文档库 最新最全的文档下载
当前位置:文档库 › 第一课时 排列组合问题的解题方法(一)

第一课时 排列组合问题的解题方法(一)

第一课时 排列组合问题的解题方法(一)
第一课时 排列组合问题的解题方法(一)

第一课时 排列组合问题的解题方法(一)

教学目标:

掌握几类特殊的排列问题的解决技巧.

教学重点:掌握“条件排列”、“集团排列”、“间隔排列”、“部分顺序排列”问题的解题技巧.

教学难点:如何应用“技巧”解题.

教学过程:

【例析技巧】

一.集团排列问题:部分元素必须安排在一起(相邻)的排列问题,称之为“集团排列”问题.解决这类问题,常用“捆绑法”,其方法是先排“集团”内部的元素,再把这个大“元素”与其它元素一起排列即可.

例1 若7位同学站成一排

(1)甲、乙两同学必须相邻的排法共有多少种?

(2)甲、乙和丙三个同学都相邻的排法共有多少种?

(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?

(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种? 解:(1)先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)

一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有2

2A 种方法.所以这

样的排法一共有62621440A A ?=种. (2)方法同上,一共有55A 33

A =720种. (3)解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有4

4A 种方法;最后将甲、乙两个同学“松绑”

进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法. 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站

在排头或排尾有255A 种方法,所以,丙不能站在排头和排尾的排法有960)2(2

25566=?-A A A 种方法.

解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙

不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元

素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有

14A 55

A 22A =960种方法. (4)将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一

起看成一个元素,时一共有2个元素,∴一共有排法种数:342342288A A A =(种)

说明:对于相邻问题,常用“捆绑法”(先捆后松).

二. 间隔排列问题:部分元素不能安排在一起(间隔)的排列问题,称之为“间隔排列”

问题.解决这类问题,常用“插空法”,其方法是先排不需要间隔的元素,再将需要间隔的元

素通过插空的方式插进来即可.

例2 在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色.

若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有( )

A .55. B.56. C.46. D.45.

解:没有红牌,一种方法;有一块红牌,让其插空,有18C 种方法;有二块红牌,让其

插空,有27C 种方法;有三块红牌,让其插空,有36C 种方法;有四块红牌,让其插空,有45

C 种方法;共有方法12348765155C C C C ++++=种.

说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).

例3 某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三

个孔,但相邻的两孔不能同时显示,则这显示屏可以显示的不同信号的种数有 种.

解:四个孔不亮,三个孔亮,相当于三个亮着的孔在四个不亮的孔之间插空,故有

35222C ???=80种方法.

三. 部分不同元素定序与部分相同元素排列问题:

部分不同元素在排列前后的顺序固定不变(不一定相邻)的排列问题,称之为“定序排

列”问题.解决这类问题的基本方法有三种.

(1)“消序法”(有些地方叫“整体法”),即若有m n +个元素排成一列,其中有m 个

元素之间的排列顺序不变,将这m n +个元素任意排成一列,共有m n m n A ++种不同的排法,其

中未定序的n 个元素排在某一特定位置的排列的个数有m m A 种排法,但只有一个排列是我们所需要的排列,因而共有m n m n m m

A A ++种不同的排法.类似地还可推广到一般情形,如有有m n k ++个元素排成一列,其中有m 个元素之间的排列顺序不变,且另外k 个元素之间的排列顺序也不变,则共有m n k m n k m k m k

A A A ++++中不同的算法. (2)逐一插空法:先将定序的元素进行排列,再将其它元素逐一插入这组元素两端及中间.

(3)优序法:先将所有位置中按“特殊元素”个数选出若干位置,并把这些特殊元素按规定顺序排上去,再将普通元素在其余位置上全排列.

例4 若5男5女排成一排,按下列要求各有多少种排法

(1)男女相间;(2)女生按指定顺序排列.

解:(1)先将男生排好,有55A 种排法;再将5名女生插在男生之间的6个“空挡”(包

括两端)中,有552A 种排法.故本题的排法有5555228800N A A =?=(种)

; (2)方法1(消序法):105101055

30240A N A A ===; 方法2(逐一插空法):5个女生按序排列,有1中方法,5个男生逐个插空,有6,7,8,9,10种方法,共有67891030240????=种方法.

