文档库 最新最全的文档下载
当前位置:文档库 › The ring structure for equivariant twisted K-theory

The ring structure for equivariant twisted K-theory

a r X i v :m a t h /0604160v 2 [m a t h .K T ] 16 A p r 2006

The ring structure for equivariant twisted K -theory

Jean-Louis Tu

Universit′e Paul Verlaine –Metz LMAM -CNRS UMR 7122ISGMP,B?a timent A,Ile du Saulcy

57000Metz,France email:tu@univ-metz.fr Ping Xu ?

Department of Mathematics Pennsylvania State University University Park,PA 16802,USA

email:ping@https://www.wendangku.net/doc/f57767481.html,

Abstract

We prove,under some mild conditions,that the equivariant twisted K -theory group of a crossed module admits a ring structure if the twisting 2-cocycle is 2-multiplicative.We also give an explicit construction of the transgression map T 1:H ?(Γ?;A )→H ??1((N ?Γ)?;A )for any crossed module N →Γand prove that any element in the image is ∞-multiplicative.As a consequence,we prove that,

under some mild conditions,for a crossed module N →Γand any e ∈ˇZ

3(Γ?;S 1),that the equivariant twisted K -theory group K ?

e,Γ(N )admits a ring structure.As an appli-cation,we prove that for a compact,connected and simply connected Lie group G ,the equivariant twisted K -theory group K ?[c ],G (G )is endowed with a canonical ring struc-

ture K i +d [c ],G (G )?K j +d [c ],G (G )→K i +j +d [c ],G (G ),where d =dim G and [c ]∈H 2((G ?G )?;S 1

).

Contents

1Introduction

22Preliminaries

92.1General notations and de?nitions ..................

..........92.2C -spaces and sheaf cohomology .............................112.3Simplicial spaces .....................................122.4F -spaces ..........................................132.5F ?-spaces .........................................132.6?2-spaces .........................................142.7The F ?-and bi-simplicial spaces associated to a crossed

module ..........152.8ˇCech Cohomology .....................

.....

..........

16

3The transgression maps17

3.1Construction of the transgression maps (18)

3.2Transgression maps for crossed modules (22)

3.3Multiplicative cochains (24)

3.4Compatibility of the maps T1inˇCech and de Rham cohomology (25)

4Ring structure on the equivariant twisted K-theory28

4.12-cocycles and S1-central extensions (28)

4.2The C?-algebra associated to a2-cocycle (30)

4.3S1-equivariant gerbes (31)

4.4Equivariant twisted K-theory and the mapΦb (35)

4.5External Kasparov product (37)

4.6Gysin maps (39)

4.7Ring structure on equivariant twisted K-theory group (41)

4.8Ring structure on the K-theory group twisted by2-gerbes (43)

1Introduction

A great deal of interest in twisted equivariant K-theory has emerged due to its close connection to string theory[40,41].In particular,the recent work of Freed–Hopkins–Teleman[20,21,22,23]concerning the relationship between the twisted equivariant K-theory of compact Lie groups and Verlinde algebras has inspired a great deal of activities in this subject.It now becomes increasingly important to develop a general framework which allows one to study the ring structure of twisted equivariant K-theory groups and in particular to investigate the general criteria which guarantee the existence of such a ring structure.

This paper serves this purpose.More precisely,in this paper we examine the conditions under which the twisted K-theory groups of a crossed module admit a ring structure. Recall that a crossed module is a groupoid morphism

N1?

Γ0

where N1?N0is a bundle of groups,together with an action ofΓon N by automorphisms satisfying some compatibility conditions(see De?nition2.2).A standard example of a crossed module is as follows.LetΓ1?Γ0be a groupoid and SΓ1={g∈Γ1|s(g)=t(g)} be the space of closed loops inΓ1.Then the canonical inclusion SΓ→Γ,together with the conjugation action ofΓon SΓ,forms a crossed module.In particular,whenΓis just a Lie group G,SΓis isomorphic to G with the action being by conjugation.In other words, G id→G with the conjugation action is a crossed module.Given a crossed module N→Γ, sinceΓacts on N,one forms the transformation groupoid(also called the crossed product groupoid)N?Γ.In the case that the crossed module is SΓ→Γ,the transformation groupoid obtained is called the inertia groupoid and is denoted byΛΓ.WhenΓis a Lie group G,the inertia groupoid is the standard transformation groupoid G?G?G with G acting on G by conjugation.

In[37],we developed a general theory of twisted K-theory for di?erential stacks (see also[2,3]for the case of quotient stacks).For a Lie groupoid X1?X0and α∈H2(X?,S1),the twisted K-theory groups K?α(X)are de?ned to be the K-theory

groups of a certain C?-algebra C?r(Γ,α)associated to the elementα(or an S1-gerbe) using groupoid central extensions.However,the construction is not canonical and de-pends on a choice of2-cocycle c∈ˇZ2(Γ?;S1)representingα,though di?erent choices of c give rise to isomorphic K-theory groups.For the convenience of our investigation,in this paper,we will de?ne twisted K-theory groups using aˇCech2-cocycle instead of a cohomology class so that the twisted K-theory groups K?c(X)will be canonically de?ned. For a Lie groupoidΓacting on a manifold N,and c∈ˇZ2((N?Γ)?;S1)a2-cocycle of the corresponding transformation groupoid N?Γ,the twisted equivariant K-theory groups are then de?ned to be

K i c,Γ(N)=K i c(N?Γ).

The main question we study in this paper is:For a crossed module N→Γ,under what condition do the twisted equivariant K-theory groups K i c,Γ(N)admit a ring structure?

The answer is that c needs to be2-multiplicative.Note that since N→Γis a crossed module,(N??Γ)?becomes a bi-simplicial space.Therefore there are two simplicial maps ?:ˇC p((N q?Γ)?;S1)→ˇC p+1((N q?Γ)?;S1)and?′:ˇC p((N q?Γ)?;S1)→ˇC p((N q+1?Γ)?;S1).A2-cocycle c∈ˇZ2((N1?Γ)?;S1)(i.e.,?c=0)is said to be2-multiplicative if there exist b∈ˇC1((N2?Γ)?;S1)and a∈ˇC0((N3?Γ)?;S1)such that?′c=?b,and ?′b=?a.Such a triple(c,b,a)is called a multiplicator.The product structure on K?c,Γ(N) depends on the choice of a multiplicator.The main result of the paper can be summarized as the following

Theorem A.Let N?→Γbe a crossed module,whereΓ1?Γ0is a proper Lie groupoid such that s:N1→N0isΓ-equivariantly K-oriented.Assume that(c,b,a)is a multiplicator, where c∈ˇC2((N1?Γ)?,S1),b∈ˇC1((N2?Γ)?,S1),and a∈ˇC0((N3?Γ)?,S1).Then there is a canonical associative product

K i+d

c,Γ(N)?K j+d

c,Γ

(N)→K i+j+d

c,Γ

(N),

where d=dim N1?dim N0.

Note that the idea of using mutiplicative cocycles(called equivariantly primitive in [21])in constructing the product on twisted equivariant K-theory has been known in the community(see[21,11]for instance).However,it seems that the condition of2-multicativity is new,which is very essential for our proof of the associativity of the product constructed.

The main idea of our approach is to transform this geometric problem into a problem of C?-algebras,for which there are many sophisticated K-theoretic techniques.As the?rst step,we give a canonical construction of an equivariant S1-gerbe(or rather S1-central extension),which is of interest in itself.

Theorem B.Suppose thatΓ:Γ1?Γ0is a Lie groupoid acting on a manifold N via J:N→Γ0.Let U be a cover of(N?Γ)?.Then anyˇCech2-cocycle c∈ˇZ2(U,S1) determines a canonical S1-central extension of the form H?Γ→H?Γ?M,where H→H?M is aΓ-equivariant S1-central extension and H?M is Morita equivalent to N?N,with the class of the central extension equal to[c]∈ˇH2((N?Γ)?;S1).

The above theorem allows us to establish a canonical Morita equivalence between the C?-algebra C?r(N?Γ,c)and the crossed product algebra A c?rΓ,where A c is aΓ-C?-

algebra(i.e.,a C?-algebra with aΓ-action).This enables us to construct the product structure on K?c,Γ(N)with the help of the Gysin map and the external Kasparov product.

For aΓ-equivariantly K-oriented submersion f:M→N between properΓ-manifolds M and N,the Gysin map is a wrong-way functorial map

f!:K i f?c,Γ(M)→K i+d

c,Γ

(N),

where d=dim N?dim M,which satis?es g!?f!=(g?f)!.It is standard that any K-oriented map f:M→N yields a Gysin element f!∈KK d(C0(M),C0(N))[14,26]. WhenΓis a Lie group,an equivariant version was proved by Kasparov–Skandalis[29,§4.3]:AnyΓ-equivariantly K-oriented map f:M→N determines an element f!∈KK dΓ(C0(M),C0(N)).A similar argument can be adapted to show that the same assertion holds whenΓis a Lie groupoid and KK?Γis Le Gall’s groupoid equivariant KK-theory [31].As a consequence,our Gysin map can easily be constructed using such a Gysin element.We note that a di?erent approach to the Gysin map to(non-equivariant)twisted K-theory was recently studied by Carey–Wang[12].

