学性能 习题及答案

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋与无明显屈服点的钢筋,通常分别称它们为____________ 与。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、与。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要就是、、 、。 5、钢筋与混凝土就是不同的材料,两者能够共同工作就是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括与两部分。 部分越大,表明变形能力越, 越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级就是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数就是0、95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变就是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据就是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力就是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度就是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的就是应力应变曲线上任何一点切线倾角的正切。

有机化合物的结构概念与结构理论

有机化合物的结构概念与结构理论 在测定实验式及相对分子质量后,对于一个有机分子的认识,并没有得到解决,因为往往好几个有机化合物都具有相同的分子式,而它们的物理、化学性质则并不相同。1822年,魏勒和李比息分别先后发现了异氰酸银和雷酸银,分析证明均由Ag,N,C,O各一个原子组成,但物理、化学性质完全不同。后来柏则里经过仔细研究,证明这种现象的确是存在的,他把这种分子式相同而结构不同的现象,称为同分异构现象(简称异构现象)。两个或两个以上具有相同组成的物质,称为同分异构体。他还解释,异构体的不同是因分子中各个原子结合的方式不同而产生的,这种不同的结合称为结构。自从发现这个现象后,有机化学面临一个问题,就是如何测定这些结构,如得不到解决,不能算是一门科学,后来经过不断的探索与思考,逐渐建立了正确的结构概念。 1.凯库勒(Kekulé,A.)及古柏尔(Couper,A.)的两个重要基本规则(1857年) (1)碳原子是四价的:无论在简单的或复杂的化合物里,碳原子和其它原 子的数目总保持着一定的比例。例如CH 4,CHCl 3 ,CO 2 ,凯库勒认为每一种原子 都有一定的化合力,凯库勒把这种力叫作atomcity,按意译应为“原子化合力”或“原子力”,后来人们称为价(valence)。碳是四价的,氢、氯是一价的,氧是二价的。若用一条短线代表一价,则CH 3 Cl可用下面四个式子表示: 事实上CH 3 Cl只有一个化合物,因此他们还注意到碳原子的四个价键是相等的。 (2)碳原子自相结合成键:在有机化学发展史上,类型学说占有重要地位。

它的创始人热拉尔(Gerhardt ,C.,1853)认为有机化合物是按照四种类型——氢型、盐酸型、水型和氨型——中一个氢被一个有机基团取代衍生出来的,例如它们被乙基取代: 这个学说在建立有机化合物体系过程中,起了很大的推动作用,把当时杂乱无章的各种化合物,归纳到一个体系之内,并按照这个学说预言很多新化合物,在后来一一被发现。凯库勒在此基础上提出了新的类型即甲烷类型,他把其它的碳氢化合物也放在这一类型之内,如乙烷就是甲基甲烷: 这一类型说明碳与碳之间也可以用一价自相结合成为一个碳链,例如两个或三个碳原子自相结合成键后,还剩下没有用去的价键均与氢结合,就得到C 2H 6,C 3H 8。 上面两个式子,代表着分子中原子的种类、数目和排列的次序,称为构造式。构造式中每一条线代表一个价键,称为键。如果两个原子各用一个价键结合,这种键称为单键;在有些化合物中,还可用两个价键或叁个价键彼此自相

有机化合物结构的表示方法

有机化合物结构的表示方法(拓展应用) 一.学习目标 学会用结构式、结构简式和键线式来表示常见有机化合物的结构 二.重点难点 结构简式表示有机化合物的结构 三.知识梳理 【练习】写出下列有机物的电子式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 1. 结构式的书写 (1)结构式定义 (2)书写注意点 【练习】写出下列有机物的结构式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 2.结构简式书写: (1)定义 (2)书写注意点 ①表示原子间形成单键的“—”可以省略 ②“C=C”和“C≡C”中的“=”和“≡”不能省略。但醛基、羰基、羧基可以简写为“-CHO”、“-CO-”、“-COOH” ③不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 【练习】写出下列有机物的结构简式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 3.键线式: 定义:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。 【练习】写出下列有机物的键线式 丙烷、丙烯、丙炔、丙醇、丙酸、丙醛

CH 3CH 2CH 2CH 3CH 3CHCH 2CH 3 3 CH 3CH CHCH 3 注意事项: (1)一般表示3个以上碳原子的有机物;弄清碳原子的杂化方式 (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C=C 、C ≡C 键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 【小结】有机化合物结构的表示方法 电子式 结构式 结构简式 键线式 【过关训练】 C C C C H H H H _________________________、___________________________ C C C C Br H Br H H _______________________、___________________________ C C C C H H H H H H H H ____________________________、___________________________ 3.有机化合物的结构简式可进一步简化,如: 略 去碳 氢 元素短线替换 省略短线 双键叁键保留