方法3(优序法):设想有10个位置,先将男生排在其中的任意5个位置上,有510A 种

排法;余下的5个位置排女生,因为女生的顺序已经指定,所以她们只有一种排法.

故本题的结论为510130240N A =?=(种).

例5 今有2本相同的语文书,3本相同的数学书,4本相同的英语书排成一排,有多少种不同的排法?

解:(消序法)有99234234

1260A A A A =种. 例6 一个楼梯共18个台阶,12步登完,可一步登一个台阶,也可一步登两个台阶,一共有多少种不同的走法?

解:根据题意,要想12步登完,只能6个一步登一个台阶,6个一步登二个台阶.因此,

把问题转化为“相同元素”的排列问题.因此有12126666

924A A A =(种). 点评:对于部分不同元素定序排列以及相同元素的排列问题,可用优序法.

【随堂练习】

1.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B )

A .40种

B .60种

C .100种

D .120种

2.安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有210种.(用数字作答)

3.用数字0,1,2,3,4,5组成没有重复数字,且比20000大的五位偶数有( )

A.288个

B.240个

C.144个

D.126个

4.如图,用6种不同的颜色给图中的4个格子涂色,每个格

子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,

则不同的涂色方法共有 390 种(用数字作答).

5.某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案.(用数值作答)

6.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答)

【课后作业】

1.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有240种.(用数字作答)

2.将数字1,2,3,4,5,6拼成一列,记第i 个数为i a (i =1,2,…,6),若11a ≠,

33a ≠,55a ≠,135a a a <<,则不同的排列方法有 30 种(用数字作答)

. 解:分两步:(1)先排1a ,3a ,5a ,当1a =2时,有2种;当1a =3时,有2种;当1a =4时,有1种,共有5种;(2)再排2a ,4a ,6a ,共有63

3=A 种,故不同的排列方法种数为5×6=30,填30.

3.中韩两支围棋队各由8人组成,按事先排好的次序出场进行围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……,直到有一方全部被淘汰为

止,另一方获胜,形成一个比赛过程.

(1)已知中方动用了5名队员,取得了胜利,问这样的比赛过程有多少种?

(2)求由中方第8位选手获得最后胜利的概率.

解:(1)中方胜利时,双方共有8+5=13名队员参加了比赛,将他们按淘汰的顺序从左向右排列,则最右为中方5号,右第二个为韩方8号,从右第三个至最左,共11个位置上,有4个位置排中方队员,其余排韩方队员,每一种排法,对应一种比赛结果,故共有411330C =种.

(2)714816415

C p C ==. 4. 若7位同学站成一排

(1)甲、乙两同学不能相邻的排法共有多少种?

(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?

解:(1)解法一:(排除法)3600226677=?-A A A ;

解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称

为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有

36002655=A A 种方法.

(2)先将其余四个同学排好有4

4A 种方法,此时他们留下五个“空”,再将甲、乙和丙

三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种. 【课后记】

第二课时排列组合问题的解题方法(二)

教学目标:

掌握几类特殊的排列问题的解决技巧.

教学重点:掌握“错位排列”、“圆桌排列”、“转化命题”等问题的解题技巧.

教学难点:如何应用“技巧”解题.

教学过程:

【例析技巧】

四.错位排列问题

n 个不同元素排成一排,有m 个元素(m n ≤)不排在相应位置的排列种数共有: 112233123(1)n n n n m m n m n m n m n m n m n m A C A C A C A C A ---------+-+???+-.

当n m =时,规定000!1A ==,这个公式亦成立.

例7 五封标号为1~5的信放进5个编号为1~5的信笺里面,若信的编号与信笺的编号都不相同,一共有多少种不同放法.

解:这是著名的信封问题,很多著名数学家都研究过.瑞士数学家欧拉按一般情况给出了一个递推公式:

用A 、B 、C ……表示写着n 位友人名字的信封,a 、b 、c ……表示n 份相应的写好的信.把错装的总数记为()f n .假设把a 错装进B 里了,包含着这个错误的一切错装法分两类:

(1)b 错装进A 里,这时每种错装的其余部分都与a 、b 、A 、B 无关,应有(2)f n -种错装法.