The second ingredient of our construction is the external Kasparov product

K i c,Γ(N)?K j c,Γ(N)→K i+j

p?1c+p?2c,Γ

(N2),(1) whereΓis a proper Lie groupoid,and p1,p2:N2→N1are the natural projections. This essentially follows from the usual Kasparov product KK iΓ(A,B)?KK jΓ(C,D)→

KK i+j

Γ(A?C

0(Γ0)

C,B?C

0(Γ0)

D),where A,B,C,D areΓ-C?-algebras.Here again

KK?Γstands for the Le Gall’s groupoid version of the equivariant KK-theory of Kasparov [28,31].

Theorem A indicates that the ring structure on twisted equivariant K-theory groups relies on“multiplicators”.A natural question now is how multiplicators arise.In the?rst half part of the paper,we discuss an important construction,the so-called transgression maps,which is a powerful machine to produce“multiplicators”.At the level of cohomology, the transgression map for a crossed module N→Γis a map

T1:H k(Γ?;S1)→H k?1((N1?Γ)?;S1).

For instance,when k=2,one obtains a map T1:H3(Γ?;S1)→H2((N?Γ)?;S1).Any element in the image of T1is2-multiplicative,so it is reasonable to expect that the corre-sponding twisted K-theory groups admit a ring structure.To prove this assertion,since our twisted K-theory groups are de?ned in terms of2-cocycles,we must study the trans-gression map more carefully at the cochain level.Therefore we put our construction of the transgression map into a more general perspective which we believe to be of independent interest.

First,to make our construction more transparent and intrinsic,we introduce the notion of C-spaces and their sheaf cohomology,for a category C.By a C-space,we mean a contravariant functor from the category C to the category of topological spaces.One similarly de?nes C-manifolds.Here we are mainly interested in C-spaces in which C is equipped with an additional generalized simplicial structure.One standard example of a generalized simplicial category is the simplicial category?,whose corresponding C-spaces are simplicial spaces.Indeed the generalized simplicial structure on C enables us to de?ne sheaf andˇCech cohomology of a C-space just as one does for simplicial spaces[16,19].A relevant generalized simplicial category for our purpose here is the so-called?2-category,

which is an extension of the bi-simplicial category,i.e.,?×?.Indeed?2has the same objects as?×?,but contains more morphisms.

Let M??be a?2-space.Then for any?xed k∈N,both M k,?=(M k,l)l∈N and M?,k= (M l,k)l∈N are simplicial spaces.Suppose that A0d→A1d→···is a di?erential complex of abelian sheaves over M??.Let C?(M??;A?)(resp.C?(M0,?;A?))be its associated di?erential complex on M??(resp.M0,?).We prove the following

Theorem C.

1.For each k∈N,there is a map

T k:C?(M0,?;A?)→C??k(M k,?;A?)

(with T0=Id)such that

T= k≥0T k:C?(M0,?;A?)→C?(M??;A?)

is a chain map which therefore induces a morphism

T:H?(M0,?;A?)→H?(M??;A?)

on the level of cohomology.

2.In particular,

T1:C?(M0,?;A?)→C??1(M1,?;A?)

is an(anti-)chain map and thus induces a morphism

T1:H?(M0,?;A?)→H??1(M1,?;A?).

3.Similarly,given an abelian sheaf A over M??,there is a map

T k:ˇC?(M0,?;A)→ˇC??k(M k,?;A)

(with T0=Id)such that

T= k≥0T k:ˇC?(M0,?;A)→ˇC?(M??;A)

is a chain map which therefore induces a morphism

T:ˇH?(M0,?;A)→ˇH?(M??;A).

4.Similarly,for any abelian sheaf A over M??,

T1:ˇC?(M0,?;A)→ˇC??1(M1,?;A)

is an(anti-)chain map and thus induces a morphism

T1:ˇH?(M0,?;A)→ˇH??1(M1,?;A).

We call T the total transgression map and T1the transgression map.

For a crossed module Nφ→Γ,one shows that(N?Γ)??is naturally a?2-space.In this case,the transgression maps can be described more explicitly.

Theorem D.Let Nφ→Γbe a crossed module and A?a di?erential complex of abelian sheaves over(N?Γ)??.Then:

1.There is a chain map(the total transgression map)

T= k T k:C?(Γ?;A?)→C?((N?Γ)??;A?).

Moreover

T k= σ∈S k,lε(σ) f?σ:C k+l(Γ?;A?)?→C l((N k?Γ)?;A?),

where S k,l denotes the set of(k,l)-shu?es,and the map fσ:N k?Γl→Γk+l is given by

fσ(x1,...,x k;g1,...,g l)=(u1,...,u k+l),(2) where u i=gσ?1(i)ifσ?1(i)≥k+1,and u i=? x σ?1(j)>k,j

σ?1(i) otherwise.

2.There is a transgression map

T1:H?(Γ?;A?)→H??1((N1?Γ)?;A?),

which is given,on the cochain level,by

T1=p?1

i=0(?1)i f?i:A q(Γp)→A q(N1?Γp?1).

Here the map f i:N1?Γp?1→Γp is given by

f i(x;g1,...,

g p?1)=(g1,...,g i,?(x)g1···g i,g i+1,...,g p?1).(3)

Note that the transgression maps have,in various di?erent forms,appeared in the literature before.For instance,for the crossed module G id→G with the conjugation action

and A?=??,the transgression map T1:H?G(?)→H??1

G (G)was studied by Je?rey[27]

(see also[32]).The geometric meaning of the transgression T1:?4G(?)→?3G(G)was studied by Brylinski–McLaughlin[9].On the other hand,the suspension map H4G(˙,Z)→H3(G,Z),which is the composition of the transgression T1:H4G(?,Z)→H3G(G,Z)with the canonical map H3G(G,Z)→H3(G,Z),was shown by Dijkgraaf–Witten[17]to induce a geometric correspondence between three dimensional Chern-Simons functionals and Wess-Zumino-Witten models.Such a correspondence was further explored recently by Carey et. al.[11]using bungle gerbes.The transgression map for orbifold cohomology was recently studied by Adem–Ruan–Zhang[1].

Transgression maps T k can be used to produce multiplicators.More precisely,for a crossed module N?→Γ,if e∈ˇZ3(Γ?;S1)and letting c=T1e∈ˇC2((N1?Γ)?;S1),b=?T2e∈ˇC1((N2?Γ)?;S1),and a=?T3e∈ˇC0((N3?Γ)?;S1),we then prove that(c,b,a) is a multiplicator.This fact enables us to construct a canonical ring structure on the K-theory groups twisted by elements inˇZ3(Γ?;S1).More precisely,for any e∈ˇZ3(Γ?;S1), T1e∈ˇZ2((N1?Γ)?;S1)is2-multiplicative.De?ne

K?e,Γ(N):=K?T

1e,Γ

(N).

Thus we prove

Theorem E.Let N?→Γbe a crossed module,whereΓ1?Γ0is a proper Lie groupoid such that s:N1→N0isΓ-equivariantly K-oriented.

1.For any e∈ˇZ3(Γ?;S1),the twisted K-theory group K?e,Γ(N)is endowed with a ring

structure

K i+d

e,Γ(N)?K j+d

e,Γ

(N)→K i+j+d

e,Γ

(N),

where d=dim N1?dim N0.

2.Assume that e and e′∈ˇZ3(Γ?;S1)satisfy e?e′=?u for some u∈ˇC2(Γ?;S1).

Then there is a ring isomorphism

Ψe′,u,e:K?e,Γ(N)→K?e′,Γ(N)

such that

?if e?e′=?u and e′?e′′=?u′,then

Ψe′′,u′,e′?Ψe′,u,e=Ψe′′,u+u′,e;

?for any v∈ˇC1(Γ?;S1),

Ψe′,u,e=Ψe′,u+?v,e.

3.There is a morphism

H2(Γ?;S1)→Aut K?e,Γ(N).

The ring structure on K?+d

e,Γ

(N),up to an isomorphism,depends only on the coho-mology class[e]∈H3(Γ?;S1).The isomorphism is unique up to an automorphism

of K?+d

e,Γ

(N)induced from H2(Γ?;S1).

As an application,we consider twisted K-theory groups of an inertia groupoid.Let Γ:Γ1?Γ0be a Lie groupoid and consider the crossed module SΓ→Γ.As before,ΛΓ:SΓ1?Γ1?SΓ1denotes the inertia groupoid ofΓ.Any element in the image of the transgression map T1:H3(Γ?;S1)→H2(ΛΓ?;S1)is2-multiplicative.Thus one obtains a ring structure on the corresponding twisted K-theory groups.Since H3(Γ?;S1)classi?es 2-gerbes,we conclude that the twisted K-theory groups on the inertia stack twisted by a 2-gerbe over the stack admits a ring structure.

Theorem F.LetΓ1?Γ0be a proper Lie groupoid such that SΓ1is a manifold and SΓ1→Γ0isΓ-equivariantly K-oriented(these assumptions hold,for instance,whenΓis proper and′e tale,or whenΓis a compact,connected and simply connected Lie group).Let d=dim SΓ1?dimΓ0.

1.For any e∈ˇZ3(Γ?;S1),the twisted K-theory groups K?+d

e,Γ(SΓ)are endowed with a

ring structure

K i+d

e,Γ(SΓ)?K j+d

e,Γ

(SΓ)→K i+j+d

e,Γ

(SΓ).

2.Assume that e and e′∈ˇZ3(Γ?;S1)satisfy e?e′=?u for some u∈ˇC2(Γ?;S1).

Then there is a ring isomorphism

Ψe′,u,e:K?e,Γ(SΓ)→K?e′,Γ(SΓ)

such that

?if e?e′=?u and e′?e′′=?u′,then

Ψe′′,u′,e′?Ψe′,u,e=Ψe′′,u+u′,e;

?for any v∈ˇC1(Γ?;S1),

Ψe′,u,e=Ψe′,u+?v,e.

