文档库 最新最全的文档下载
当前位置:文档库 › 蓄电池容量计算方法

蓄电池容量计算方法

蓄电池容量计算方法
蓄电池容量计算方法

蓄电池容量计算部分

1、常用的蓄电池容量计算方法

(1)容量换算法(电压控制法)

按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。

(2)电流换算法(阶梯负荷法)

按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。

2、采用容量换算法计算容量

按持续放电负荷计算蓄电池容量,取电压系数Ku=,则计算的单个电池的放电终止电压为:

V (4-1)

蓄电池的计算容量:

(4-2)

式中 Cc —事故放电容量;

Kcc —蓄电池容量系数;

Krel —可靠系数,一般取

80.1108

220885.0=?=Ud cc s rel c K C K C =

I1=325.27A

I2=293.45A

I3=46.36A

I4=13.64A

m1=

m2=

m3=1h

m4=2h

在4个不同阶段,任意一个时期的放电容量为:

(4-3)

总的负荷容量为:

(4-4)

mi i mi t I C =n

a a

i mi sa C C ...2,11|==∑=

在计算分段ta 内,所需要的蓄电池容量计算值为:

(4-5)

其中,容量系数Kcca 按计算分段的时间ta 决定。

通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压,得出容量系数

Kcc=。

分别计算n 个分段的蓄电池计算容量,然后按照其中最大者选择蓄

电池,则蓄电池的容量为:

(4-6)

放电电压水平的校验

(1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下:

事故放电期间蓄电池的放电系数

(4-7)

式中,Cs —事故放电容量(Ah ),t —事故放电时间

通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲n a Kcca

KrelCsa Cca ...2,1|==

Cca

n

a Cc max 1=≥10

tC KrelCs

K =

击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。

(2)冲击放电电压水平的校验。

冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。

①事故放电初期,电压水平的校验

事故放电初期的冲击系数为

(4-8) 式中,Krel —可靠性系数,一般取1.1

I ch0—事故放电初期的放电电流,(A)

根据计算出来的K 值,由蓄电池冲击放电曲线中的“0”曲线查得单个电池的电压值,在求出整组电池电压值。

②事故放电过程中,包括事故放电末期出现大冲击电流时放电系数和冲击系数。

(4-9)

10

00C I K K ch rel ch =10tC C K K s

rel

f =

(4-10)

根据冲击负荷,查蓄电池冲击放电曲线组中对应的Kf 的曲线,求得单个电池电压,并由此求得蓄电池组的端电压。

一般情况下,事故放电初期和末期或大电流放电阶段末期的电压水平,往往是整个放电过程的电压控制点。

通过计算和校验,东直门电池容量为814Ah ,选用两组500Ah 蓄电池。

本次电池容量计算采用电压控制法,并对放电电压水平和冲击放电电压水平进行校验。

通过计算,下述电池容量满足事故期间的放电需求。

10

C I K K chf rel chf

精确计算电池剩余电量

精确计算电池剩余电量 关键字:电池剩余电量测量电流积分电压测量 在当今的高科技时代,移动电话、PDA、笔记本电脑、医疗设备以及测量仪器等便携式设备可谓随处可见。随着便携式应用越来越多的向多样化、专有化、个性化方面发展,有一点却始终未变,那就是所有的便携式设备均靠电池供电。 在对系统的剩余运行时间进行预测的时候,电池可以说是供电环节中最难理解的部分之一。随着便携式应用数量的不断增加,我们需要实现更多的关键性操作,例如利用移动电话进行账户管理、便携式数据记录器必须保留相应的功能以应对完全工作交接、医疗设备必须完整保存需要监控的关键数据等等。 本文将讨论尽可能精确计算剩余电池电量的重要性。令人遗憾的是,仅通过测量某些数据点甚至是电池电压无法达到上述目的。温度、放电速率以及电池老化等众多因素都会影响充电状态。本文将集中讨论一种专利技术,该技术能够帮助设计人员测量锂电池的充电状态以及剩余电量。 现有的电池电量监测方法 目前人们主要使用两种监测方法:一种方法以电流积分(current integration)为基础;而另一种则以电压测量为基础。前者依据一种稳健的思想,即如果对所有电池的充、放电流进行积分,就可以得出剩余电量的大小。当电池刚充好电并且已知是完全充电时,使用电流积分方法效果非常好。这种方法被成功地运用于当今众多的电池电量监测过程中。 但是该方法有其自身的弱点,特别是在电池长期不工作的使用模式下。如果电池在充电后几天都未使用,或者几个充、放电周期都没有充满电,那么由内部化学反应引起的自放电现象就会变得非常明显。目前尚无方法可以测量自放电,所以必须使用一个预定义的方程式对其进行校正。不同的电池模型有不同的自放电速度,这取决于充电状态(SOC)、温度以及电池的充放电循环历史等因素。创建自放电的精确模型需要花费相当长的时间进行数据搜集,即便这样仍不能保证结果的准确性。 该方法还存在另外一个问题,那就是只有在完全充电后立即完全放电,才能够更新总电量值。如果在电池寿命期内进行完全放电的次数很少,那么在电量监测计更新实际电量值以前,电池的真实容量可能已经开始大幅下降。这会导致监测计在这些周期内对可用电量做出过高估计。即使电池电量在给定温度和放电速度下进行了最新的更新,可用电量仍然会随放电速度以及温度的改变而发生变化。