(2)b 错装进A 、B 之外的信封,这时的装信工作实际是把(除a 之外的)信纸b 、c ……装入(除B 之外的)1n -个信封A 、C ……,显然这种错装方法有(1)f n -种.

错装的其余部分都与a 、b 、A 、B 无关,应有(2)f n -种错装法.

总之在a 错装入B 的错误之下,共有错装法(1)(2)f n f n -+-种.

装入D ……的2n -种错误之下,同样都有(1)(2)f n f n -+-种错装法.

因此()(1)[(1)(2)]f n n f n f n =--+-,显然(1)0f =,(2)1f =.

由此可得(5)44f =.

注意:用容斥原理亦可解决此题.

普遍结论为错排公式1:1111()![1(1)]1!2!3!!

n f n n n =-+-+???+-. 错排递推公式2: ()(1)[(1)(2)]f n n f n f n =--+-

错排公式3:112233123(1)n n n n m m n m

n m n m n m n m n m A C A C A C A C A ---------+-+???+-

例8 有5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站

第四位,E 不站第五位,共有多少种不同的站法.

解析:上面两例实际上可以看成n 个不同元素中有m (m ≤n )错位排列的问题. 而这个问题是其特殊情况,即全错位排列问题.

共有514233241505545352515044A C A C A C A C A C A -+-+-=种(注意000!1A ==)

例9 同室四人各写一张贺年卡,先集中起来.然后每人从中拿一张别人送出的贺年卡.则四张贺年卡不同的分配方式有

A.6种

B.9种

C.11种

D.23种

解析:由上面公式得:

4132231404434241409A C A C A C A C A -+-+=种,∴选择B 答案.

因此可得到全错位排列的公式:

n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为:

11223301230(1)n n n n n n n n n n n n n n A C A C A C A C A -------+-+???+-

这实际上是公式112233123(1)n n n n m m n m n m n m n m n m n m A C A C A C A C A ---------+-+???+

-的特殊情况.这个公式很有用,只要有特殊元素不站特殊位置的问题,都可以用这个公式很快得到解决,希望这个公式对大家有所帮助.

五. 圆桌排列

从n 个不同元素中不重复的取出m (1m n ≤≤)个元素排在一个圆周上,叫做这n 个不同元素的圆排列.如果一个m -圆排列旋转可以得到另一个m -圆排列,则认为这两个圆排列是相同的.

特别的,当m n =时,n 个不同元素作成的圆排列总数为(1)!n -.

证明:在圆周上任选一个位置排1a 有n 种排法,再选一个位置排2a 有1n -种排法,…,最后一个位置排n a 有1种排法.而这n 个人顺时针(或逆时针)挪动n 次位置都是同一种排列.所以共有!(1)!n n n

=-种排法. 例10 有5对夫妇参加一场婚宴,他们被安排在一张10个座位的圆桌就餐,但是婚礼操办者并不知道他们彼此之间的关系,只是随机安排座位。问5对夫妇恰好都被安排在一起相邻而坐的概率是多少?( )

A. 在1‰到5‰之间

B. 在5‰到1%之间

C. 超过1%

D. 不超过1‰

解:5对夫妇相邻而座,可以看做是五个大元素为桌而坐,所以有4!种坐法,而夫妇间又可以换位置,所以共有4!2222220.0029!945

?????=≈. 故选:A . 例11 博杰学习网竞赛小组“先进人物评比”最终圈定了n 个人,需要确定最终的三个“先进人物”人选.方法是:这n 个人排成一行,从第一名开始,1至3循环报数,凡报出3的就退出,余下的向前靠拢,按此规律重复进行.直到第p 次报数后,只剩下3个人为止.试问:这剩下的三个人,分别在队伍最初的什么位置?

解:设n 个人的编号依次为1,2,…,n .最后剩下的三个人中,第三人的编号为n b .

因n b 未被淘汰,故不是3的倍数.第一次报数后淘汰了

3n 个人,还剩3

n n -个人.n b 向前移动了n k b b -(3n k n =-)个人,前面淘汰了3n n n b b r =-(n r =1,2)个人.故32

k n n b r b -=.其中当k b 为奇数时,1n r =;否则,2n r =,每报一次号,人数减少13(除不尽时取整).计算n b 逐步归纳为减小的数列,最终划归到小情况.例如1000n =时,第三个人的初始位置是712.