(完整word版)《结构设计原理》复习资料.docx

《结构设计原理》复习资料 第一篇钢筋混凝土结构 第一章钢筋混凝土结构的基本概念及材料的物理力学性能 三、复 (一)填空 1、在筋混凝土构件中筋的作用是替混凝土受拉或助混凝土受。 2、混凝土的度指有混凝土的立方体度、混凝土心抗度和混凝土抗拉度。 3、混凝土的形可分两:受力形和体形。 4、筋混凝土构使用的筋,不要度高,而且要具有良好的塑性、可性,同要求与混凝土有好的粘性能。 5、影响筋与混凝土之粘度的因素很多,其中主要混凝土度、筑位置、保厚度及筋距。 6、筋和混凝土两种力学性能不同的材料能有效地合在一起共同工作,其主要原 因是:筋和混凝土之具有良好的粘力、筋和混凝土的温度膨系数接近和混凝土筋起保作用。 7、混凝土的形可分混凝土的受力形和混凝土的体形。其中混凝土的徐 属于混凝土的受力形,混凝土的收和膨属于混凝土的体形。 (二)判断 1、素混凝土的承能力是由混凝土的抗度控制的。????????????【×】 2、混凝土度愈高,力曲下降愈烈,延性就愈好。?????????【×】 3、性徐在加荷初期增很快,一般在两年左右以定,三年左右徐即告基本 止。????????????????????????????????????【√】 4、水泥的用量愈多,水灰比大,收就越小。???????????????【×】 5、筋中含碳量愈高,筋的度愈高,但筋的塑性和可性就愈差。????【√】 (三)名解 1、混凝土的立方体度────我国《公路》定以每150mm的立方体件,在 20℃± 2℃的温度和相湿度在90%以上的潮湿空气中养28 天,依照准制作方法 和方法得的抗极限度(以MPa)作混凝土的立方体抗度,用符号f cu表示。 2、混凝土的徐────在荷的期作用下,混凝土的形将随而增加,亦即在力不的情况 下,混凝土的随增,种象被称混凝土的徐。 3、混凝土的收────混凝土在空气中硬体减小的象称混凝土的收。 第二章结构按极限状态法设计计算的原则 。

1977年诺贝尔物理学奖——电子结构理论

1977年诺贝尔物理学奖——电子结构理论1977年诺贝尔物理学奖授予美国新泽西州缪勒山(Murray Hill)贝尔实验室 的P.W.安德森(Philip W.Anderson,1923—)、英国剑桥大学的莫特(Nevill Mott,1905—1996)和美国哈佛大学的范弗莱克(John Van Vleck,1899—1980),以表彰他们对磁性和无序系统的电子结构所作的基础理论研究。 P.W.安德森1923年12月13日出生于美国依利诺斯州的印第安纳波利斯(Indianapolis)。父亲是依利诺斯大学的植物学教授,在他父母的亲友中有许多物理学家,他们激发了P.W.安德森对物理的爱好。中学毕业后,进入哈佛大学,主修数学。可是不久第二次世界大战爆发。P.W.安德森在此期间应召入伍,被分配去学习电子物理,不久派遣到海军研究实验室建造天线。这项工作使他对西方电器公司和贝尔实验室有所了解。战争结束后,P.W.安德森返回哈佛大学,就下决心向物理学家学习,做一名物理学家。在这些物理学家中,以电子结构理论著称的磁学专家范弗莱克是他最敬佩的物理学家之一。他和范弗莱克曾经一起在军事部门工作过,范弗莱克是哈佛大学的著名教授,正是范弗莱克的指引,P.W.安德森后来决心把自己的研究方向定位在固体的电子结构和现代磁学,在范弗莱克的指导下研究了微波和红外光谱的压力增宽。他为了用分子间相互作用解释这些谱线在高密度下增宽的现象,借助于洛伦兹等人的理论发展了一种更普遍的方法,运用于从微波到红外和可见光的光谱学。他还根据已知的分子作用计算出了初步的定量结果。 后来,P.W.安德森的注意力聚焦于绝缘的磁性材料,诸如铁淦氧体和反磁性的氧化物,也就是要研究是什么因素导致原子磁矩和自旋以及人们观测到的那些特殊排列。他在克拉默斯(H.A.Kramers)的“超交换”这一旧概念的基础上,探讨了相互作用的机制。他对相互作用所作的假设可解释自旋花样和居里-奈尔点。 在这项工作之后,P.W.安德森研究了所谓的近藤(Kondo)效应,这个效应涉及磁杂质对极低能自由电子的畸形散射,并对低温状态的情况给出了初步定性解答。这是重正化技术对固体和统计力学问题最早的应用之一。 50年代初,科学家开始研究不同领域的磁共振谱学中的谱线形状和宽度问题。布隆姆贝根、珀塞尔和庞德(Pound)对核共振、范弗莱克对电子共振提出了许多有用的概念,但从观测到的谱线进一步理解原子运动和相互作用,尚需有定量的数学表述。从这一观点看,铁磁共振是一个空白。P.W.安德森对此提供了一种数学上的方法,来处理“交换变窄”和“运动变窄”等问题,并把这些问题与原子运动和交换联系在一起。他还对相互作用和机制进行了许多研究。在铁磁共振方面,他和苏尔(H.Suhl)等人合作,首先提出了杂质增宽和自旋波激发等概念,使这个领域得以澄清。当解释超导电性的BCS理论在1957年刚刚提出时,基本原理问题还存在。P.W.安德森是最早解释这些问题并将巴丁、库珀和施里弗的方法普遍化中的一位。