太阳能电池方阵及蓄电池容量计算的一般方法

太阳能电池供电系统设计步骤 ⑴列出基本数据 ①确定所有负载功率及连续工作时间 ②确定地理位置:经、纬度及海拔高度 ③确定安装地点的气象资料: ★年(或月)太阳辐射总量或年(或月)平均日照时数 ★年平均气温和极端气温 ★最长连续阴雨天数 ★最大风速及冰雹等特殊气候资料 ⑵确定负载功耗:Q=ΣI2H 其中:I-负载电流,H-负载工作时间(小时) ⑶确定蓄电池容量:C = Q X d X 1.3 式中:d-连续阴雨天数 C-蓄电池标称容量(10小时放电率) C = (10~20)3Cr /(1-d) ⑷确定方阵倾角:推荐方阵的倾角与纬度的关系 ⑸计算方阵β倾角下的辐射量: Sβ= S3sin(α+β)/sinα 式中:Sβ—β倾角方阵太阳直接辐射分量 α—中午时太阳高度角 S 其它:α=90°-Φ±δ 式中:Φ—纬度 δ—太阳赤纬度(北半球取+号)地面即:α=90°-Φ+δ δ=23.45°sin[(284+n)3360/365] 式中:n—从一年开头算起第n天的纬度 那么 Rβ=S3sin(α+β)/sinα+D 式中 Rβ—β角方阵面上的太阳总辐射量 D—散射辐射量(查阅气象资料) ⑹计算方阵电流: Tm = (Rβ3mwH/cm2)/(100mw/cm2) 式中:Tm—为平均峰值日照时数 Imin = Q/(Tm3η13η2) 式中:Imin—方阵最小输出电流η1—蓄电池充电效率 η2—方阵表面灰尘遮散损失 Imax = Q/(Tmin3η13η2) ⑺确定方阵电压: V = Vf+Vd 式中:Vf—蓄电池浮充电压(25‵)Vd—线路电压损耗 ⑻确定方阵功率: F=Im3V/(1-α(Tmax-25)) 式中:α—一般取α=0.5% Tmax—太阳电池最高工作温度 ⑼根据蓄电池容量、充电电压、环境极限温度、太阳电池方阵电压及功率要求,选取适

12.4.4蓄电池的选择及容量计算方

12.4.4 蓄电池的选择及容量计算方法 12.1.4.1 铅酸蓄电池[66] (1)铅酸蓄电池型式。变电所直流操作电源用铅酸蓄电池,一般均为固定式铅酸蓄电池。国产固定式蓄电池有下列几种:①开启式G (或GG )型蓄电池;②防酸隔爆式GF (或GM )型蓄电池;③防酸式GFD 型蓄电池。开启式G (或GG )型蓄电池,由于酸雾大,维护管理复杂且对维护工人的健康影响较大,在各生产厂已极少生产,不推荐使用。防酸式GFD 蓄电池产品达到德国工业标准DIN43539的要求。防酸式GF (或GM )型蓄电池同GFD 型蓄电池一样,均具有防酸隔爆的特性,且能量高,寿命较长,安装、维护管理方便,可降低蓄电池室的耐酸等级,且其价格低于GFD 型。 (2)铅酸蓄电池容量的选择。二十世纪80年代以前蓄电池容量的选择计算基本上是沿用前苏联的计算方法。随着国外技术的引进,能源部在总结了国内外经验的基础上,提出了用电压控制法和阶梯负荷计算法来选择蓄电池的容量。由于阶梯负荷计算法多适用于大型发电厂,而电压控制法既可用于发电厂也可用于各种类型变电所,故本节只介绍电压控制法用以选择有端电池及无端电池直流系统固定式铅酸蓄电池的容量。电压控制法计算方法如下; 1)蓄电池容量选择应满足事故全停电状态下的持续放电容量 C CB SX k c K K C K C = (12?1?1) 式中 c C ——蓄电池10h 放电率计算容量,Ah ; SX C ——持续事故放电容量,Ah ; k K ——可靠系数,取1.40; C K ——容量换算系数(根据不同的放电终止电压,对应放电时间1h ,由图12?1?2中曲线查出); CB K 容量比例系数,根据事故放电时间由表12?1?2查出。但事故放电时间,应与SX C 所取时间相一致,对变电所一般取1h ,故1=CB K 。

蓄电池容量计算方法

蓄电池容量计算部分 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中Cc—事故放电容量; Kcc—蓄电池容量系数; Krel—可靠系数,一般取1.40 对于阶梯型负荷,可采用分段计算法计算。以东直门车站为例,各阶段负荷分布如下图所示: 图中: I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 80 .1 108 220 885 .0 = ? = Ud cc s rel c K C K C=

在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 mi i mi t I C =n a a i mi sa C C ...2,11 |==∑=n a Kcca KrelCsa Cca ...2,1|== Cca n a Cc max 1 =≥10 tC KrelCs K =