例12 将圆分成n (2n ≥)个扇形,现用m (2m ≥)种颜色给这些扇形染色,每个扇形恰染一种颜色且要求相邻的扇形不同色.问有多少种不同的染色方法?

解:设染色方法数为n a .

(1)求初始值.当2n =时,给1S 染色有m 种方法,给2S 染色有1m -种方法. 所以2(1)a m m =-;

(2)求递推关系. 给1S 染色有m 种方法,给2S 染色有1m -种方法,给3S 染色有1m -种方法,……,给n S 染色有1m -种方法.共有1(1)

n m m --种方法.

这种情况可以分为两类

一类是n S 与1S 不同色,此时的染色方法种数是n a ;另一类是n S 与1S 同色,n S 与1S 可以合并为一个扇形,1n S -与1S 不同色,染色方法种数为1n a -.由加法原理,得到 11(1)n n n a a m m --+=-(2n ≥).

(3)求n a .构造等比数列.结论:共有(1)(1)(1)n n

n a m m =-+--种染色方法.

六.转化命题

对于一些较难的排列组合问题,通常采用转化命题的方法来解决.比如圆内弦的交点个数可转化为圆内接四边形的个数;异面直线的对数可转化为3倍的四面体的个数等.

例13圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少个?

分析:若两弦有交点,则两弦应是圆内接四边形的对角线,即一个四边形对应一个交点.

所以共有4

151365

C=个交点.

小结:

1.“在”与“不在”可以相互转化.解决某些元素在某些位置上用“定位法”,解决某些元素不在某些位置上一般用“间接法”或转化为“在”的问题求解.

2.排列组合应用题极易出现“重”、“漏”现象,而“重”、“漏”错误常发生在该不该分类、有无顺序的问题上.为了更好地防“重”堵“漏”,在做题时需认真分析自己做题思路,也可改变解题角度,利用一题多解核对答案.

【作业】

1.今有8个人坐圆桌,有多少种坐法?

2.有5个男孩,3个女孩围成一圆,其中3个女孩不相邻,有多少种站法?

3.一圆型餐桌依次有A、B、C、D、E、F六个座位,现让3个大人和3个孩子入座进餐,要求任何两个小孩都不能坐在一起,则不同的作法总数为 72 .

第三课时排列组合问题的解题方法(三)教学目标:

掌握几类特殊的排列问题的解决技巧.

教学重点:掌握“容斥原理”、“错位排列”、“圆桌排列”等问题的解题技巧.

教学难点:如何应用“技巧”解题.

教学过程:

【例析技巧】

七. 用容斥原理解排列问题

有些排列组合问题可转化为求集合的元素的个数来求.充分应用容斥原理:

()()()()

n A B n A n B n A B

=+-

()()()()()()()()n A B C n A n B n C n A B n B C n A B n A B C =++---+ . 例14 五人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法. 解:这个问题在高中很多参考书上都有,有几种解法,其中一解法是用排除法:先考虑

5个有的全排列,有55A 种不同的排法,然后除去甲排第一(有44A 种)与乙排第二(也有44

A 种),但两种又有重复部分,因此多减,必须加上多减部分,这样得到共有:

543543278A A A -+=种.

例15 有5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法.

仿上分析可得:543254323364A A A A -+-=种.

八.均匀分组问题.

一般地:将mn 个不同元素均匀分成n 组(每组m 个元素),共有m m m mn mn m m n n

C C C A -??? 种方法.

例16 有6本不同的书,按下列要求各有多少种不同的选法:

(1)分给甲、乙、丙三人,每人2本;

(2)分为三份,每份2本;

(3)分为三份,一份1本,一份2本,一份3本;

(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;

(5)分给甲、乙、丙三人,每人至少1本.

解:(1)根据分步计数原理得到:90222426=C C C 种;

(2)分给甲、乙、丙三人,每人两本有222426C C C 种方法,这个过程可以分两步完成:

第一步分为三份,每份两本,设有x 种方法;第二步再将这三份分给甲、乙、丙三名同学有3

3A 种方法.根据分步计数原理可得:3322242

6xC C C C =,所以1533

222426==A C C C x .因此,分为三份,每份两本一共有15种方法.

(3)这是“不均匀分组”问题,一共有603

32516=C C C 种方法.