有机化合物的分类知识点

有机化合物的分类 1. 有机物的定义:含碳化合物。CO 、CO 2、H 2CO 3及其盐、氢氰酸(HCN )及其盐、硫氰酸(HSCN ) 、氰酸(HCNO )及其盐、金属碳化物等除外。 2.有机物的特性:容易燃烧;容易碳化; 受热易分解;化学反应慢、复杂;一般难溶于水。 3.烃:只含碳氢两种元素的有机化合物 4. 烃的衍生物:是指烃分子里的氢原子被其他原子或原子团取代所生成的一系列新的有机化合物。 5. 官能团:是指决定化合物化学特性的原子或原子团. 6.分类 (一)、按碳的骨架分类: ( 有机化合物 链状化合物 脂肪 环状化合物 脂环化合物 化合物 芳香化合物 1.链状化合物 这类化合物分子中的碳原子相互连接成链状。(因其最初是在脂肪中发现的,所以又叫脂肪族化合物。)如: 正丁烷 正丁醇 2.环状化合物 这类化合物分子中含有由碳原子组成的环状结构。它又可分为两类: 《 (1)脂环化合物:是一类性质和脂肪族化合物相似的碳环化合物。如: 环戊烷 环己醇 (2)芳香化合物:是分子中含有苯环的化合物。如: 苯 萘 (二)、按官能团分类: : 有机物的主要类别、官能团和典型代表物 类别 官能团 典型代表物的名称和结构简式 烷烃 ———— 甲烷 CH 4 CH 3 CH 2 CH 2 CH 3 CH 3CH 2CH 2CH 2OH OH

* 烯烃 双键 乙烯 CH 2=CH 2 炔烃 —C ≡C — 三键 乙炔 CH ≡CH 芳香烃 & ———— 苯 卤代烃 —X (X 表示卤素原子) 溴乙烷 CH 3CH 2Br 醇 —OH 羟基 ^ 乙醇 CH 3CH 2OH 酚 —OH 羟基 苯酚 醚 醚键 乙醚 CH 3CH 2OCH 2CH 3 : 醛 醛基 乙醛 酮 羰基 丙酮 羧酸 : 羧基 乙酸 酯 酯基 乙酸乙酯 练习: 1.下列有机物中属于芳香化合物的是( ) 。 2.〖归纳〗芳香族化合物、芳香烃、苯的同系物三者之间的关系 * { B —NO 2 C —CH 3 D CH 2 —CH 3

结构设计原理-第一章-材料的力学性能-习题及答案

结构设计原理-第一章-材料的力学性能-习题及答案

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________ 和。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、和。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要是、、 、。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括和两部分。 部分越大,表明变形能力越,越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。 13、硬钢在应力达到假定屈服点时,塑性应变为0.002。