蓄电池容量计算

6.5.1 直流电源 直流系统额定电压采用DC 220V。 蓄电池容量按电气负荷2小时,通信负荷4小时,根据《电力工程直流系统设计技术规程》、《电力用直流和交流一体化不间断电源设备》有关条文,每组蓄电池计算如下: 6.5.1.1 蓄电池个数选择 选用阀控式密封铅酸蓄电池: 单体蓄电池的浮充电压取:Uf=2.23V (参照新规程6.1.2) 按正常浮充电运行时保证直流母线电压为额定电压的105%计算(参照新规程6.1.1及3.2.2),选择每组蓄电池 n=1.05×220/2.23≈104 只(参照新规程B.1-1) 单体蓄电池均充电压:Uc=1.1×220/104≈2.34V (参照新规程6.1.4及3.2.3第1条) 单体蓄电池放电末期终止电压:Um=0.875×220/104=1.85V(参照新规程6.1.3及3.2.4)(参照新规程B.1-2)

容量选择:(参照新规程B.2.3.2及表B2.1.2,阶梯计算法) 1)按第一阶段放电计算:(参照新规程表B.3-3,查容量换算系数) t=1min,Kc=1.24 C C1=K K I1/ K C=1.4×148.64/1.24=119.9Ah 2)按第二阶段放电计算: t1=120min,Kc1=0.344;t2=119min,Kc2=0.345(表B.3-3,无119min参数,采用插值法计算容量换算系数) C C2=K K [I1/ K C1+(I2-I1)/ K C2] =1.4×[148.64/0.344+(121.36-148.64)/0.345]=494.23Ah 3)按第三阶段放电计算: t1=240min,Kc1=0.214;t2=239min,Kc2=0.215;t3=119min,Kc3=0.345 C C2=K K [I1/ K C1+(I2-I1)/ K C2+(I3-I2)/ K C3] =1.4×[148.64/0.214+(121.36-148.64)/0.215+(10.91-121.36)/0.345]=346.6Ah 4)随机负荷 C R=I R/K CR=4.55/1.34=3.4Ah 叠加后可得C=494.23+3.4=497.63Ah 按标称容量,蓄电池容量选择500Ah。 6.5.1.3 充电装置选择:(参照新规程附录C) 1、满足浮充电要求:充电装置额定电流Ir =0.01×50+80.45=80.95A 2、满足初充电要求:充电装置额定电流Ir =1.1×50=55A 3、满足均衡充电要求:充电装置额定电流Ir =1.1×50+80.45=135.45A 4、装置输出电压:Ur=104×2.4=249.6V 单个模块额定电流:Im=40A(参照新规程表C.1.3,选择40A,并应满足C2.2条要求) 基本模块数量n1=135.45/40≈3.4个 每组高频开关充电模块:5个(220kV参照新规程C2.1.1,500kV参照

光伏电站蓄电池容量的计算方法

光伏电站蓄电池容量的计算方法 在确定蓄电池容量时,并不是容量越大越好,一般以20%为限。因为在日照不足时,蓄电池组可能维持在部分充电状态,这种欠充电状态导致电池硫酸化增加,容量降低,寿命缩短。不合理地加大蓄电池容量,加大蓄电池容量,将增加光伏系统的成本。 在独立光伏发电系统中,对蓄电池的要求主要与当地气候和使用方式有关,因此各有不同。例如,标称容量有5h 率、24h 率、72h 率、100h 率、240h 率以及720h 率。每天的放电深度也不相同,南美的秘鲁用于“阳光计划”的蓄电池要求每天40%~50%的中等深度放电,而我国“光明工程”项目有的户用系统使用的电池只进行20%~30%左右的放电深度,日本用于航标灯的蓄电池则为小电流长时间放电。蓄电池又可分为浅循环和深循环两种类型。因此选择太阳能用蓄电池应既要经济又要可靠,不仅要防止在长期阴雨天气时导致电池的储存容量不够,达不到使用目的;又要防止电池容量选择过小,不利于正常供电,并影响其循环使用寿命,从而也限制了光伏发电系统的使用寿命;又要避免容量过大,增加成本,造成浪费。确定蓄电池容量的公式为: a K U L P F D C ????=0 C -蓄电池容量,kW ·h (Ah );D -最长无日期间用电时数,h ;F —蓄电池放电效率的修正系数,(通常取1.05);PO -平均负荷容量,kW ;L为蓄电池的维修保养率,(通常取0.8);U 为蓄电池的放电深度(通常取0.5);Kα为包括逆变器等交流回路的损耗率(通常取0.7~0.8)。上式可简化为: C =3.75× D ×P0 这是根据平均负荷容量和最长连续无日照时的用电时数算出的蓄电池容量的简便公式。由于蓄电池容量一般以安时数表示,故蓄电池容量应该为: V Wh C Ah C )(1000)(?=' H I Ah C ?=')( C '为蓄电池容量,A ·h;V 为光伏系统的电压等级(系统电压),通常为12V 、24V 、48V 、110V 或220V 。 例如,按宁波太阳能电源有限公司提供的晶体电池组件,对浙江南都电源动力股份有限公司的阀控式密封铅酸蓄电池进行选型。基本要求为:可为400W 的负载连续5天阴雨天的