(4)在(3)的基础上再进行全排列,所以一共有36033332516=A C C C 种方法.

(5)可以分为三类情况:

①“2、2、2型”即(1)中的分配情况,有90222426=C C C 种方法;

②“1、2、3型”即(4)中的分配情况,有36033332516=A C C C 种方法;

③“1、1、4型”,有903346=A C 种方法;

所以,一共有90+360+90=540种方法.

点评:本题第(3)种类型为部分均匀分组再分配,其分组总数为41162122

C C C A . 题型变换:8名球员住A 、B 、C 三个房间,每个房间最多住3人,有多少种住宿方法?

解:3323852322

C C C A A ?. 例17 若3名飞行员和6名特勤人员分别上3架不同型号的直升飞机执行任务,每机一名飞行员和两名特勤人员,有多少种分配方法?

解:先分组,再分配,22211133642321333333

C C C C C C A A A A ???,或者222111642321C C C C C C ?. 类题:20名同学分两组,每组10人去某地社会实践,其中6名干部,每组3人,不同分法总数是多少?答案:37261422222

C C A A A ??. 九. 隔板法:将n 个相同元素,分成k (n k ≥,n ,*

k ∈N )组,可以看成是在n 个

元素之间的1n -个空隙间插入1k -块隔板.共有11k n C --种方法. 例18 将六本相同的书全部发给甲、乙、丙三人.

(1)每人至少分到一本书,问有多少种不同的分法?

(2)每人不一定都分到一本书,问有多少种不同的分法?

解:(1)用“隔板法”处理,六本书之间有五个空,插入两块隔板,有25C 种分法;

用“隔板站位法”处理,六本书之间有五个空,需插入两块隔板,但由于有人可能没有书,所以两块隔板站着两个位置,加上六本书,可以看着是628+=本书,分成3分,所

以有2262828C C +==种分法.

点评:〖类题〗求不定方程1236x x x ++=的非负整数解的个数?

题型变换一:四本不同的书,分给三个人,每人至少一本,全部分完,有几种分法?

解:先分组,再分配有2343C A 种.

题型变换二:n 本不同的书,分给1n -个人,每人至少1本,全部分完,有几种分法?

解:先分组,再分配有211n n n C A --种.

题型变换三:n 本相同的书,全部分给m (m n <)个人.

(1)每人至少分到一本书,问有多少种不同的分法?

(2)每人不一定都分到一本书,问有多少种不同的分法?

解:(1)解法一(隔板站位法):每人先分一本书,还剩下n m -本书,加上1m -块隔

板,可视为()(1)1n m m n -+-=-本书,分给m 个人,所以有11m n C --种方法.

解法二(隔板法):n 本书之间有1n -个空,需插入1m -块隔板,所以有11m n C --种方法.

(2)(隔板站位法):n 本书之间,需插入1m -块隔板,但是,由于有人分不到书,所以1m -块隔板站着1m -个位置,加上n 本书,可视为1n m +-本书,用1m -块隔板分成

m 分,所以有11m n m C -+-种方法(这也是一个公式).

【随堂练习】

1.(1) 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?

(2) 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?

解:(1)根据分步计数原理:一共有25644

=种方法;

(2)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有24C 种方法;第二步:从四个不同的盒中任取三个将球放入有34A 种方法,所以,一共有24C 34A =144种方法.

说明:先组合,再排列是解决问题的关键.本题亦可先将4个小球分成三组,每组分别

有1/1/2个,共再放入四个盒子中的三个,共有2113421422

144C C C A A ?=种. 思考:(1)四个相同的小球放入四个不同的盒子中,一共有多少种不同的放法? 解:(隔板站位法)共33

43735C C +==.

(2)10个相同的小球放入编号为1、2、3的盒子中,球数不少于编号数的放法有多少

种?

解:按要求放6个,其余4个按隔板站位法有2242615C C +==种方法.

另解:(隔板法)设1,2,3号盒子所放的球数分别为a ,b ,c .则有10a b c ++=. 设x a =,1y b =-,2z c =-,则方程7x y z ++=的正整数解的组数,就是放球的

方法数.所以共有2242615C C +==种方法.

注意:这种利用“先换元,再用隔板技巧”的方法对于求有限制条件的不定方程的非负整数解的问题很有效!