高中化学 有机化合物的结构特点教案新人教版

第二节有机化合物的结构特点(教学设计) 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型 教学内容教 学 环 节 教学活动 设计意图 教师活动学生活动 ——引 入 有机物种类繁多,有很多有机物的分子 组成相同,但性质却有很大差异,为什 么? 结构决定性质, 结构不同,性质 不同。 明确研究有机 物的思路:组成 —结构—性质。 有机分子的结构是三维 的设 置 情 景 多媒体播放化学史话:有机化合物的三 维结构。思考:为什么范特霍夫和勒贝 尔提出的立体化学理论能解决困扰19世 纪化学家的难题? 思考、回答激发学生兴趣, 同时让学生认 识到人们对事 物的认识是逐 渐深入的。 有机物中碳原子的成键 特点交 流 与 讨 论 指导学生搭建甲烷、乙烯、乙炔、苯等 有机物的球棍模型并进行交流与讨论。 讨论:碳原子最 外层中子数是 多少?怎样才 能达到8电子 稳定结构?碳 原子的成键方 式有哪些?碳 原子的价键总 数是多少?什 么叫单键、双 键、叁键?什么 叫不饱和碳原 子? 通过观察讨论, 让学生在探究 中认识有机物 中碳原子的成 键特点。 有机物中碳原子的成键 特点归 纳 板 书 有机物中碳原子的成键特征:1、碳原子 含有4个价电子,易跟多种原子形成共 价键。 2、易形成单键、双键、叁键、碳链、碳 环等多种复杂结构单元。 3、碳原子价键总数为4。 不饱和碳原子:是指连接双键、叁键或 在苯环上的碳原子(所连原子的数目少 于4)。 师生共同小结。通过归纳,帮助 学生理清思路。

简单有机分 子的空间结 构及 碳原子的成键方式与分子空间构型的关系观 察 与 思 考 观察甲烷、乙烯、乙炔、苯等有机物的 球棍模型,思考碳原子的成键方式与分 子的空间构型、键角有什么关系? 分别用一个甲基取代以上模型中的一个 氢原子,甲基中的碳原子与原结构有什 么关系? 分组、动手搭建 球棍模型。填 P19表2-1并思 考:碳原子的成 键方式与键角、 分子的空间构 型间有什么关 系? 从二维到三维, 切身体会有机 分子的立体结 构。归纳碳原子 成键方式与空 间构型的关系。 碳原子的成键方式与分子空间构型 的关系归 纳 分 析 —C——C= 四面体型平面型 =C= —C≡ 直线型直线型平面型 默记理清思路 分子空间构 型迁 移 应 用 观察以下有机物结构: CH3 CH2CH3 (1) C = C H H (2) H--C≡C--CH2CH3 (3) —C≡C—CH=CF2、 思考:(1)最 多有几个碳原 子共面?(2) 最多有几个碳 原子共线?(3) 有几个不饱和 碳原子? 应用巩固 杂化轨道与有机化合物空间形状观 看 动 画 轨道播放杂化的动画过程,碳原子成键 过程及分子的空间构型。 观看、思考 激发兴趣,帮助 学生自学,有助 于认识立体异 构。 碳原子的成键特征与有机分子的空间构型整 理 与 归 纳 1、有机物中常见的共价键:C-C、C=C、 C≡C、C-H、C-O、C-X、C=O、C≡N、 C-N、苯环 2、碳原子价键总数为4(单键、双键和 叁键的价键数分别为1、2和3)。 3、双键中有一个键较易断裂,叁键中有 两个键较易断裂。 4、不饱和碳原子是指连接双键、叁键或 在苯环上的碳原子(所连原子的数 目少于4)。 5、分子的空间构型: (1)四面体:CH4、CH3CI、CCI4 (2)平面型:CH2=CH2、苯 (3)直线型:CH≡CH 师生共同整理 归纳 整理归纳 学业评价迁 移 应 展示幻灯片:课堂练习 学生练习巩固

有机化合物的分类

有机化合物的分类 1. 1 有机化合物的分类 【内容与解析】 内容:有机化合物的分类 解析:本节课要学的内容有机化合物的分类指的是用树状分类法,交叉分类法以及官能团分类法将有机物质进行分类,其核心是官能团分类法,理解它关键就是要认识高中阶段出现的十二种官能团。学生已经学过物质分类的方法,本节课的内容树状分类法就是在此基础上的发展。由于它还与必修二中有机物质的基础以及有机物中的性质有直接的联系,所以在本学科有重要的地位,并有连接的作用,是本学科的核心内容。教学的重点是能够熟练运用官能团分类以及碳骨架分类法指出有机物的所属类别。解决重点的关键是对官能团的认识以及这些官能团能体现的一些性质。 【教学目标与解析】 1.教学目标 (1)了解有机化合物的分类方法 (2)认识一些重要的官能团。 2.目标解析 (1)了解有机化合物的分类方法就是指从我们一开始接触化学的时候开始物质的分类方法中引入,再从现有的有机物的学习中去总结有机物的分类方法。 (2)认识一些重要的官能团。就是指从课本表格中去得出有机物的十二种不同的官能团。要分析它们的区别与联系。 【问题诊断分析】