计算电池剩余容量的常用方法

计算电池剩余容量的常用方法 阅读次数:105 我要发表评论 作者:optimumchina发表时间:2010-10-13 本文将讨论尽可能精确计算剩余电池电量的重要性。令人遗憾的是,仅通过测量某些数据点甚至是电池电压无法达到上述目的。温度、放电速率以及电池老化等众多因素都会影响充电状态。本文将集中讨论一种专利技术,该技术能够帮助设计人员测量锂电池的充电状态以及剩余电量。现有的电池电量监测方法 目前人们主要使用两种监测方法:一种方法以电流积分(current integration)为基础;而另一种则以电压测量为基础。前者依据一种稳健的思想,即如果对所有电池的充、放电流进行积分,就可以得出剩余电量的大小。当电池刚充好电并且已知是完全充电时,使用电流积分方法效果非常好。这种方法被成功地运用于当今众多的电池电量监测过程中。 但是该方法有其自身的弱点,特别是在电池长期不工作的使用模式下。如果电池在充电后几天都未使用,或者几个充、放电周期都没有充满电,那么由内部化学反应引起的自放电现象就会变得非常明显。目前尚无方法可以测量自放电,所以必须使用一个预定义的方程式对其进行校正。不同的电池模型有不同的自放电速度,这取决于充电状态(SOC)、温度以及电池的充放电循环历史等因素。创建自放电的精确模型需要花费相当长的时间进行数据搜集,即便这样仍不能保证结果的准确性。 该方法还存在另外一个问题,那就是只有在完全充电后立即完全放电,才能够更新总电量值。如果在电池寿命期内进行完全放电的次数很少,那么在电量监测计更新实际电量值以前,电池的真实容量可能已经开始大幅下降。这会导致监测计在这些周期内对可用电量做出过高估计。即使电池电量在给定温度和放电速度下进行了最新的更新,可用电量仍然会随放电速度以及温度的改变而发生变化。 以电压为基础的方法属于最早应用的方法之一,它仅需测量电池两级间的电压。该方法基于电池电压和剩余电量之间存在的某种已知关系。它看似直接,但却存在难点:在测量期间,只有在不施加任何负载的情况下,才存在这种电池电压与电量之间的简单关联。当施加负载时(这种情况发生在用户对电量感兴趣的多数情况下),电池电压就会因为电池内部阻抗所引起的压降而产生失真。此外,即使去掉了负载,发生在电池内部的张持过程(relaxation processe)也会在数小时内造成电压的连续变化。由于多种原因的存在,基于电池阻抗知识的压降校正方法仍存在问题,本

电池容量的计算

电池,充电器技术学习交流,求助-> 锂电池容量计算的电压法 一.首先几个概念解释: 1.OCV:open circuit voltage的缩写,开路电压. 2.锂离子电池:本篇讨论的是目前手机上普遍采用的以4.2V恒压限制充电的单节锂离子电池. 3.mAh:电池容量的计量单位,实际就是电池中可以释放为外部使用的电子的总数. 折合物理上的标准的单位就是大家熟悉的库仑. 库仑的国际标准单位为电流乘于时间的安培秒. 1mAh=0.001安培*3600秒=3.6安培秒=3.6库仑 mAh不是标准单位,但是这个单位可以很方便的用于计量和计算. 比如一颗900mAh的电池可以提供300mA恒流的持续3小时的供电能力. 4.fuel gauging:电量计量,原意是油量计量,后在电化学上被引用为电量计量的意思. 最科学的并且是最原始的电池的电量计量方法是对流经的电子流量的统计.即库仑计(coulomb count). ★要想获得锂离子电池的电量使用的正确情况,只有用库仑计.就象大家家里面的水量计量用的水表的作用原理.要计算流经的电荷的多少才能获得锂离子电池的电量使用情况. 二.电压与容量的关系 但是锂离子电池有一个对电量计量很有用的特性,就是在放电的时候,电池电压随电量的流逝会逐渐降低,并且有相当大的斜率.这就提供给我们另外一种近似的电量计量途径.取电池电压的方法.就好像测量水箱里面的水面高度可以大概估计剩余的水量这个道理一样.但是实际上电池的电压比水箱里面的平静的水面高度测量要复杂的多. 用电压来估计电池的剩余容量有以下几个不稳定性: 1.同一个电池,在同等剩余容量的情况下,电压值因放电电流的大小而变化. 放电电流越大,电压越低.在没有电流的情况下,电压最高. 2.环境温度对电池电压的影响, 温度越低,同等容量电池电压越低. 3.循环对电池放电平台的影响, 随着循环的进行,锂离子电池的放电平台趋于恶化.放电平台降低.所以相同电压所代表的容量也相应变化了. 4.不同厂家,不同容量的锂离子电池,其放电的平台略有差异. 5.不同类型的电极材料的锂离子电池,放电平台有较大差异.钴锂和锰锂的放电平台就完全不同. 以上这些都会造成电压的波动和电压的差异,使电池的容量显示变的不稳定 ★★一台手机上用电压计量电池容量时,因为手机不可能一直处于小电流的待机状态.暂时的大电流的损耗,比如开背光,放铃声,特别是通过,都会造成电池电压很快降低.此时手机显示的容量要降低得比实际容量降低更多.而当大电流撤掉以后,电池的电压会回升.这就会造成手机容量显示反而上升这种不合理的现象. 三.电池电压对电池容量的表格 说了这么多,下面给出一个标准的电压对电池剩余容量的表格(左侧) 以及大电流恒流放电是电池电压对容量的表格(右侧) 标准条件描述: 1.室温 2.新的电池 3.完全充饱以后进行GSM模拟放电 4.测量电池电压时,关断放电回路,测量电池开路电压.排除放电电流对电压的影响. 5.选用钴锂的电池,因为目前手机上大多选用的是钴锂.锰锂很少. 大电流恒流放电条件描述:

蓄电池容量计算方法之令狐文艳创作

蓄电池容量计算部分 令狐文艳 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中 Cc —事故放电容量; Kcc —蓄电池容量系数; Krel —可靠系数,一般取1.40 80.1108 220885.0=?=Ud cc s rel c K C K C =

I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者 mi i mi t I C =n

选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 ①事故放电初期,电压水平的校验 事故放电初期的冲击系数为 (4-8) 式中,Krel —可靠性系数,一般取1.1 I ch0—事故放电初期的放电电流,(A) 10 tC KrelCs K

UPS容量和蓄电池容量计算方法

UPS容量和蓄电池容量计算方法 UPS容量和蓄电池容量计算方法 蓄电池的放电时间定义为:当蓄电池以规定的放电电流进行恒流放电时,蓄电池的端电压下降到所允许的临界电压(终了电压)时所经过的时间。 UPS容量计算 P入=P出/(COSφ×ц) COSφ----功率因数(一般取0.8) P出-------额定输出功率(KVA) (注:计算时负载多为W) P入-------输入功率(KVA)(UPS容量) ц--------保险系数(一般取0.8) UPS蓄电池容量计算 电池放电电流计算: I=(S×COSφ)/(n×V×ц逆) S----------UPS额定输出容量(或实际或预期负载)(VA) ц逆-------逆变器效率(一般取0.8~0.85) n----------蓄电池只数 V---------蓄电池放电终止电压(2V电池对应1.8V;12V电池对应10.8V)COSφ---- UPS (或负载)功率因数(1~20 kVA为0.7,20~120 kVA为0.8) 艾默生UH31系列(10-20KVA)UPS电池电压240VDC(2组)20节(2组) 艾默生UL33系列(20-60KVA)UPS电池电压360VDC 12V电池30节 蓄电池容量计算 1、普通蓄电池计算(与华为计算方法相同) Q:蓄电池容量(Ah); K:安全系数; I:负荷电流(A); T:放电小时数(h); η:放电容量系数; t:实际电池所在地的最低环境温度数值,有采暖设备时,按15℃考虑;无采暖设备时,按5℃考虑; α:电池温度系数,电解液温度以25℃为标准时,放电小时率≥10时,取0.006;10>放电小时率≥1时,取0.008;<1时,取0.01 以上公式可以简化成:

UPS选择及蓄电池容量计算

计算机机房UPS不间断电源配备方案建议之容量计算方法及说明 A负载容量的确定 a)列出UPS电源所要保护的设备清单。 b)每一设备的铭牌或说明书上均标有额定功率或额定电压 电流。将其折算成视在功率S。 i. 标明额定功率的可以直接采用 ii.标明额定电压电流的,VA值=V值×A值,通常V值 取220 iii. K1为负载匹配系数,阻性负载的K1=0.7,感性负载 的K1=0.3,容性负载的K1=1。 c) 计算所有负载总和ΣS=S1+S2+……+Sn Sn即各设备 功率,单位VA B、确定UPS的功率容量PUPS PUPS= 其中,K2为容量使用率,取值0.6~0.8。 K3为环境系数,与温度、海拔有关,一般情况下取值1。 K4为UPS电源负载系数,工频机取1,高频机取0.9 K5为扩容系数,根据用户需要确定,一般可取值0.6~0.8,如不考虑扩容则取值1 功率与电池数之间的关系:

一般行业里的大体算法,都稍微在计算时得出的数值上加大一点.计算需要的是UPS的有效功率÷UPS的电池电压×1.2(表示1小时)得出1小时UPS要用的蓄电池容量称呼为AH,如延时时间是几小时在得出的数值上乘以相应时间.得出来的就是几小时的AH,大体就这样算的.算出来的AH接近市场上那款电池的AH就配相应的电池.电池的只数就是UPS的电池电压÷12就得出只数了.这个数值相对比较准确.总之公式为12(电池的电压数)*100(电池的安时数)*k(电池的块数)*0.7/负载总功率=总小时数,想要其他的数值就自己算吧。 蓄电池组的维护,通常,在学校广泛使用的是一种所谓无需维护的密封式铅酸蓄电池,它的 价格比较贵,一般大约占UPS电源总生产成本的1/3~1/2左右,因此正确对蓄电池组进行维护保养, 是延长UPS 使用寿命的关键。为此大家应努力做到: 1、严禁对ups电池过电流充电。因为过电流充电容易造成电池内部的正、负极板弯曲,板表面的活性 物质脱落,造成蓄电池可供使用容量下降,以致损坏蓄电池。 2、严禁对UPS电源的蓄电池组过电压充电。因为过电压充电会造成蓄电池中的电解液所含的水被电 解成氢和氧而逸出,从而缩短蓄电池的使用寿命。 3、严禁对ups电池组过度放电。因为过度放电容易使电池的内部极板表面的硫酸盐化,其结果是导致 蓄电池的内阻增大,甚至使个别电池产生“反极”现象,造成电池的永久性损坏。 4、对于长期闲置不用的UPS电源,为保证蓄电池具有良好的充放电特性,在重新开机使用之前,最 好先不要加负载,让UPS电源利用机内的充电回路对蓄电池浮充电10~15小时以后再用;对于长期工 作在后备工作状态的UPS电源,通常每隔一个月,让其处于逆变器状态工作至少2~5分钟,以便激化UPS 的蓄电池。希望通过上文的介绍,能够为学校的广大用户对UPS电源有更进一步的了解,并解 决一些在UPS电源使用中的实际问题 与机房专用精密空调比较,舒适性空调问题如下: 1、舒适性空调出风温度过低,会导致在出风口附近空气中的水蒸汽饱和凝结出水滴,对附近的用电设备造成很大危险。 2、舒适性空调风量过小,不适合计算机设备的高热密度的发热特点,无法驱除机房的“热岛效应”。 3、舒适性空调温度调节精度过低,温度调节精度为±3~5℃,温度的波动对设备稳定运行极其不利。 4、舒适性空调没有湿度控制功能。舒适性空调无法进行湿度控制。没有加湿功能,只能进行除湿,在冬季甚至过度除湿,湿度过低产生的静电极易产生设备故障。 6、舒适性空调过滤能力无法达到机房标准。舒适性空调只具备简单的过滤功能,其过滤器的过滤效果根本无法达到机房的要求。机房专用空调严格按照0.5 微米/升<18,000(B级)设计,配合以每小时30次的风量循环,保障机房洁净。 7、舒适性空调在北方地区无法实现低温(室外)运行。一般标称-5℃以下即无法制冷和加热,而机房是发热量很大的区域,即使在冬天也需要对设备进行降温。 8、舒适性空调维护量大,舒适性空调长期应用在非设计工况下,故障率高,能效比不断下降,越来越耗能。机房专用空调按照全年长期运行设计,维护量小。 9、舒适性空调在机房内应用,寿命短。在365天/24小时应用的情况下其寿命一般不超过3年(机房专

蓄电池容量的计算方法

蓄电池容量的计算方法 1.蓄电池容量的计算方法 蓄电池的容量必须是以所定的电压、所定的时间可向负载提供的容量。 以下就容量计算方法进行说明: 1、计算容量的必要条件 A、放电电流 有必要明确放电过程中负载电流的增减变化和其随时间变化情况。 B、放电时间 可预期的负载的最大时间。 C、最低蓄电池温度 预先推定蓄电池放置场所的温度条件,决定蓄电池温度最低值。一般设置在室内时为50C,设置在特别寒冷地区室内时为-50C。用空调保证室内温度时按实际温度作为最低温度。 D、允许的最低电压 单格允许的最低电压(V/单格)=(负载所允许的最低电压+导线的电压损失)/串联格数 2、容量的计算公式 C= 1*[K1I1+K2(I2-I1)、、、、、、、KN(IN-IN-1)]/L

C:250C的额定放电率换算容量(AH)、、、、、、UXL电池是10HR容量。 L:对因维护系数、使用年数、使用条件的变化而引起的容量变化而使用的修正值。一般L值采用0.8。 K:由放电时间T、电池的最低使用温度、允许的最低电压而决定的容量换算时间。 I:放电电流 下标1、2、、、、N:按放电电流变化顺序依次加给T、K、I 3、容量的计算举例 A、放电电流 140A(一定) B、放电时间 30分 C、最低蓄电池温度 -550C D、允许的最低电压 1.6V/单格 按上述条件,得出K=1.1 C= 1 X1.1X140=192(AH/10HR)/0.8 所以,可使用UXL220-2。 注:上述例子是针对放电电流一定的简单的负载类型电池容量的计算。其他负载类型的计算请参考日本蓄电池工业标准[SBA6001]。 2.关于UPS容量的计算举例 计算机设备应该加装不间断电源保护,其有两个主要作用: 一是在市电中断时重要用电设备有干净纯洁的电源使用;