【总结提炼】

均匀分组(不计组的顺序)问题不是简单的组合问题,如:将3个人分成3 组,每组

一个人,显然只有1种分法,而不是1113216C C C ??=种

一般地,将m n ?个不同元素均匀分成n 组,有

(1)m m m mn n m m m m C C C A - 种分法;

【课后作业】

【板书设计】(略)

【教学后记】

第四课时排列组合问题的解题方法(四)

教学目标:

掌握几类特殊的排列问题的解决技巧.

教学重点:掌握“递推法”等问题的解题技巧.

教学难点:如何应用“技巧”解题.

教学过程:

十.穷举法:

对于一些不能直接用两个原理,且类别不多的问题,通常采用穷举法.即列举所有情况. 例19 将五个市级三好学生名额和八个区级优秀学生干部名额全部分配到辖区的两所中学,每所学校至少有一个名额,有多少种不同的分配方案?

解:分配情况用有序数组(,)x y 表示:(1,12),(2,11),(3,10),(4,9),(5,8),(6,7).

然后两校交换.所以共有分配方案数为2(?2+3+4+5+6+6)=52种.

例20 .

十一.递推法:

对于一些较复杂的排列问题,可以建立排法之间的一个递推关系,通过递推关系求出排法种数.

例19 一个楼梯共10个台阶,如果规定一步登一个台阶或登两个台阶,一共有多少种不同的走法?

解:设上n 级台阶的走法为n a 种,易知11a =,22a =,当2n ≥时,上n 级台阶的走法可分两类:第一类是最后一步跨一级,有1n a -种走法,第二类是最后一步跨二级,有2n a -种走法.由加法原理可知12n n n a a a --=+,据此可得1089a =种不同的走法.

例20 有五个人排成一列,现在要重新排列,要求都不能站在原来的位置,有几种不同排法?

解:我们考虑人数为n 的情况,即n 个人排成一列,重新站队时,各人都不站在原来的位置上.设满足这样的站队方式有n a 种,现在我们来通过合理分步,恰当分类找出递推关系:

第一步:第一个人不站在原来的第一个位置,有1n -种站法.

第二步:假设第一个人站在第2个位置,则第二个人的站法又可以分为两类:

第一类,第二个人恰好站在第一个位置,则余下的2n -个人有2n a -种站队方式; 第二类,第二个人不站在第一个位置,则就是第二个人不站在第一个位置,第三个人不站在第三个位置,第四个人不站在第四个位置,……,第n 个人不站在第n 个位置,所以有1n a -种站队方式.

由分步计数原理和分类计数原理,我们便得到了数列n a 的递推关系式:

12(1)()n n n a n a a --=-+,显然,10a =,21a =,…,544a =.故有44种不同排法. 注意:n 个人排成一排后,解散后重新排队,自己不站原来的位置的排法种数可由以下公式推导得到:

(1)10a =,21a =,12(1)()n n n a n a a --=-+(3n ≥);

(2)1111![1(1)]1!2!3!!

n n a n n =-+-+???+-.

(3)11223301230(1)n n n n n n n n n n n n n n n a A C A C A C A C A ------=-+-+???+-.

例21 在n m ?的网格中,从(0,0)点到(,)n m 点,只能沿网格的边向x 轴正方向或y 轴正方向前进,问共有多少种不同的前进路线?

解:对任意一个非x 轴、y 轴上的点(,)x y ,可以从点(,1)x y -走来,也可以从点(1,)x y -走来.因此,设(,)x y 处的路线条数为(,)f x y ,则有递推公式:

(,)(,1)(1,)f x y f x y f x y =-+-.

下面的推理很重要:根据上述递推公式,可得(,)x x y f x y C +=,即从x y +件物品中选

出无顺序的x 件(或y 件)的总方案数.即()!(,)!!

x y f x y x y +=. 小结:上述问题中把每个(,)f x y 指标在对应的坐标点处,再将坐标系顺时针旋转135 ,

你发现了什么?这是杨辉三角,(,)x x y f x y C +=.而我们知道,11y y y x x x C C C --=+.这就是通项公式的来源.