在本节课的教学中,学生可能遇到的问题是醇与酚的官能团都是-OH但它们属于不同的物质体系,产生这一问题的原因是官能团一样就会导致性质一样,性质除了官能团外还有一些外部因素的影响。要解决这一问题,就要从-OH连接不同的部分开始分析醇连接的是饱和的碳而酚则是直接边在苯环上,其中关键是这样导致连在不同的地方会导致他们性质的不同,在苯环上的它们相互影响使其性质发生很大的变化,使-OH中的氢有酸性,苯环上的氢更容易被其它原子所取代。 【教学支持条件分析】 【教学过程】 [复习]烃与烃的衍生物的概念? 1. 烷烃结构的特点:、、 2. 烃和烃的衍生物 (1)烃:组成的有机化合物总称为烃(也叫碳氢化合物)。 (2)烃的衍生物:烃分子中的氢原子被所取代而生成的一系列化合物。 3. 官能团:有机化合物中,化合物特殊性质的原子或原子团。常见的官能团有:碳碳双键,碳碳叁键,卤素原子,羟基,醛基,羰基,羧基等。 问题二、按碳的骨架分类 1.烃的分类: 链状烃():烃分子中碳和碳之间的连接呈链状。 脂肪烃 烃:分子中含有碳环的烃。

混凝土结构设计原理作业(附答案)

CHENG 混凝土结构设计原理 第一章钢筋混凝土的力学性能 1、钢和硬钢的应力—应变曲线有什么不同,其抗拉设计值fy各取曲线上何处的应力值作为依据? 答:软钢即有明显屈服点的钢筋,其应力—应变曲线上有明显的屈服点,应取屈服强度作为钢筋抗拉设计值fy的依据。 硬钢即没有明显屈服点的钢筋,其应力—应变曲线上无明显的屈服点,应取残余应变为0.2%时所对应的应力σ0.2作为钢筋抗拉设计值fy的依据。 2、钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响? 答:冷加工的目的是提高钢筋的强度,减少钢筋用量。 冷加工的方法有冷拉、冷拔、冷弯、冷轧、冷轧扭加工等。 这几种方法对钢筋的强度都有一定的提高, 4、试述钢筋混凝土结构对钢筋的性能有哪些要求? 答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土黏结良好;(3)可焊性好;(4)有足够的塑性。 5、我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?用什么符号表示? 答:我国用于钢筋混凝土结构的钢筋有4种:热轧钢筋、钢铰丝、消除预应力钢丝、热处理钢筋。 我国的热轧钢筋分为HPB235、HRB335、HRB400和RRB400三个等级,即I、II、III 三个等级,符号分别为 ( R ) 。 6、除凝土立方体抗压强度外,为什么还有轴心抗压强度? 答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。所以除立方体抗压强度外,还有轴心抗压强度。 7、混凝土的抗拉强度是如何测试的? 答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。 8、什么是混凝土的弹性模量、割线模量和切线模量?弹性模量与割线模量有什么关系? 答:混凝土棱柱体受压时,过应力—应变曲线原点O作一切线,其斜率称为混凝土的弹性模量,以E C表示。 连接O点与曲线上任一点应力为σC 处割线的斜率称为混凝土的割线模量或变形摸量,以E C‘表示。 在混凝土的应力—应变曲线上某一应力σC 处作一切线,其应力增量与应变增量的比值称为相应于应力为σC 时混凝土的切线模量C E'' 。 弹性模量与割线模量关系: ε ν ε '== ela C c C c E E E (随应力的增加,弹性系数ν值减小)。 9、什么叫混凝土徐变?线形徐变和非线形徐变?混凝土的收缩和徐变有什么本质区别? 答:混凝土在长期荷载作用下,应力不变,变形也会随时间增长,这种现象称为混凝土的徐变。 当持续应力σC ≤0.5f C 时,徐变大小与持续应力大小呈线性关系,这种徐变称为线性徐变。当持续应力σC >0.5f C 时,徐变与持续应力不再呈线性关系,这种徐变称为非线性徐变。 混凝土的收缩是一种非受力变形,它与徐变的本质区别是收缩时混凝土不受力,而徐变是受力变形。 10、如何避免混凝土构件产生收缩裂缝? 答:可以通过限制水灰比和水泥浆用量,加强捣振和养护,配置适量的构造钢筋和设置变形缝等来避免混凝土构件产生收缩裂缝。对于细长构件和薄壁构件,要尤其注意其收缩。 第二章混凝土结构基本计算原则 1.什么是结构可靠性?什么是结构可靠度? 答:结构在规定的设计基准使用期内和规定的条件下(正常设计、正常施工、正常使用和维修),完成预定功能的能力,称为结构可靠性。 结构在规定时间内与规定条件下完成预定功能的概率,称为结构可靠度。 2.结构构件的极限状态是指什么? 答:整个结构或构件超过某一特定状态时(如达极限承载能力、失稳、变形过大、裂缝过宽等)就不能满足设计规定的某一功能要求,这种特定状态就称为该功能的极限状态。 按功能要求,结构极限状态可分为:承载能力极限状态和正常使用极限状态。 3.承载能力极限状态与正常使用极限状态要求有何不同? 答:(1)承载能力极限状态标志结构已达到最大承载能力或达到不能继续承载的变形。若超过这一极限状态后,结构或构件就不能满足预定的安全功能要求。承载能力极限状态时每一个结构或构件必须进行设计和计算,必要时还应作倾覆和滑移验算。