电池理论电容量的计算

文献上说该材料的理论电容量是多少mA h/g 下面给出理论计算方法: 1mol正极材料Li离子完全脱嵌时转移的电量为96500C(96500C/mol是法拉第常数) 由单位知mAh/g指每克电极材料理论上放出的电量:1mA?h=1×(10**-3)安培×3600秒=3.6C 以磷酸锂铁电池LiFePO4为例: LiFePO4的分子量是157.756g/mol, 所以他的理论电容量是 96500/157.756/3.6=170 mA h/g 关于法拉第常数 法拉第常数(F)是近代科学研究中重要的物理常数,代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数 NA=6.02214?1023mol‐1与元电荷e=1.602176?10‐19 C的积。尤其在确定一个物质带有多少离子或者电子时这个常数非常重要。法拉第常数以麦可?法拉第命名,法拉第的研究工作对这个常数的确定有决定性的意义。 一般认为此值是96485.3383±0.0083C/mol,此值是由美国国家标准局所依据的电解实验得到的,也被认为最具有权威性。 最早法拉第常数是在推导阿伏伽德罗数时通过测量电镀时的电流强度和电镀沉积下来的银的量计算出来的。 在物理学和化学,尤其在电化学中法拉第常数是一个重要的常数。它是一个基本常数,其值只随其单位变化。在电解、电镀、燃料电池和电池等涉及到物质与它们的电荷的工艺中法拉第常数都是一个非常重要的常数。因此它也是一个非常重要的技术常数。 在计算每摩尔物质的能量变化时也需要法拉第常数,一个例子是计算一摩尔电子在电压变化时获得或者释放出的能量。在实际应用中法拉第常数用来计算一般的反应系数,比如将电压演算为自由能。

UPS电池容量计算

在用户和厂商的交流中,常常提到这样的情况:根据UPS的输出容量和所要求的后备时间,需快速、粗略地给出相关电池的配置。此时可用UPS电池容量的简便计算方法迅速做出。 1、对于109Ah?块/kVA设计寿命10年的UPS电池容量的算法 使用时按下列公式计算: 所需电池容量(Ah)= UPS容量(KVA)×109(Ah.块)/KVA/每组电池块数 例如:一台120kVA的UPS,每组电池32块,要求后备时间60min(即1h)。则所需电池容量为 120kVA×109Ah?块/kVA=13080Ah?块,13080Ah?块/32块=409(Ah),即可选12V,100Ah电池4组(32块/组)。注意:实际后备时间不足60min(欠缺一点)。 如果每组33块,则13080/33=396Ah,同样可选12V、100Ah电池4组(33块/组)。注意:实际后备时间超过60min(超出一点)。 如果要求后备时间为30min,则109×120=13080Ah?块,13080/32=409Ah,409/2=205Ah。由于电池的放电功率与放电时间不是线性的,即不能只简单除以2,还需乘以修正系数,见表1,因此205×1.23=252Ah。即可选12V、65Ah电池4组(32块/组)。注意:实际后备时间超过30min(超出一点)。 如果要求后备时间20min,则409/3=136Ah,还需乘以修正系数,见表1,136×1.41=192Ah,即可选12V、65Ah电池3组(32块/组)。注意:实际后备时间超过20min(超出一点)。 其它情况,以此类推。 2、对于126Ah?块/kVA设计寿命五年的UPS电池容量的算法 计算方法和需乘以修正系数与前述完全一样,只是要把上式中的109换成126。 如果计算时间是一小时以上,要在按上述计算后再除以一个修正系数,见表2。

太阳能路灯蓄电池容量计算方法

太阳能路灯蓄电池容量计算方法.

太阳能路灯蓄电池容量计算方法 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能照明在短短的数年时间内已发展成为成熟的朝阳产业。 1:目前制约太阳能发电应用的最重要环节之一是价格,以一盏双火的太阳能路灯为例,两路负载共为60瓦,(北京地区有效光照3.5-4.5h/天、每夜放电8小时、增加电池板20%预留额计算)其电池板就需要200W左右,按每瓦10元计算,电池板的费用就要2000元,再加上200AH左右的蓄电池组费用也接近1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。

2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到40%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:因为LED灯的寿命较长、且可以通过夜间分时段调低功率工作,一般工程商都会选用LED路灯做为太阳能光照度。所以一定要选择光衰50%半年就有可能衰减LED路灯的质量层差不齐,光衰严重的LED 路灯的照明,但是 较慢的LED路灯,LED路灯最主要的要做好散热与恒流问题,恒流可以通过另加恒流驱动或者使用控制器恒流,散热就必需依靠铝板来散热,最好是在铝板下面增加铜片或铜管来更有效的散热,控制好温度,

LED的寿命才会更长。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在80-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本。 一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在5毫安以下的控制器。 二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。 三:应选择具有调节功率的控制器,具有功率调节的控制器已被广泛推广,可以在夜间行人稀少时段自动调低LED灯的工作电流,节约用电,同时也节省了电池板的配置比例。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控,防止蓄电池过放,蓄电池的过充、过放都会降低使用寿命。11.1V制器欠压保护值时,尽量把欠压保护值调在 ≥.