3.There is a morphism

H2(Γ?;S1)→Aut K?e,Γ(SΓ).

The ring structure on K?+d

e,Γ

(SΓ),up to an isomorphism,depends only on the coho-mology class[e]∈H3(Γ?;S1).The isomorphism is unique up to an automorphism

of K?+d

e,Γ

(SΓ)induced from H2(Γ?;S1).

As a special case,whenΓis a compact,connected and simply connected,simple Lie group G,SG~=G,and the G-action on G is by conjugation,then T1:H3(G?,S1)→H2((G?G)?,S1)is an isomorphism and H2(G?,S1)=0.Thus,as a consequence,we have the following

Theorem G.Let G be a compact,connected and simply connected,simple Lie group,and

[c]∈H2((G?G)?;S1)~=Z.Then the equivariant twisted K-theory group K?

[c],G (G)is

endowed with a canonical ring structure

K i+d

[c],G (G)?K j+d

[c],G

(G)→K i+j+d

[c],G

(G),

where d=dim G,in the sense that there is a canonical isomorphism of the rings when using any two2-cocycles inˇZ2((G?G)?;S1)which are in the images of the transgression T1.

We note that the idea of considering the ring structure of K-theory groups twisted by classes arising from the transgression H4(BG,Z)→H3G(G,Z)is known[21].However, the role of the transgression in producing2-multiplicative classes was overlooked in the literature.Since the2-multiplicativity condition is essential for the associativity of the product,we feel that it deserves to be pointed out.

This paper is organized as follows.Section2is devoted to preliminaries.In particular, we introduce generalized simplicial-categories and cohomology of generalized simplicial-spaces.In Section3,we give the construction of the transgression maps and discuss their properties.Section4is devoted to the discussion of the ring structures of twisted equivariant K-theory groups.

We have learned that the ring structures on twisted K-theory of orbifolds have been studied independently by Adem–Ruan–Zhang using a di?erent method[1].

Acknowledgments.We would like to thank several institutions for their hospitality while work on this project was done:Penn State University(Tu),and Universit′e Pierre et Marie Curie,Universit′e de Metz(Xu).We also wish to thank Eckhard Meinrenken and Yong-Bin Ruan for useful discussions and comments.

2Preliminaries

2.1General notations and de?nitions

Given any category C(in particular any groupoid),the collection of objects is denoted by C0and the collection of morphisms is denoted by C1.We useΓorΓ?Γ0to denote a groupoid.As usual,Γis identi?ed with its set of arrowsΓ1.

If f:x→y is a morphism,then x is called the source of f and is denoted by s(f), and y=t(f)is called the target of f.Hence the composition fg is de?ned if and only if s(f)=t(g).

Given any A?C1,by A y,A x and A y x we denote A∩t?1(y),A∩s?1(x)and A x∩A y, respectively.

For all n≥1,we denote by C n the set of composable n-tuples,i.e.

C n={(f1,...,f n)|s(f1)=t(f2),...,s(f n?1)=t(f n)}.

LetΓbe a groupoid and f:M→Γ0be a map.We will denote by f?Γ,or byΓ[M]if there is no ambiguity,the pull-back groupoid de?ned by

Γ[M]0=M,Γ[M]1={(x,y,g)∈M×M×Γ|f(x)=t(g),f(y)=s(g)}

with source and target maps t(x,y,g)=x,s(x,y,g)=y,product(x,y,g)(y,z,h)= (x,z,gh)and inverse(x,y,g)?1=(y,x,g?1).In other words,Γ[M]is the?bered product of the pair groupoid M×M andΓoverΓ0×Γ0.

Let us recall the de?nition of an action of a groupoid.By de?nition,a right action of a groupoidΓon a space Z is given by

(i)a map J:Z→Γ0,called the momentum map;

(ii)a map Z×Γ

0Γ:={(z,g)∈Z×Γ|J(z)=t(g)}→Z,denoted by(z,g)→zg,

satisfying J(zg)=s(g),z(gh)=(zg)h and z·J(z)=z whenever J(z)=t(g)and s(g)=t(h).

Then,the transformation groupoid(also called crossed product groupoid)Z?Γis de?ned

by(Z?Γ)0=Z,and(Z?Γ)1=Z×Γ

0Γ,while the source map,target map and the

product are s(z,g)=zg,t(z,g)=z,(z,g)(zg,h)=(z,gh).

A groupoidΓis said to be proper if(t,s):Γ→Γ0×Γ0is a proper map.An action of Γon Z is proper if Z?Γis a proper groupoid.

De?nition2.1Let N?N0andΓ?Γ0be groupoids.We say thatΓacts on N by automorphisms if both N and N0are rightΓ-spaces and the actions are compatible in the following sense

?the source and target maps s,t:N→N0areΓ-equivariant,

?x g y g=(xy)g for all(x,y,g)∈N×N×Γwhenever either side makes sense.Here x g denotes the action of g∈Γon x∈N.

Given such a pair of groupoids(N,Γ),one can form the semi-direct product groupoid N?Γ,where the unit space is N0,the space of morphisms is

(N?Γ)1={(x,g)∈N×Γ|x g makes sense},

the target,the source,the multiplication and the inverse are de?ned by

t(x,g)=t(x),s(x,g)=s(x g),(x,g)(y,h)=(xy(g?1),gh),and(x,g)?1=((x g)?1,g?1). De?nition2.2A crossed module is a groupoid morphism

N?

Γ0

where N?N0is a bundle of groups,together with an action ofΓon N by automorphisms such that

(i)?(x g)=?(x)g for all x∈N and g∈Γsuch that x g makes sense;

(ii)x?(y)=x y for all composable pairs(x,y)∈N2.

Here?(x)g:=g?1?(x)g and x y:=y?1xy.For short,a crossed module is denoted by N?→Γ.

A standard example of crossed modules is the inertia groupoid.LetΓ?Γ0be a groupoid and SΓ={g∈Γ|s(g)=t(g)}be the space of closed loops inΓ.Then the canonical inclusion SΓ→Γ,together with the conjugation action ofΓon SΓ,forms a crossed module,where the crossed-product groupoid SΓ?Γis called the inertia groupoid and is denoted byΛΓ.

De?nition2.3Let N?→Γand N′?′→Γ′be crossed modules.A crossed module morphism τ:(N?→Γ)→(N′?′→Γ′)is a commutative diagram of groupoid morphisms

N?Γ

τ

Γ′

satisfying the condition

τ(x g)=τ(x)τ(g),for all compatible x∈N,g∈Γ.(4) Given a crossed module N?→Γ,since?maps N to SΓ,we have a natural crossed module morphism from N?→Γto SΓ→Γ.

2.2C -spaces and sheaf cohomology

Let C be a category.By a C -space,we mean a contravariant functor from the category C to the category of topological spaces.Similarly,one de?nes a C -manifold.Consider a C -space M ?.Let C M ?be the category whose objects are pairs (i,U ),with i ∈C 0and U an open subset of M i ,such that morphisms from (i,U )to (j,V )consist of those f ∈Hom C (j,i )

for which f

(U )?V .By de?nition,an abelian presheaf on the C -space M ?is an abelian presheaf on the category C M ?,i.e.,a contravariant functor from the category C M ?to the category of abelian groups.A presheaf A on M ?restricts to a presheaf A i on each space M i .We say that A is a sheaf if each A i is a sheaf.

More concretely,a sheaf A on M ?is given by a family (A i )i ∈C 0such that A i is

a sheaf on M i ,together with restriction maps f ?:A j (V )→A i (U ),for each f ∈Hom C M ?((i,U ),(j,V )),satisfying the relation ( f

? g )?= g ?? f ?[16].In a similar fashion,one de?nes the notion of a sheaf over a C -manifold.Note that a big sheaf over the site of all smooth manifolds naturally induces a sheaf on a C -manifold.For instance,the sheaf of real-valued smooth functions R ,the sheaf of S 1-valued smooth functions S 1,and the sheaf of q -forms ?q (for ?xed q )are examples of such sheaves.

Assume that A is a sheaf on a C -space M ?.In order to de?ne cohomology groups H ?(M ?,A ),one needs an extra structure on C .

We say that a category C is a generalized simplicial category if every object k ∈C 0is labeled by an integer deg(k )∈N (in other words,there is a functor from the category C to the groupoid N ×N ?N ),and moreover it is endowed with a set A ?C 1and ε:A →Z satisfying

(i)A k is ?nite for all k ∈C 0;

(ii)for all f ∈A ,deg(f )=1,where deg(f )=deg(t (f ))?deg(s (f ));(iii)for all f ∈C 1,

f ′?f ′′=f f ′,f ′′∈A

ε(f ′)ε(f ′′)=0.

Note that the sum in (iii)is ?nite due to (i).

Given a generalized simplicial category C ,a C -space M ?and a sheaf A over M ?,let

C n (M ?;A )=⊕deg k =n A (M k ).

Then C ?(M ?;A )is endowed with a degree 1di?erential

?ω=

f ∈A k

ε(f ) f

?ω,?ω∈A (M k ).It is simple to check that ?2=0.

More generally,given a bounded below di?erential complex of sheaves over M ?:

A 0d

→A 1d

→A 2d

→···,

then

C p,q (M ?;A ?):=C p (M ?;A q )

is endowed with a double complex structure with di?erentials d and ?.We denote by δthe total di?erential (?1)p d +?,and by H ?(M ?;A ?)the cohomology groups.