有机化合物的结构和性质

第一章有机化合物的结构和性质 [教学目的]: 掌握有机化合物的特点 掌握有机化合物中共价键的性质及共价键的均裂、异裂 了解有机化学中的酸碱概念及有机化合物的分类 了解有机化学的发展 [教学重点]: 共价键的性质及共价键的均裂、异裂 [教学难点]: 有机化学中的酸碱概念-布伦斯特,路易斯酸碱定义 [教学方法]: 以教师讲授为主 [教学手段]: 多媒体教学和板书相结合 [辅导]: 课后 [学时分配]: 1学时 [作业]: [教学内容]: 有机化合物和有机化学 有机化合物的特点 有机化合物中的共价键 有机化合物中共价键的性质 共价键的断裂 有机化学中的酸碱概念 有机化合物的分类 有机化学的发展及学习有机化学的重要性

1.1有机化合物和有机化学 有机化学(organic chemistry)是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法学的科学,是化学学科的一个分支,它的研究对象是有机化合物。 什么是有机化合物呢?早期化学家将所有物质按其来源分为两类,人们把从生物体(植物或动物)中获得的物质定义为有机化合物,无机化合物则被认为是从非生物或矿物中得到的。 现在绝大多数有机物已不是从天然的有机体内取得,但是由于历史和习惯的关系,仍保留着“有机”这个名词。 1.1.1有机化学发展简史 象人类认识其它事物一样,人们对有机化合物和有机化学的认识也是逐步深化的。人类使用有机物质虽已有很长的历史,但是对纯物质的认识和取得是比较近代的事情。直到十八世纪末期,才开始由动植物取得一系列较纯的有机物质。 如:1773年首次由尿内取得纯的尿素. 1805年由鸦片内取得第一个生物碱--吗啡. * 1828年,德国化学家,维勒(wohler,F)首次人工用氰酸铵合成了尿素。 * 从19世纪初至中期有机化学成为一门学科,建立了经典的有机结构理论。 1857年凯库勒提出了碳是四价的学说。 1858年,库帕(Couper,A·S)提出:“有机化合物分子中碳原子都是四价的,而且互相结合成碳链。”构成了有机化学结构理论基础。 1861年,布特列洛夫提出了化学结构的观点,指出分子中各原子以一定化学力按照一定次序结合,这称为分子结构;一个有机化合物具有一定的结构,其结构决定了它的性质;而该化合物结构又是从其性质推导出来的;分子中各原子之间存在着互相影响。 1865年,凯库勒提出了苯的构造式。 1874年,范特霍夫(V ant Hoff.J.H)和勒贝尔(Le Bel,J.A)分别提出碳四面体构型学说,建立了分子的立体概念,说明了旋光异构现象。 1885年,拜尔(V on Baeyer.A)提出张力学说。 至此,经典的有机结构理论基本建立起来。 20世纪建立了现代有机结构理论。 1916年,路易斯(Lewis,G.N)提出了共价键电子理论。 20世纪30年代,量子力学原理和方法引入化学领域以后,建立了量子化学。 20世纪60年代,合成了维生素B12,发现了分子轨道守恒原理。