另解:记网格横向的x 条线段从左至右依次为1a 、2a 、…、x a ,网格纵向的y 条线段从下至上依次为1b 、2b 、…、y b .从(0,0)到(,)x y 的走法种数,就是1a 、2a 、…、x a 及1b 、2b 、…、y b 这x y +个元素的一个定序排列.于是有x y x y

x y x y A A A ++(或()!!!

x y x y +)种不同走法. 例22 某地决定在一个大型广场建一个同心圆形花坛,花坛分为两部分,中间小圆部分种植草坪,周围的圆环分为n (3,n n ≥∈N )等份种植红、黄、蓝三色不同的花. 要求相邻两部分种植不同颜色的花. 如图①,圆环分成的3等份分别为1a ,2a ,3a ,有6种不同的种植方法.如图②,圆环分成的4等份分别为 1a ,2a ,3a ,4a ,有18种不同的种植方法;则在图③中,圆环分成的n (3n ≥,n ∈N )等份分别为1a ,2a ,3a ,,n a , 有 种不同的种植方法.

第18题图

解:对于n 的情形,总的涂法数为132n -?,但是最后一块与第一块有两种情况:不同色(满足题意)与同色,同色时就是1n -的情形,于是得出递推公式:11

32n n n a a --=?-(4n ≥),变形得

11132222n n n n a a --=-?+,即1111(1)222n n n

n a a ---=-- 因为336111842a -=-=-,所以3()111()422n n F n --=-?-,即1()22(1)n n F n -=-?-. 例23 有甲乙两队,各有7名队员,分别编号1~7,首先两队编号为1的队员对抗比赛,负者淘汰,胜者与负方的2号队员比赛,…,依次类推.直到某队全部淘汰为止.问最后有多少种不同比赛方式?

解:设(,)f x y 表示甲乙两队分别由x ,y 名队员组成时的方式数.由于上次可能是甲、乙两队中某个被淘汰,故递推公式为:(,)(,1)(1,)f x y f x y f x y =-+-.故转化为与上题相同的数学模型.即()!(,)!!

x y f x y x y += 另解:记甲队7人分别为1a 、2a 、…、7a ,乙队7人分别为1b 、2b 、…、7b .比赛结束时的方案数就是1a 、2a 、…、7a 及1b 、2b 、…、7b 这14个元素的一个定序排列.于是有14147777

A A A (或14!7!7!)种不同方案数. 小结:求排列组合递推问题时,一定要注意以下几个方面:

①初始条件;②递推关系中1+,1-的问题;③递推终止条件.

例24 有甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽子又被踢回给甲,问有多少种不同的传递方式?

解:设k (2k ≥)个人传递n (2n ≥)次后回到甲处的不同传递方法数为n a . 则21a k =-.下面考查1n a -与n a 的关系.(如图)

……

→→→→→???→?→甲①②③④甲

则→甲①有1k -种不同方法,→①②有1k -种不同方法,→②③有1k -种不同方法,……,???→?1k -种不同方法.

而第n 次接毽子的人?可能不是甲,也可能是甲,所以11(1)n n n a a k --+=- 对于本题,令3k =,则22a =,由递推公式得32a =,46a =,510a =. 注意:由11(1)n n n a a k --+=-得1111(1)1(1)1

n n n n a a k k k k --=-+---- 即11111[](1)1(1)n n n n a a k k k k k

---=-----, 由等比数列的通项公式知

222111()[](1)1(1)n n n a a k k k k k --=-----, 即21111()()(1)11n n n a k k k k k

--=-----, 化简11[(1)(1)]n n n k a k k --=

-+-.显然,当3k =时,510a =.

解排列组合问题的17种基本方法(第一课时)