In particular,if A?is an injective resolution of A,then H?(M?;A?)does not depend on the choice of the resolution A?,and is denoted by H?(M?;A).It is called the sheaf cohomology group of M?with coe?cients in A.A particular case is the following:if M?is a C-manifold and A q=?q:

?0d→?1d→?2d→···,

the group H?(M?;??)is called the de Rham cohomology of M?and is denoted by H?dR(M?). It coincides with H?(M?;R).

2.3Simplicial spaces

Recall that the simplicial category,denoted by?,has as objects the set of non-negative integers,and Hom?(k,k′)is the set of non-decreasing maps from[k]to[k′],where[k]= {0,...,k}.A?-space is thus called a simplicial(topological)space,and a?-manifold is a simplicial manifold.

In a down-to-earth term,a simplicial space is given by a sequence M?=(M n)n∈N of spaces,and for each f∈Hom?(k,n),we are given a map(called face or degeneracy map depending which of k and n is larger) f:M n→M k such that f? g= g?f.

Similarly,denote byˉ?the category obtained from?by identifying f:[k]→[n]with f′:[k]→[n]whenever both f and f′are constant.We will callˉ?the reduced simplicial category.

A groupoid naturally gives rise to a simplicial space.To see this,consider the pair groupoid[n]×[n]?[n].For a groupoidΓ?Γ0,letΓn=Hom([n]×[n],Γ)be the space of homomorphisms from the pair groupoid[n]×[n]?[n]toΓ.Any f∈Hom?(k,n)gives rise to a groupoid homomorphism from[k]×[k]?[k]to[n]×[n]?[n],again denoted by f.It thus,in turn,induces a map f:Γn(=Hom([n]×[n],Γ))→Γk(=Hom([k]×[k],Γ)),which is the“face/degeneracy”map.Note thatΓn can be identi?ed with the space of composable n-tuples:Γn={(g1,...,g n)|g1···g n makes sense}since the groupoid[n]×[n]?[n] is generated by elements(i?1,i)(1≤i≤n).Hence any groupoid morphism from [n]×[n]?[n]toΓ?Γ0is uniquely determined by the image of each element(i?1,i), which is denoted by g i,(1≤i≤n).

Moreover,the simplicial space structure descends to a reduced simplicial structure when the source and target maps coincide,i.e.whenΓ?Γ0is a bundle of groups.

Recall that the simplicial category?is equipped with a natural generalized simplicial category structure.The degree map is obviously the identity map?0→N.For all k∈N, letεk i:[k]→[k+1]be the unique increasing map which omits i(i=0,...,k+1):εk i(0)=0,...,εk i(i?1)=i?1,εk i(i)=i+1,...,εk i(k)=k+1.

We will omit the superscript k if there is no ambiguity.Letε(εi)=(?1)i.Then the pair (A,ε),where A k={εk i|i∈[k+1]}is a generalized simplicial structure on?.For sheaf cohomology of simplicial manifolds,we refer the reader to[36,18]for details.

Suppose now that C and C′are two generalized simplicial categories.Then the product C′′=C′×C is naturally a generalized simplicial category,where deg(k,l)=deg(k)+deg(l), A′′=A′×{1}∪{1}×A andε(f,1)=ε(f)for all(f,1)∈A k′×C l,ε(1,g)=(?1)deg kε(g) for all(1,g)∈C k′×A l.

In particular,?×?is a generalized simplicial category.More precisely,if?′= k+1i=0(?1)i ε′?i is the di?erential with respect to the?rst simplicial structure(as above,

ε′i:[k]→[k+1]is the increasing map that omits i)and?= l+1i=0(?1)i ε?i is the di?erential with respect to the second simplicial structure,then?

f?g=ˉf?ˉg. Another way to explain the inclusionˉ??F is as follows.Any f∈Homˉ?(k,n)gives rise to a groupoid homomorphism from[k]×[k]?[k]to[n]×[n]?[n],again denoted by f. Letι:[n]×[n]→F n be the unique groupoid morphism such that(i?1,i)maps to x i. Thenˉf is the unique group homomorphism such that the diagram

[k]×[k]ιF k

ˉf

F n

commutes.

As above,a F-(topological)space is a contravariant functor from F to the category of topological spaces.If G is a topological group,then we obtain an associated F-space by setting G n=Hom(F n,G)(~=G n).In particular,since F extends the categoryˉ?, G?=(G n)n∈N is a reduced simplicial space and therefore a simplicial space.The simplicial structure can be seen as in Section2.3by considering G as a groupoid.

2.5F?-spaces

We now introduce a category F?.Objects are pairs(k,l)∈N2.To describe morphisms, let us introduce some notations:let X k,l be the groupoid F k×([l]×[l])?[l],the product of the free group F k with the pair groupoid[l]×[l]?[l].Then we de?ne Hom((k,l),(k′,l′)) as the set of groupoid morphisms f:X k,l→X k′,l′such that the restriction of f to the unit space,again denoted by f:[l]→[l′],is a nondecreasing function.In particular,for k=0we recover the simplicial category?and for l=0we recover the category F.We also note that the sub-category of F?consisting of morphisms f:X k,l→X k′,l′of the form f=(f1,f2),where f1:F k→F k′is a group morphism and f2:[l]×[l]→[l′]×[l′] is a groupoid morphism whose restriction to the unit spaces[l]→[l′]is nondecreasing,is exactly isomorphic to the product category F×?.

To understand the category F?in a more concrete way,consider the following arrows of the groupoid X k,l:

a=(a,0,0),γi=(1,0,i),(5)

where a∈F k and i=0,...,l.They generate X k,l since any arrow in X k,l can be written

in a unique way as

(a,i,j)=γ?1i aγj,(6) where a∈F k.Consider any morphism in Hom F?((k,l),(k′,l′)),whose restriction to the unit space is denoted by f:[l]→[l′].Assume that under this morphism,we have a→(ψ(a),f(0),f(0))∈X k′,l′andγi→(u i,f(0),f(i))∈X k′,l′,whereψ∈Hom(F k,F k′), f∈Hom?(l,l′),and u=(u0,...,u l)∈(F k′)l+1.Thus

(a,i,j)=γ?1i aγj→(u?1iψ(a)u j,f(i),f(j)).

Note that the triple(ψ,u,f)is uniquely determined modulo the equivalence relation: (ψ,u,f)~(ψ′,u′,f)ifψ′(a)=ψ(a)v and u′i=v?1u i for some v∈F k.

We summarize the above discussion in the following

Proposition2.4Hom F?((k,l),(k′,l′))can be identi?ed with triples(ψ,u,f),whereψ∈Hom(F k,F k′),f∈Hom?(l,l′),and u=(u0,...,u l)∈(F k′)l+1,modulo the equivalence relation(ψ,u,f)~(ψ′,u′,f)if and only ifψ′(a)=ψ(a)v and u′i=v?1u i for some v∈F k.

The composition law of morphisms is then(ψ′,u′,f′)?(ψ,u,f)=(ψ′′,u′′,f′′),where

ψ′′=ψ′?ψ,f′′=f′?f and u′′i=ψ′(u i)u′

f(i)

.

2.6?2-spaces

Next we de?ne a category?2as follows:objects are pairs of integers(k,l)∈N2.

Hom?

2((k,l),(k′,l′))consists of triples(a,b,c)such that a∈{?}∪Hom?(k,k′),b∈

{?}∪Hom?(l,k′),c∈Hom?(l,l′),and either a=?or b=?.

We de?ne the composition as follows.

(a′,?,c′)?(a,?,c)=(a′?a,?,c′?c),(a′,?,c′)?(?,b,c)=(a′?b,?,c′?c),(?,b′,c′)?(a,b,c)=(?,b′?c,c′?c). The associativity can be checked easily and is left to the reader.

It is clear that the bi-simplicial category?×?embeds into?2by(a,c)∈

Hom?(k,k′)×Hom?(l,l′)~=Hom?×?((k,k′),(l,l′))→(a,?,c)∈Hom?

2

((k,k′),(l,l′)).

Let us now de?ne a categoryˉ?2,which has the same objects as?2,and whose morphisms are obtained from morphisms of?2by identifying(?,b,c),(?,b′,c),(a,?,c), (a′,?,c)whenever a,a′,b and b′are constant functions.The resulting element is denoted

by0(k,l),(k′l′),c,or simply by0c if there is no ambiguity.One checks directly that this

de?nition makes sense and that0c′?(a,b,c)=0c′?c,(a′,b′,c′)?0c=0c′?c.

The categoryˉ?2embeds into F?as a subcategory.Indeed,to a triple(a,b,c)∈

Hom?

2((k,l),(k′,l′))one associates a triple F(a,b,c)=(ψa,u b,c)∈Hom F?((k,l),(k′,l′))

as follows.Denote by x i the generators of F k,and let y i=x1···x i,with the convention y0=1.Let

ψa(y i)=y?1

a(0)

y a(i)and(u b)i=y b(i),(7) where by convention a(i)=0if a=?.Then(a,b,c)→(ψa,u b,c)is injective,and a simple calculation shows that F((a′,b′,c′)?(a,b,c))=F(a′,b′,c′)?F(a,b,c).

Note also thatˉ?×??ˉ?2by(a,c)→(a,?,c).

The above discussion can be summarized by the following diagram,where all maps are embeddings except for the two horizontal arrows on the left:

?×?ˉ?×?F×?

ˉ?

2

τ

N?

Here(ψ,u,f)is a triple de?ning a morphism in Hom F?((k,l),(k′,l′))as in Proposition 2.4.