电感理论与计算

一、电感器的定义 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L

有机化合物的分类知识点

有机化合物的分类 1. 有机物的定义:含碳化合物。CO 、CO 2、H 2CO 3及其盐、氢氰酸(HCN )及其盐、硫氰酸(HSCN ) 、氰酸(HCNO )及其盐、金属碳化物等除外。 2.有机物的特性:容易燃烧;容易碳化; 受热易分解;化学反应慢、复杂;一般难溶于水。 3.烃:只含碳氢两种元素的有机化合物 4. 烃的衍生物:是指烃分子里的氢原子被其他原子或原子团取代所生成的一系列新的有机化合物。 5. 官能团:是指决定化合物化学特性的原子或原子团. 6.分类 (一)、按碳的骨架分类: 有机化合物 链状化合物 脂肪 环状化合物 脂环化合物 化合物 1.链状化合物 这类化合物分子中的碳原子相互连接成链状。(因其最初是在脂肪中发现的,所以又叫脂肪族化合物。)如: 正丁烷 正丁醇 2.环状化合物 这类化合物分子中含有由碳原子组成的环状结构。它又可分为两类: (1)脂环化合物:是一类性质和脂肪族化合物相似的碳环化合物。如: 环戊烷 环己醇 (2)芳香化合物:是分子中含有苯环的化合物。如: 苯 萘 (二)、按官能团分类: 有机物的主要类别、官能团和典型代表物 类别 官能团 典型代表物的名称和结构简式 烷烃 ———— 甲烷 CH 4 烯烃 双键 乙烯 CH 2=CH 2 炔烃 —C ≡C — 三键 乙炔 CH ≡CH 芳香烃 ———— 苯 卤代烃 —X (X 表示卤素原子) 溴乙烷 CH 3CH 2Br 醇 —OH 羟基 乙醇 CH 3CH 2OH CH 3 CH 2 CH 2 CH 3 CH 3CH 2CH 2CH 2OH OH

酚 —OH 羟基 苯酚 醚 醚键 乙醚 CH 3CH 2OCH 2CH 3 醛 醛基 乙醛 酮 羰基 丙酮 羧酸 羧基 乙酸 酯 酯基 乙酸乙酯 练习: 1.下列有机物中属于芳香化合物的是( ) 2.〖归纳〗芳香族化合物、芳香烃、苯的同系物三者之间的关系 〖变形练习〗下列有机物中(1)属于芳香化合物的是_______________,(2)属于芳香烃的是________, (3)属于苯的同系物的是______________。 3.按官能团的不同对下列有机物进行分类: NO 2 CH 3 CH 2 —CH 3 OH CH = CH 2 CH 3 CH 3 COOH CH 3 CH 3 OH COOH C —CH 3 CH 3 CH 3 OH H —C —H O OH HO C 2H 5 COOH H —C — O O C 2H 5 H 2C = CH —COOH

有机化合物的结构特点

《有机化合物的结构特点》课后练习 1.(双选)以下有关碳原子的成键特点的说法正确的是() A.在有机化合物中,碳原子一般以四个共用电子对与另外的原子形成四个共价键 B.在有机化合物中,碳元素只显-4价 C.在烃中,碳原子之间只形成链状 D.碳原子既可形成有机化合物,也可形成无机物 【解析】在有机化合物中,碳元素不一定只显-4价,如在CH3Cl中,碳显-2价,B项错误;在烃中碳原子之间也可以形成环状,如环已烷,C项错误。 【答案】AD 2.下列结构式从成键情况看不合理的是() 【解析】根据几种原子的成键特点分析:碳原子和硅原子形成4个共价键,氢原子形成1个共价键,氧原子形成2个共价键,氮原子形成3个共价键,D中C、Si成键不合理。 【答案】 D 3.下列各组物质中属于同分异构体的是()

【解析】因为苯分子中不存在单双键交替的结构,而是一种特殊的化学键,因此A 项中两种结构简式表示的是同一种物质。B项也是同种物质。C项中两种结构可认为是CH4分子中的两个氢原子被—CH3取代,甲烷的二取代物只有一种结构,故C项中两种结构表示同一种物质。D项中两物质分子式相同,但碳架结构不同,互为同分异构体。 【答案】 D 4.下列说法中正确的是() A.相对分子质量相同,组成元素也相同的化合物一定是同分异构体 B.凡是分子组成相差一个或若干个CH2原子团的物质,彼此一定是同系物 C.两种物质的组成元素相同,各元素的质量分数也相同,则两者一定是同分异构体D.分子式相同的不同有机物一定互为同分异构体 【解析】A项,分子式不一定相同,如C10H8与C9H20,A错;互为同系物必须满足两个条件:①结构相似,②在分子组成上相差一个或若干个CH2原子团,两者缺一不可,B 错;对于C项则仅是最简式相同,分子式不一定相同;D中明确了物质的分子式相同,却又是不同的化合物,则必然是同分异构体,满足同分异构体的条件,故D正确。 【答案】 D 5.下列式子是某学生书写的C5H12的同分异构体的结构简式()