电池电量计的原理与计算

[推荐]电池电量计的原理与计算 充电电池容量估算方法 在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。 图1 简化的电池电量计框图 最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。 另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法对流入/流出电池的总电流进行积分,得到的净电荷数即为剩余容量。电池容量可以预置,也可在后续的完整充电周期中进行学习。在补偿电池自放电、不同温度下的容量变化等因素后,这种方法可以获得令人满意的精度,因此广泛运用于笔记本电脑等高端应用中。 电池电量计工作原理 电池电量计对流入/流出电池的总电流持续进行积分,并将积分得到的净电荷数作为剩余容量。 简化的电池电量计如图1所示。其中,R SNS为mΩ级检流电阻,R L为负载电阻。电池通过开关、R SNS对R L放电时的电流I O在R SNS两端产生的压降为V S(t)=I O(t)×R SNS。电量计持续检测R SNS两端的压差V S,并

太阳能板蓄电池容量的计算

太阳能电板、蓄电池的容量计算方法 ●蓄电池组 采用上述电池浮充供电方式时,蓄电池的性能是关键。在各种蓄电池中,性能最优者属碱性蓄电池,它的低温特性和过量充电性能较好,自动放电小,但价格较高,容量不大,一般的非密封酸性蓄电池电解液容易挥发,不宜在水情自动测报系统中使用。免维护密封酸性蓄电池具有良好的性能价格比,故目前使用较多。 根据我们长期从事水情遥测系统设计的经验,通过经费核算及考虑防雷要求,遥测站使用太阳能电池和蓄电池组合的浮充供电系统。铅酸全密封酸性蓄电池具有良好的低温特性和充电特性,而且免维护,因而遥测设备用它供电是理想的,为保证最长连续无日照期间也能供电,必须选择蓄电池的容量。在广东地区一般定为满足30天的需要。 在本系统中采用胶状电解质全密封免维护铅酸蓄电池作为系统的直流电源。可选的品牌很多,如进口产品汤浅、大力神等。 ●超短波测站太阳能浮充供电的蓄电池容量的计算 工作电压:12.5V 静态电流:2mA 发射电流:6A(25W电台),发射时间t=1秒 月发送时间:以月发送1200次计算,合计发送20分,则可计算出日耗电量

Q L≈日发送时间?耗电量+静态电流?24小时=0.1Ah 最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。 容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。 因此蓄电池容量 C =日耗电量?最大的连续无日照时间/容量修正系数 =0.1Ah?30÷0.8 =3.75Ah 考虑到蓄电池要能提供6A的电流,应采用容量大于10Ah的蓄电池。 因此,本系统雨量遥测站(25W电台)需采用12Ah的蓄电池。

锂离子电池容量计算之电压法

锂离子电池容量计算之 电压法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

锂离子电池容量计算之电压法 锂离子电池开路电压与电池容量的对应关系分析 先给出一个表格:如下,百分比是电池的剩余容量,右侧是对应的电池的开路电压(OCV). 100%----4.20V 90%-----4.06V 80%-----3.98V 70%-----3.92V 60%-----3.87V 50%-----3.82V 40%-----3.79V 30%-----3.77V 20%-----3.74V 10%-----3.68V 5%------3.45V 0%------3.00V 以前发过一个"如何判断电池的剩余容量",写得不够详细,且数据不够精确. 此次整理了一下试验数据,作为上篇文章的更新. 以下是这个表格的来龙去脉. 〓〓〓〓〓〓〓〓 一.首先几个概念解释: 1.OCV:open circuit voltage的缩写,开路电压. 2.锂离子电池:本篇讨论的是目前手机上普遍采用的以4.2V恒压限制充电的单节锂离子电池. 3.mAh:电池容量的计量单位,实际就是电池中可以释放为外部使用的电子的总数. 折合物理上的标准的单位就是大家熟悉的库仑. 库仑的国际标准单位为电流乘于时间的安培秒. 1mAh=0.001安培*3600秒=3.6安培秒=3.6库仑 mAh不是标准单位,但是这个单位可以很方便的用于计量和计算. 比如一颗900mAh的电池可以提供300mA恒流的持续3小时的供电能力. 4.fuel gauging:电量计量,原意是油量计量,后在电化学上被引用为电量计量的意思. 最科学的并且是最原始的电池的电量计量方法是对流经的电子流

太阳能路灯蓄电池容量计算方法

太阳能路灯蓄电池容量计算方法 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能照明在短短的数年时间已发展成为成熟的产业。 1:目前制约太阳能发电应用的最重要环节之一是价格,以一盏双火的太阳能路灯为例,两路负载共为60瓦,(地区有效光照3.5-4.5h/天、每夜放电8小时、增加电池板20%预留额计算)其电池板就需要200W左右,按每瓦10元计算,电池板的费用就要2000元,再加上200AH左右的蓄电池组费用也接近1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到40%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:因为LED灯的寿命较长、且可以通过夜间分时段调低功率工作,一般工程商都会选用LED路灯做为太阳能路灯的照明,但是LED路灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰 .... .

较慢的LED路灯,LED路灯最主要的要做好散热与恒流问题,恒流可以通过另加恒流驱动或者使用控制器恒流,散热就必需依靠铝板来散热,最好是在铝板下面增加铜片或铜管来更有效的散热,控制好温度,LED的寿命才会更长。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在80-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本。 一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在5毫安以下的控制器。 二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。 三:应选择具有调节功率的控制器,具有功率调节的控制器已被广泛推广,可以在夜间行人稀少时段自动调低LED灯的工作电流,节约用电,同时也节省了电池板的配置比例。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在≥11.1V,防止蓄电池过放,蓄电池的过充、过放都会降低使用寿命。.... .

相关文档
相关文档 最新文档