Since any F?-space is automatically a bi-simplicial space,(N?Γ)k,l is naturally a bi-simplicial space.

On the other hand,for any?xed k,the groupoidΓacts on the space N k.Hence we obtain a simplicial space

...N k?Γ2

Note that in this case A k is necessarily ?nite for all k ∈C 0;conversely,if A k is ?nite for all k ∈C 0,then the sub-category generated by A satis?es (i)and (ii)above.For instance,in the case of C =?,one can take C ′to be the pre-simplicial category ?′,i.e.,Hom ?′(k,k ′)consists of (strictly)increasing maps [k ]→[k ′].For C =?2,C ′will be the set of degree ≥0morphisms (recall that deg(f )=deg(t (f ))?deg(s (f ))).The reason why we de?ne C ′this way is that we need morphisms f σ(see Eq.(13))to belong to C ′.

An open cover of a C -space M ?is a collection (U k ),indexed by k ∈C 0such that U k =(U k i )i ∈I k is an open cover of the topological space M k .A C ′-cover is an open cover,

together with a C ′-structure on I ?such that for all f ∈C ′1and all i ∈I t (f ), f (U i )?U f (i )

.Given any open cover,there is a canonical C ′-cover which is ?ner.Indeed,let Λk be the

set of families λ=(λf )f ∈C ′k such that λf ∈I s (f ).Let V k λ=∩f ∈C ′k f ?1(U s (f )λf

).This is an open subset of M k since it is the intersection of ?nitely many open subsets.Moreover,Λ?

is endowed with a C ′-structure,by ( hλ)g =λh ?g ,?h ∈C ′1

,and it is straightforward to check that the cover (σU k )de?ned by σU k :=(V k λ)λ∈Λk ,is a C ′-cover,called the C ′-re?nement

of (U k ).

Now,given a C ′-cover (U k ),let M ′k =?i ∈I k U k i .Then M ′?is endowed with a C ′-structure.Moreover,any sheaf A on M ?induces a sheaf on M ′?

,again denoted by A ,by A (U )= i ∈I k A (U ∩U k i )(U is any open subset of M ′k

).Since C ′is a generalized simplicial category,one can de?ne C ?(M ′?;A ),Z ?(M ′?;A )and H ?(M ′?;A )as in Section 2.2.These groups will be denoted by C ?(U ;A ),Z ?(U ;A )and

H ?(U ;A )respectively.Then the ˇCech cohomology groups ˇH

?(M ?;A )are by de?nition the inductive limit of the groups H ?(U ;A ),when U runs over C ′-covers of M ?(the inductive limit being taken in the generalized sense of limits of functors,since a C ′-cover may be re?ned to another by several di?erent ways).

Note that the ˇCech cohomology groups do not depend on the choice of C ′satisfying

(i)and (ii)above.Indeed,let C ′′be the category generated by A .Since any C ′-cover is a C ′′-cover,and since any C ′′-cover admits a C ′-cover which is ?ner,it follows easily that the ˇCech cohomology groups de?ned using C ′coincide with those de?ned using C ′′.

When C =?,?2or ?2,the ˇCech cohomology groups can also be seen as the cohomol-ogy groups of a “canonical ˇCech complex”ˇC

?(M ?;A ),which is,by de?nition,the inductive limit of the complexes C ?(σU ;A ),where U runs over covers of the form U k =(U k x )x ∈M k ,

and U k x is an open neighborhood of x ;the cover U ′is said to be ?ner than U if (U ′)k x ?U k x

for all k and x ∈M k (see [36]for details).In the sequel,ˇCech cochains (resp.ˇCech

cocycles)should be understood in the above sense.

3The transgression maps

The purpose of this section is to show that there is a natural transgression map on the level of cochains for the cohomology of a ?2-space.As a consequence,we prove that for

a crossed module N ?

→Γthere exist transgression maps

T :H ?(Γ?;A ?)→H ?((N ?Γ)??;A ?),

and

T 1:H ?(Γ?;A ?)→H ??1((N ?Γ)?;A ?),

and similarly for ˇCech cohomology.Throughout this section,M ??denotes a ?2-space.

3.1Construction of the transgression maps

For any?xed k∈N,consider the restriction of the category?2to the objects of the form (k,l)(l∈N),and to morphisms of the form Id×(f×f):F k×[l]×[l]→F k×[l′]×[l′], where f:[l]→[l′]is non-decreasing.This category is isomorphic to?.Hence we obtain a simplicial space M k,?=(M k,l)l∈N.Similarly,M?,k=(M l,k)l∈N is also a simplicial space.

Let

A0d→A1d→ (12)

be a di?erential complex of abelian sheaves over M??.Let C?(M??;A?)(resp. C?(M0,?;A?))be the di?erential complex associated to the complex of sheaves(12) on M??(resp.M0,?).The main goal of this section is to construct chain maps T:C?(M0,?;A?)→C?(M??;A?)and T1:C?(M0,?;A?)→C??1(M1,?;A?).Thus,given an abelian sheaf A over M??,we have natural transgression maps T:H?(M0,?;A)→H?(M??;A)and T1:H?(M0,?;A?)→H??1(M1,?;A?).Similarly,there are chain maps T:ˇC?(M0,?;A)→ˇC?(M??;A)and T1:ˇC?(M0,?;A?)→ˇC??1(M1,?;A?),which in-duce transgression maps forˇCech cohomology T:ˇH?(M0,?;A)→ˇH?(M??;A)and T1:ˇH?(M0,?;A?)→ˇH??1(M1,?;A?)as well.

We?rst give the construction for sheaf cohomology.First of all,we need to introduce some notations.

Recall that a(k,l)-shu?e is a permutationσof{1,...,k+l}such thatσ(1)<···<σ(k)andσ(k+1)<···<σ(k+l).One can represent a(k,l)-shu?e by a sequence of balls, k of which being black and l of which being white.More precisely,Bσ=σ({1,...,k}) and Wσ=σ({k+1,...,k+l}).The signature ofσcan be easily computed by the formula

ε(σ)=(?1) i≤kσ(i)?i.

Denote by S k,l the set of(k,l)-shu?es.For anyσ∈S k,l,we de?ne fσ∈Hom?

2((0,k+

l),(k,l))by

fσ=(0,bσ,cσ),(13) where0stands for the zero map[0]→[k],bσis the map[k+l]→[k]given by bσ(i)= #(Bσ∩{1,...,i}),and cσis the map[k+l]→[l]given by cσ(i)=#(Wσ∩{1,...,i}), i=0,...,k+l.Thus fσinduces fσ:M k,l→M0,k+l.Therefore,we obtain a map f?σ:A q(M0,k+l)→A q(M k,l).Taking the direct sum over all l and q,we obtain a map

f?σ:C?(M0,?;A?)→C??k(M k,?;A?).

Set

T k= σ∈S k,lε(σ) f?σ:C?(M0,?;A?)→C??k(M k,?;A?)

(with T0=Id),and

T= k≥0T k:C?(M0,?;A?)→C?(M??;A?)

using the decomposition C?(M??;A?)=⊕k≥0C??k(M k,?;A?).

For any?xed k≥0,by?and?′we denote the di?erentials

?:C p,q(M k,?,A?)(=A q(M k,p))?→C p+1,q(M k,?,A?)(=A q(M k,p+1)),

and

?′:C p,q(M?,k,A?)(=A q(M p,k))?→C p+1,q(M?,k,A?)(=A q(M p+1,k)),

respectively,and byδk=(?1)p d+?,we denote the total di?erential of the double complex C p,q(M k,?;A?).Note that C?(M??;A?)= p+q+k=?A q(M k,p)and the total di?erential is (?1)k+p d+(?1)k?+?′.

Lemma3.1Assume that M

??

is a?2-space,and A?is a di?erential complex of abelian sheaves over M??.Then

?′T k=T k+1?+(?1)k?T k+1and(14)

?′T k=T k+1δ0+(?1)kδk+1T k+1,(15) where both sides are maps from C?(M0,?;A?)to C??k(M k+1,?;A?).

Proof.Let us?rst show that Eq.(15)follows from Eq.(14).For anyω∈C k+l,q(M0,?,A?),we have

T k+1δ0ω+(?1)kδk+1T k+1ω=T k+1((?1)k+l d+?)ω+(?1)k((?1)l?1d+?)T k+1ω

=T k+1?ω+(?1)k?T k+1ω.

Here we have used the fact that T k+1commutes with d since T k+1is a summation of pull-back maps.

Now,let us prove Eq.(14).For anyω∈C k+l,q(M0,?,A?),

T k+1?ω= σ∈S k+1,l k+l+1 j=0(?1)jε(σ)f?σ ε?jω.

In the sum above,we distinguish three cases:

1)(j=0,σ?1(1)≤k+1)1or(j=p,σ?1(k+l+1)≤k+1)2or(1≤j≤k+l,σ?1(j)≤k+1,σ?1(j+1)≤k+1);

2)(j=0,σ?1(1)≥k+2)3,(j=k+l+1,σ?1(k+l+1)≥k+2)4or(1≤j≤k+l,σ?1(j)≥k+2,σ?1(j+1)≥k+2);

3)1≤j≤k+l and

(a)eitherσ?1(j)≤k+1andσ?1(j+1)≥k+2

(b)orσ?1(j)≥k+2andσ?1(j+1)≤k+1.

We show that the terms in1)are equal to?′T kω,the terms in2)are equal to (?1)k+1?T k+1and the terms in3a)cancel out with those in3b).

Let us examine the terms in1).We have

?′T kω=k+1

m=0(?1)m ε′?m T kω

=k+1

m=0 τ∈S

k,l

(?1)mε(τ) ε′?m f?τω.