结构设计原理了解的问题

第一章绪论 1.1 学习要点 1.了解工程结构的过去、现在和未来发展趋势,明确结构材料、理论方法、施工技术是决定工程结构发展的关键因素。 2.了解现有常规结构体系及在各工程领域的具体应用,明确钢结构、钢筋混凝土结构、砌体结构的主要特点。 3.了解结构与构件的关系,明确结构设计就是从整体结构到局部构件,再从局部构件到整体结构的设计过程。 4.了解结构计算简图的工程意义,学会建立实际结构合理的可计算的力学模型的方法。 5.熟悉结构荷载的种类和划分依据,掌握“永久荷载”、“可变荷载”、“偶然荷载”、“荷载代表值”、“荷载标准值”、“可变荷载准永久值”及“可变荷载组合值”等基本术语的定义,为第二章结构设计方法及后述各章的学习作好准备。 1.2 思考题 1.什么叫工程结构?何为结构设计原理? 2.古代、近代、现代土木工程有哪些重要区别? 3.结构工程的发展与哪些因素直接相关? 4.试述框架结构、剪力墙结构、框架-剪力墙结构的特点。 5.桥梁结构有哪些可选类型?其通常适宜的跨度为多少? 6.一般将哪些结构称为特种结构? 7.钢结构、混凝土结构、砌体结构各有哪些优缺点? 8.组成结构的“基本元素”有哪些? 9.何为刚域?它与刚节点有何不同? 10.永久作用,可变作用和偶然作用各有什么特征? 11.何为荷载代表值、荷载标准值、可变荷载准永久值、可变荷载频遇值及可变荷载组合值? 12.为什么把荷载标准值作为荷载基本代表值看待 第二章结构设计方法 2.1 学习要点 本章主要介绍结构设计中存在的共性问题,是学习本课程和进行结构设计的理论基础。由于是宏观地、抽象地介绍近似概率的极限状态方法,涉及到的名词术语较多,初次接触,会觉得生涩和难于理解,这需要在后续各章的学习中逐渐克服。 结合后续各章的设计内容,要求深入理解和掌握结构的功能要求,结构的安全等级,设计使用年限和设计基准期的概念,极限状态及其分类,荷载的分类及其取值,荷载效应组合,结构的可靠性和可靠度,实用设计表达式等内容。对有关数理统计方面的内容,要求了解。 2.2 思考题 1.建筑结构应满足哪些功能要求?结构的设计使用年限如何确定?结构超过其设计使用年限是否意味着不能再使用?为什么? 2.结构可靠性的含义是什么?它包括哪些方面的功能要求?建筑结构安全等级是按什么原则划分的? 3.“作用”和“荷载”有什么区别?结构上的作用按时间的变异、按空间的变异、以及按结构的反应各分为哪几类? 4.影响结构可靠性的因素有哪些?结构构件的抗力与哪些因素有关?为什么说构件的抗力是一个随机变量? 5.什么是结构的极限状态?结构的极限状态分为几类,其含义各是什么?或者说结构超过极限状态会产生什么后果? 6.什么是结构的可靠度和可靠指标?《统一标准》对可靠指标是如何定义的? 7.什么是失效概率?可靠指标和失效概率有何定性关系?为什么说我国“规范”采用的极限状态设计法是近似概率的极限状态设计法?分析其主要特点。 8.结构构件设计时采用的可靠指标值与结构构件的破坏类型是否有关? 9.深入理解承载能力极限状态实用设计表达式,能说明式中各符号的物理意义。结构可靠性的要求在式中是如何体现的? 10.荷载的代表值有哪些?其基本代表值是什么? 11.什么是荷载标准值?什么是活荷载的频遇值和准永久值?什么是荷载的组合值?对正常使用极限状态验算,为什么要区分荷载的标准组合和准永久组合?如何考虑荷载的标准组合和荷载的准永久组合?对于承载能力极限状态,如何确定其荷载效应组合?永久荷载和可变荷载的分项系数一般情况下如何取值? 12.各种材料强度的标准值根据什么原则确定?材料性能分项系数和强度设计值是如何确定的? 13.混凝土结构的耐久性设计是如何考虑的?来源: 考第三章结构材料 3.1 学习要点 本章介绍工程结构常用之钢材、混凝土、砖石、砌块等材料的力学性能和强度取值,是后续构件承载能力、变形等设计计算的基础。

相关文档
相关文档 最新文档