Given(j,σ)as in1),we de?ne(m,τ)as follows:m=σ?1(j),with the convention σ?1(0)=0,andτis uniquely determined by the equation

εj?τ=σ?εm.

In other words,if the shu?eσis represented by a sequence of p=k+l+1balls,k+1 of which being black and l of which being white,thenτis obtained fromσby removing the j-th one(which is black).

We need to check the following equalities:

(i)(?1)mε(τ)=(?1)jε(σ),and

(ii) f?σ ε?jω= ε′?m f?τω.

To show(i),let p=k+l+1andσj,p the circular permutation(j,j+1,...,p). Thenεp?τ=σ?1j,p?εj?τ=σ?1j,p?σ?εm=(σ?1j,p?σ?σm,p)?εp.Thusε(τ)=ε(σ?1j,p?σ?εm,p)= (?1)j?mε(σ).

To show(ii),it su?ces to prove that fσ?εj=ε′m?fτ.

Now

fσ?εj=(0,bσ,cσ)?(Id,0,εj)=(0,bσ?εj,cσ?εj)

ε′m?fτ=(εm,0,Id)?(0,bτ,cτ)=(0,εm?bτ,cτ).

Hence it remains to check that bσ?εj=εm?bτand cσ?εj=cτ,i.e.that

#(Bσ∩{1,...,εj(i)})=εm(#(Bτ∩{1,...,i})),and

#(Wσ∩{1,...,εj(i)})=#(Wτ∩{1,...,i}),

which is immediate from the description of Bτand Wτin terms of Bσand Wσ.

The terms in2)are treated in a similar fashion:de?ne(m,τ)by m=σ?1(j)with the conventionσ?1(0)=k+1,andτby the equationεj?τ=σ?εm.

For the terms in3),it is easy to check that the term corresponding to(j,σ)cancels out with(j,τj,j+1?σ),whereτj,j+1is the transposition which exchanges j and j+1.

One can introduce transgression maps forˇCech cohomology in a similar fashion. Namely,if U:=(U k,l)is a?′2-cover of M??,then for any?xed k,(U k,l)is a pre-simplicial cover of M k,?,and(U l,k)is a pre-simplicial cover of M?,k.They are denoted,respectively, by U k,?and U?,k.

Let M′k,l=?i∈I

k,l U k,l i.Then M′

??

is endowed with a?′2-structure.Hence for any?xed

k,M′k,?and M′?,k are pre-simplicial spaces.For anyσ∈S k,l,since fσ∈Hom?

2

((0,k+ l),(k,l)),one has a map fσ:M′k,l→M′0,k+l.Thus f?σ:A(M′0,k+l)→A(M′k,l).Set T k= σ∈S k,lε(σ) f?σ:ˇC?(U0,?,A)(=C?(M′0,?;A))→ˇC?(U k,?,A)(=C??k(M′k,?;A)) (with T0=Id),and

T= k≥0T k:ˇC?(U0,?,A)(=C?(M′0,?;A))→ˇC?(U,A)(=C?(M′??;A))

汽车修理工国家职业标准与技能标准

汽车修理工国家职业标准与技能标准 1. 职业概况 1.1 职业名称 汽车修理工。 1.2 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。1.4 职业环境条件 室内、外、常温。 1.6 基本文化程度 高中毕业(含同等学力)。 1.7 培训要求 1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1.7.2 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。

1.7.3 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600 m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业资格证书后,连续从事本职业工作4年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业资格证书后,连续从事本职业工作7年以上。 (3)取得高级技工学校或经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业(专业)毕业证书。 (4)取得本职业中级职业资格证书的大专以上本专业或相关专业毕业生,连续从事本职业工作2年以上。 ——技师(具备以下条件之一者) (1)取得本职业高级职业资格证书后,连续从事本职业工作5年以上,经本职业技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业高级职业资格证书后,连续从事本职业工作8年以上。 (3)高级技工学校本职业(专业)毕业生,连续从事本职业工作满2年。 ——高级技师(具备以下条件之一者)

车辆外廓尺寸检测公差

国家经济贸易委员会、公安部关于进一步 加强车辆公告管理和注册登记有关事项的通知 (国经贸产业[2002]768号) 各省、自治区、直辖市、计划单列市及新疆生产建设兵团经贸委(经委)、公安厅(局):为加强机动车安全管理,严格执行车辆“生产准入”和“行驶准入”制度,进一步规范《车辆生产企业及产品公告》(以下简称《公告》)管理和机动车注册登记管理,深化车辆产品管理体制改革,现将有关事项通知如下: 一、《公告》管理的范围 国家经贸委实施《公告》管理的车辆产品包括:在我国境内生产、销售并在道路上行驶的民用汽车产品及相应底盘、农用运输车、半挂车和摩托车产品。无轨电车、轮式工程机械车(含装载机、挖掘机等)、拖拉机、全挂车等不实行《公告》管理。 《公告》包括文本和光盘两部分,文本主要表述新产品批准(含产品扩展)、勘误更改和撤销等内容;光盘由本批新增产品数据库和历批汇总产品数据库两部分构成,记录产品的技术参数及产品照片等内容。文本和光盘配合使用。 公安交通管理部门要严格依据最新一批《公告》文本和配套光盘的汇总产品数据库办理车辆注册登记。在用车辆在办理过户、转出和转入登记时,要依据车辆在注册登记时发布的《公告》文本和配套光盘中的汇总产品数据库办理有关手续。未登《公告》的车辆产品或与《公告》公布的参数不符的车辆产品不得办理注册登记。不实行《公告》管理的车辆产品,公安交通管理部门依据生产企业提供的整车出厂合格证办理注册登记。 二、增加和调整强制性检验项目 (一)自2002年11月1日起,汽车生产企业申报《公告》的车型(包括改进型、扩展等,下同)必须符合《汽车和挂车侧面防护要求》(GB11567.1-2001)、《汽车和挂车后下部防护要求》(GB11567.2-2001)、《汽车燃油箱安全性能要求和试验方法》(GB18296-200 1)等3项国家标准的要求,并提供国家经贸委授权的检测机构(以下简称授权检测机构)出具的试验报告。 产品已列入《公告》的企业,自本通知发出之日起,要尽快使出厂产品符合上述3项国家标准的要求,并向国家经贸委报送由授权检验机构出具的试验报告。产品外型发生明显变化时,需提供有关照片。自2003年3月1日起,已列入《公告》的产品仍未安装符合上述标准的防护装置和燃油箱的,国家经贸委将在《公告》中予以撤销。 (二)自2003年1月1日起,装备驻车灯的车型申报《公告》时必须符合《汽车驻车灯配光性能》(GB18409-2001)要求,并提供由授权检测机构出具的试验报告。 (三)自2003年3月1日起,汽车企业申报《公告》的车型必须符合《用于保护车载接收机的无线电骚扰特性的限值及测量方法》(GB18655-2002)要求,并提供由授权检测机构出具的试验报告。 (四)自2003年1月1日起,汽车企业停止生产不符合《关于正面碰撞乘员保护的设计规则》(CMVDR 294)要求的微型客车产品,其库存产品最多允许继续销售6个月。自

汽车维修行业标准

汽车维修行业标准国家职业标准:汽车修理工 1、职业概况 1、1 职业名称 汽车修理工。 1、2 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理与调试的人员。 1、3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1、4 职业环境条件 室内、外,常温。 1、5 职业能力特征

1、6 基本文化程度 高中毕业(含同等学力)。 1、7 培训要求 1、7、1 培训期限 全日制职业学校教育,根据其培养目标与教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1、7、2 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。 1、7、3 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600 m2以上能满足培训要求的场地,且有相应的设备、仪器仪表与必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1、8 鉴定要求 1、8、1 适用对象 从事或准备从事本职业的人员。 1、8、2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。

汽车修理工国家职业技能鉴定标准

汽车修理工国家职业标准 1.职业概况 1.1职业名称 汽车修理工。 1.2职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 1.3职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4室、外,常温。 1.5职业能力特征

1.6基本文化程度 高中毕业(含同等学历)。 1.7培训要求 1.7.1培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1.7.2培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业书,培训高级人员的教师应具有技师职业书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业书,且在本岗位工作3年以上。 1.7.3培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1.8鉴定要求 1.8.1适用对象 从事或准备从事本职业的人员。 1.8.2申报条件 ——初级(具备以下条件之一者)

(1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业书后,连续从事本职业工作4年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业书后,连续从事本职业工作7年以上。 (3)取得高级技工学校或经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业(专业)毕业证书。 (4)取得本职业中级职业书的大专以上本专业或相关专业毕业生,连续从事本职业工作2年以上。 ——技师(具备以下条件之一者) (1)取得本职业高级职业书后,连续从事本职业工作5年以上,经本职业技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业高级职业书后,连续从事本职业工作8年以上。 (3)高级技工学校本职业(专业)毕业生,连续从事本职业工作满2年。 ——高级技师(具备以下条件之一者)

汽车修理工国家职业标准(最新)

汽车修理工国家职业标准 1.职业概况 1.1 职业名称 汽车修理工。 1.2 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4 职环境条件 室内、外,常温。 1.5 职业能力特征 1.6 基本文化程度 高中毕业(含同等学历)。 1.7 培训要求 1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时,中级不少于500标准学时,高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1.7.2 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。 1.7.3 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1.8 鉴定要求

1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下奈件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业资格证书后,连续从事本职业工作4年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业资格证书后,连续从事本职业工作7年以上。 (3)取得高级技工学校或经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业(专业)毕业证书。 (4)取得本职业中级职业资格证书的大专以上本专业或相关专业毕业生,连续从事本职业工作2年以上。 ——技师(具备以下条件之一者) (1)取得本职业高级职业资格证书后,连续从事本职业工作5年以上,经本职业技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业高级职业资格证书后,连续从事本职业工作8年以上。 (3)高级技工学校本职业(专业)毕业生,连续从事本职业工作满2年。 ——高级技师(具备以下条件之一者) . (1)取得本职业技师职业资格证书后,连续从事本职业工作3年以上,经本职业高级技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业技师职业资格证书后,连续从事本职业工作5年以上。 1.8.3 鉴定方式 分为理论知识考试和技能操作考核,理论知识考试采用闭卷笔试方式,技能操作考核采用现场实际操作方式进行。理论知识考试和技能操作考核均实行百分制,两门均达到60分以上者为合格。技师和高级技师鉴定还需进行综合评审。 1.8.4 考评人员与考生配比 理论知识考试考评员与考生配比为员与考生配比为1:5。 1.8.5 鉴定时间 根据职业等级不同,理论知识考试为90~120min,技能操作考核为150~240min,论文答辩不少于40min。 1.8.6 鉴定场所设备 理论知识考试在标准教室进行。技能操作考枝在具有必备的设备、仪器仪表,工、夹、量具及设施、通风条件良好,光线充足和安全措施完善的场所进行。 2. 基本要求

强制性国家标准道路车辆外廓尺寸轴荷及质量限值

强制性国家标准道路车辆外廓尺寸轴荷及质量限值

强制性国家标准《道路车辆外廓尺寸、轴荷及质量限值》 征求意见稿编制说明 一、工作简况 (一)任务来源: 受国家工业和信息化部(以下简称工信部)委托,全国汽车标准化技术委员会(以下简称汽标委)整车分技术委员会启动了标准的修订计划,标准项目计划编号: 20120011-Q-339,标准项目名称:《道路车辆外廓尺寸、轴荷及质量限值》。(二)制定过程 2012年初,工信部经与国家标准化管理委员会、交通运输部、公安部、国家质量监督检验检疫总局(以下简称质检总局)、国家认证认可监督管理委员会(以下简称认监委)等单位讨论协商后,启动了GB 1589-2004《道路车辆外廓尺寸、轴荷及质量限值》的修订工作,委托中国汽车技术研究中心(以下简称中汽中心)牵头,研究标准具体如何修改、分析后续影响,尽快拿出修订方案。 1、汽标委提出修订方案

中汽中心对一汽、东风、重汽等多个重点企业进行了调研,初步征求了汽车行业对三个标准的修订意见, 2012年10月16日,汽标委在杭州召开了GB 1589及相关标准修订行业研讨会。会议对前期工作进行了通报,针对各企业代表对GB 1589—2004标准在实施及企业新产品开发中所遇到的问题进行了梳理和汇总,并就下一阶段工作进行了布置和安排。会议研究成立了车辆运输车专项验证项目组,开展半挂车辆运输列车和中置轴车辆运输列车的试验验证工作。 杭州会议后,车辆运输车专项验证项目组召开会议,研究了车辆运输车的半挂车、中置轴挂车、铰接列车、中置轴列车的长度调整问题,以及通道圆及外摆值等指标的论证方案,并制定了工作计划。会后该工作组完成了半挂车辆运输列车及中置轴车辆运输列车的计算机模拟及实车验证试验。 2013年1月25日,汽标委在深圳召开GB1589标准修订会议。集中研究了牵引销和牵引鞍座的技术尺寸、车辆运输车(半挂列车、中置轴列车)、侧帘车等的问题,形成了统一意见。

强制性国家标准道路车辆外廓尺寸轴荷及质量限值

强制性国家标准《道路车辆外廓尺寸、轴荷及质量限值》 征求意见稿编制说明 一、工作简况 (一)任务来源: 受国家工业和信息化部(以下简称工信部)委托,全国汽车标准化技术委员会(以下简称汽标委)整车分技术委员会启动了标准的修订计划,标准项目计划编号: -Q-339,标准项目名称:《道路车辆外廓尺寸、轴荷及质量限值》。 (二)制定过程 2012年初,工信部经与国家标准化管理委员会、交通运输部、公安部、国家质量监督检验检疫总局(以下简称质检总局)、国家认证认可监督管理委员会(以下简称认监委)等单位讨论协商后,启动了GB 1589-2004《道路车辆外廓尺寸、轴荷及质量限值》的修订工作,委托中国汽车技术研究中心(以下简称中汽中心)牵头,研究标准具体如何修改、分析后续影响,尽快拿出修订方案。 1、汽标委提出修订方案 中汽中心对一汽、东风、重汽等多个重点企业进行了调研,初步征求了汽车行业对三个标准的修订意见, 2012年10月16日,汽标委在杭州召开了GB 1589及相关标准修订行业研讨会。会议对前期工作进行了通报,针对各企业代表对GB 1589—2004标准在实施及企业新产品开发中所遇到的问题进行了梳理和汇总,并就下一阶段工作进行了布置和安排。会议研究成立了车辆运输车专项验证项目组,开展半挂车辆运输列车和中置轴车辆运输列车的试验验证工作。 杭州会议后,车辆运输车专项验证项目组召开会议,研究了车辆运输车的半挂车、中置轴挂车、铰接列车、中置轴列车的长度调整问题,以及通道圆及外摆值等指标的论证方案,并制定了工作计划。会后该工作组完成了半挂车辆运输列车及中置轴车辆运输列车的计算机模拟及实车验证试验。 2013年1月25日,汽标委在深圳召开GB1589标准修订会议。集中研究了牵引销和牵引鞍座的技术尺寸、车辆运输车(半挂列车、中置轴列车)、侧帘车等的问题,形成了统一意见。

中华人民共和国国家标准汽车车架修理技术条件

中华人民共和国国家标准汽车车架修理技术条件 UDC 629.113.011.3.004.124GB 3800-83 Technical requirements for automobileframes being overhauied 本标准适用于边梁式车架的大修。修理竣工的车架应符合本标准的要求。 1 技术要求 1.1 车架应无泥砂、油污、锈蚀及袭纹。 1.2 车架宽度极限偏差为-3+4mm。 1.3 车架纵梁上平面及侧面的纵向直线度公差,在任意1000mm长度上为3mm,在全长上为其长度的千分之一。 1.4 车架总成左、右纵梁上平面应在同一平面内,其平面度公差为被测平面长度的千分之一点五。 1.5 纵梁侧面对车架上平面的垂直度公差为纵梁高度的百分之一。 1.6 车架主要横梁对纵梁的垂直度公差不大于横梁长度的千分之二。 1.7 车架分段(如下图)检查,各段对角线长度差不大于5mm。 注:aa'--前钢板前支架销承孔轴线; bb'--前钢板后支架销承孔轴线; cc'--后钢板前支架销承孔轴线; dd'--后钢板后支架销承孔轴线; ab'、a'b--第Ⅰ段对角线; bc'、b'c--第Ⅱ段对角线; cd'、c'd--第Ⅲ段对角线; ac'、a'c--第Ⅳ段对角线;

1.8 左右钢板弹簧固定支架销孔应同轴,其同轴度公差为φ 2.0mm(按GB 1958-80《形状和位置公差检测规定》检测方法5-1进行检测)。前后固定支架销孔轴线间的距离左、右相差:轴距在4000mm及其以下的应不大于2mm,轴距在4000mm以上的应不大于3mm。 1.9 车架的焊接应符合焊接规范。焊缝应平整、光滑、无焊瘤、弧坑,咬边深度不大于0.5mm,咬边长度不大于焊缝长度的百分之十五,并不得有气孔、夹渣等缺陷。 1.10 车架挖补或截修的焊缝方向,除特殊车架外,不允许与棱线垂直、重叠;焊缝及其周围基体金属上,不应有裂纹。 1.11 铆接件的接合面必须贴紧,铆钉应充满钉孔,铆钉头不得有裂纹、歪斜、残缺,所有铆钉不得以螺栓代替。 1.12 前后保险杠应平整,形状符合原设计规定。 注:原设计是指制造厂和按规定程序批准的技术文件(下同)。 1.13 车架的其他附属装置及其安装应符合原设计规定。 1.14 修竣车架所增加的重量不得超过原设计重量的百分之十。 1.15 修竣的车架应进行防锈处理。 1.16 除本标准规定外,其他技术要求可参照原设计执行。 2 检验规则 经检验合格的车架应签发合格证。 附加说明: 本标准由中华人民共和国交通部提出,由交通部标准计量研究所归口。 本标准由河北省交通局、安徽省交通厅、四川省交通厅负责起草。 本标准主要起草人董先为、厉鸿培、陈盛模。

汽车维修行业标准

汽车维修行业标准

国家职业标准:汽车修理工 1. 职业概况 职业名称 汽车修理工。 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 职业环境条件 室内、外,常温。 职业能力特征 基本文化程度

高中毕业(含同等学力)。 培训要求 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600 m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 鉴定要求 适用对象 从事或准备从事本职业的人员。 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。

汽车行业常用标准集锦(pdf21个,doc3个,ppt6个)4

第六章公差与配合 教学目的: 了解互换性的概念、形位公差和表面粗糙度的基本知识,掌握圆柱体的公差与配合;学会使用国家公差与配合、形位公差标准,并能根据具体零件和机械正确选择公差等级、公差带、配合的种类和表面粗糙度。 教学内容: 公差与配合的基本术语、国标公差等级、基本偏差系列、形位公差和粗糙度。 重点:公差配合与选用 难点:公差配合的选用计算 参考教材:《机械基础》刘泽深等主编中国建工出版社 2000 《机械设计基础》杨可桢主编高等教育出版社 2003 《机械设计》濮良贵主编高等教育出版社 2004 具体教学内容: §1互换性的基本概念 一.互换性的概念 在制成的同一规格零件中,不需作任何挑选或附加加工(如钳工修配)就可以装在机器或部件上,而且可达到原定使用性能的特性。有完全互换和不完全互换。 二.互换性的意义 1流水线生产、自动生产 2使用维修 三.互换性包括的内容 几何参数、机械性能、理化参数。

四.加工误差 尺寸误差、形状误差、表面相互位置。 §2光滑圆柱体的公差于配合 一.基本术语与定义 1.孔:圆柱形内表面和其他非圆柱内貌的统称。 2.轴:圆柱形外表面和其他非圆柱外貌的统称。 3.尺寸:用特定单位表示长度值的数字,机械制图用mm为单位。 4.基本尺寸:设计给定的尺寸。孔,大写字母表示,轴,小写字母表示。 5.实际尺寸:通过测量所得尺寸。 6.极限尺寸:允许尺寸变化的两个界限值。其中,数值大的称为最大极限尺寸,数值小的称为最小极限尺寸。 7.尺寸偏差:某一尺寸减去基本尺寸的代数差。 上偏差(ES,es)= 最大极限尺寸-基本尺寸 下偏差(EI,ei )= 最小极限尺寸-基本尺寸 极限偏差:实际尺寸-基本尺寸 ※偏差可正可负,也可为零。 8.尺寸公差:允许尺寸的变动量。

大众汽车常用标准汇总

大众汽车常用标准汇总 一、焊接标准 VW 01101 类似国标中描述焊接类型并用图例表示的标准。对各种焊接进行了概括的介绍,并规定了各种标准的图示符号,是焊接里很概括的一章。 eg: VW 01103 凸点焊标准(weld projection),图示表示了不同的凸点焊情况,规定了不同厚度的板件进行凸点焊时凸点的直径、高度等。 eg: VW 01105 点焊标准(spot weld),详细介绍了点焊的设计思想、焊点排布、强度计算和校合,以及焊接头的布置和形状参考,有图示、查表表格和例题,教科书般的详尽标准。规定了焊接点的熔深要求、焊接头大小标准、缩印要求。 焊接后表面等级OG1\OG2\OG3的定义。 规定了图纸表注标准。

使用此标准焊接的熔深、劈凿(或者母材撕裂)都以VW01105为认可标准(Acceptance criteria)。实验方法也定义为VW01105,实际上此标准内第3 章有具体的实验标准比如PV6702等。考虑到VW01105比较全面而且大众认可,所以不把具体的小标准作为实验方法。 VW 01105-2 针对铝制金属的特殊焊接要求,包括特殊的熔深、劈凿要求。 eg: VW 01105-3 镀锌合金的特殊焊接要求,对焊板、焊接头有比较详细的描述,对校合计算过程有详细介绍,熔深和劈凿依然参考VW01105-1。

VW 01105-4 针对大厚度钢和高强度钢的焊接标准,介绍了特殊的技术要求和过程控制。介绍了“焊接强度——焊接时间”图,介绍了标准的图纸表注方法。eg: VW 01106 弧焊、二氧化碳保护焊、熔焊标准。规定了图纸标注的标准。详尽规定了不同钢板焊接时的要求和标准,图例表示了各种焊接情况下焊缝的形式。介绍了应力计算标准、涂层材料。规定了不同钢材焊接时焊缝的评估标准。认可标准和实验方法均为VW 01106。 eg:

汽车行业常用标准集锦6

公差与配合 1.1、公差、偏差和配合的基本规定(GB/T1800.2--1998) 1.1.1、公差、偏差和配合的代号 1)标准公差等级代号标准公差等级代号用符号IT和数字组成,例如:IT7。当其与代表基本偏差的字母一起组成公差带时,省略IT字母,如h7。 标准公差等级分IT01、IT0、IT1至IT18,共20级。 2)基本偏差代号基本偏差代号,对孔用大写字母A,……,ZC表示;对轴用小写字母a,……,zc表示,各28个。 其中,基本偏差H代表基准孔;h代表基准轴。 3)上偏差代号上偏差的代号,对孔用大写字母“ES”表示,对轴用小写字母“es”表示。 4)下偏差代号下偏差的代号,对孔用大写字母“EI”表示,对轴用小写字母“ei”表示。 1.1.2、公差带、注公差尺寸和配合的表示 1)公差带的表示公差带用基本偏差的字母和公差数字表示。 例如:H7孔公差带;h7轴公差带。 2)注公差尺寸的表示注公差的尺寸用基本尺寸后跟所要求的公差带或(和)对应的偏差值表示。 例如:32H7;80js15;100g6等 当使用有限的字母组的装置传输信息时,例如电报,在标注前加以下字母: 对孔为H或h;对轴为S或s。 例如:50H5或为H50H5或h50H5; 50h6或为S50h6或s50h6。 这种表示方法不能在图样上使用。 3)配合的表示配合用相同的基本尺寸后跟孔、轴公差带表示。孔、轴公差带写成分数形式,分子为孔公差带,分母为轴公差带。 例如:52H7/g6 当使用有限的字母组的装置传输信息时,例如电报,在标注前加注以下字母: 对孔为H或h;对轴为S或s。 例如:52H7/g6或为H52H7/S52g6或h52H7/s52g6 1.1.3、注公差尺寸的解释 (1)公差标注按GB/T 4249 在图样上注明“公差原则按01/23#34”的工件公差应按以下情况解释: 1)线性尺寸公差线性尺寸公差仅控制要素的局部实际尺寸(两点法测量),不控制要素本身的形状误差(如圆柱要素的圆度和轴线直线度误差或平行平面要素的平面度误差)。尺寸公差也不能控制单一要素的几何相关要素。 2)包容要求结合零件具有配合功能的单一要素,不论是圆柱表面还是两平行表面,图样上应在其尺寸极限偏差或公差带代号之后加注符号“”。这表明尺寸和形状彼此相关,并且不能超越以工件最大实体尺寸形成的理想包容面。 (2)公差标注不按GB/T4249 在图上未注明“公差原则按GB/T4249”的工件公差在规定的长度内应按下列方式解释: 1)对孔与实际孔表面内接的最大理想圆柱体直径不小于孔的最大实体极限;孔上任何

汽车修理技术标准

汽车变速器修理技术标准 中华人民共和国国家标准 GB5372-85 UDC621-585.004.67:629.113 本标准适用于国产汽车机械式变速器的修理。修竣的变速器总成应符合本标准规定。非国产汽车机械式变速器的修理可参照执行。 1、技术要求 1.1变速器壳体 1.1.1壳体应无裂损。壳体上所有联接螺孔的螺纹损伤不得多于2牙。 1.1.2壳体上平面长度不大于250mm,其平面度公差为0.15mm;大于250mm,平面度公差为0.20mm。 1.1.3壳体前端面对第一、二轴轴承承孔的公共轴线的端面圆跳动:其端面最大可测直径大于50至120mm,公差为0.08mm;大于120至250mm,公差为0.10mm;大于250至500mm,公差为0.12mm ;大于500mm,公差为0.15mm。1.1.4壳体后端面对第一、二轴轴承承孔的公共轴线的端面圆跳动公差为0.15mm。 1.1.5壳体前、后端面的平面度公差值,分别不大于1.1.3、1.1.4项规定的端面圆跳动公差值。 1.1.6壳体上平面与第一、二轴轴承承孔的公共轴线的平行度公差为0.20mm。 1.1.7壳体上各轴承(或轴)承孔轴线间尺寸偏差的绝对值,允许比原设计规定增加0.02mm。 1.1.8壳体上各承孔轴线的平行度公差允许比原设计规定增加0.02mm。 1.1.9壳体上各承孔的圆度公差为0.008mm。表面粗糙度

一般不低于 1.1.10滚动轴承与承孔的配合公差:当基本尺寸大于50至80mm时,其值允许比原设计规定增加0.02mm;基本尺寸大于80至120mm,其值允许比原设计规定增加0.04mm;基本尺寸大于120至180mm,其值允许比原设计规定增加0.025mm。1.1.11轴颈与壳体承孔的配合公差允许比原设计规定增加0.015mm。 1.2变速器盖 1.2.1盖应无裂损。 1.2.2盖与壳体的结合平面长度不大于250mm,其平面度公差为0.15mm;结合平面长度大于250mm,平面度公差为0.20mm;非上置式盖,平面度公差为0.10mm。 1.2.3盖上变速杆中部球形承孔直径允许比原设计规定增加0.50mm。 1.2.4变速叉轴与盖(或壳体)承孔的配合间隙为0.04~0.20mm。 1.3轴 1.3.1第一、二轴及中间轴,当以两端轴颈的公共轴线为基准时:长度大于120至250mm,中部的径向圆跳动公差为0.03mm;长度大于250至500mm,中部的径向圆跳动公差为0.06mm。 1.3.2第一轴的轴向间隙不大于0.15mm。其他各轴的轴向间隙不大于0.30mm。 1.4齿轮与花键 1.4.1齿轮的啮合面上不允许有明显的缺陷或不规则磨损。1.4.2接合齿轮或相配合的滑动齿轮齿端部位磨损量不得超过齿宽的15%。

相关文档
相关文档 最新文档