解排列组合问题的17种基本方法(第一课时) 教学目的: 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能使用解题策略解决简单的综合应用题。 提升学生解决问题分析问题的水平 3.学会应用数学思想和方法解决排列组合问题. 教学重点:掌握解决排列组合问题的常用策略;能使用解题策略解决简单的综合应用题。 教学难点:学会应用数学思想和方法解决排列组合问题. 教具:多媒体 教学过程: 一、复习巩固: 1分类、分步计数原理。 2 分类计数原理分步计数原理区别。 3. 解决排列组合综合性问题的一般过程 二、讲练结合: (一)特殊元素和特殊位置优先法. 问题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆中,问有多少不同的种法? 练习:7个人排成一排照像,甲不站在中间也不站在两端,问可照多少张不同的照片? (二)相邻问题捆绑法 问题:7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.? 练习:停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数() (三)不相邻问题插空法 问题:7人排成一排.甲、乙两人不相邻,有多少种不同的排法? 练习:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? (四)定序问题倍缩、空位插入法 问题:7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? (五)多排问题直排法 问题:12个人排成三排,每排4人,问; (1)有多少种不同的排法? (2)甲只能站在中间一排,乙只能站在最后一排,有多少种不同的排法? 练习:8人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法? (六)重排问题求幂法 问题:把6名实习生分配到7个车间实习,共有多少种不同的分法? 练习:某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法有()种。 (七)环排问题线排法 问题:5人围桌而坐,共有多少种坐法? 练习:6颗颜色不同的钻石,可穿成几种钻石圈? 四、小结: 本节课,我们对相关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就能够选择不同的技巧来解决问题.对于一些比较复杂的问题,我们能够将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。 五、课后作业:作业手册

(完整版)高中数学完整讲义——排列与组合7排列组合问题的常用方法总结1,推荐文档

m m m n ! n m 知识内容 1. 基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中 有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个 步骤有 m 2 种不同方法,……,做第 n 个步骤有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. ⑴排列:一般地,从 n 个不同的元素中任取 m (m ≤ n ) 顺序排成一列,叫做从 n 个不同元素中取出 个元素的一个排列.(其中被取的象叫做元素) 排列数:从 n 个不同的元素中取出个元素的排列数,用符号 个元素的所有排列的个数,叫做从 n 个不同元素中取出 排列数公式: , m , n ∈ N + ,并且 m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做 个不同元素的一个全排列. n 的阶乘:正整数由1 到 n 的连乘积,叫作 n 的阶乘,用 ⑵组合:一般地,从 n 个不同元素中,任意取出个元素的一个组合. 表示.规定: 0! = 1 . 个元素并成一组,叫做从 n 个元素中任取个 组合数:从 n 个不同元素中,任意取出任意取出 m 个元素的组合数,用符号 表示. 元素的所有组合的个数,叫做从 n 个不同元素中, 组合数公式: , m , n ∈ N + ,并且 m ≤ n . 1 / 20 排列组合问题的常用方法总 结 1 m (m ≤ n ) m ! C m n = n (n - 1)(n - 2) (n - m + 1) = n C m n ! m !(n - m )! (m ≤n ) m (m ≤ n ) N = m 1 ? m 2 ? ? m n N = m 1 + m 2 + + m n A m n 表示. A m = n (n - 1)(n - 2) (n - m + 1) n

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =?? ? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 14A 34C 1 3

排列组合教案

数学广角 《课题一排列组合》教学设计 教学内容: 《义务教育课程标准实验教科书·数学(二年级上册)》第99页的的内容---排列、组合。 教材分析: 课标中指出数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。教学目标: 1使学生通过观察、猜测实验等活动,找出最简单的事物排列数和组合数。 2培养学生初步的观察能力、分析能力及推理能力 3初步培养学生有序的全面思考问题的意识。 情感态度与价值观:通过解决生活中的一些实际问题,感受数学与生活的密切联系培养学生积极思维的品质。 教学重点:有序排列的思想和方法 过程与方法:通过实践活动,经历找排列数与组合数的过程,体验排

列与组合的思想方法。 课时:1课时 教学设计 情景导入 师:同学们喜欢去广场吗?为什么? 走进新课 师:今天我们也要到一个有意思的地方,哪呢?课件(数学广角)对,那里没有好吃的,好玩的,但是那里有趣的数学问题等待我们开动我们聪明的小脑袋瓜儿解决他们,想去吗? 在去之前,我们先打扮一下自己,穿上漂亮的衣服,老师这有四件衣服(课件)你喜欢那套衣服,同学们有这么多的选择。那到底能搭配多少套呢?拿出手中的学具摆摆看。 学生分组讨论 汇报交流 同学们表现的真不错,你喜欢那一套,我们就在心理穿上你喜欢的衣服去数学广角了。 展开活动 1、开启大门 数学广角的大门是由1和2 这两个数字摆成的两位数,这道 门的密码可能是那些数? 生;12、21。 师:这两个数字有什么不同?

排列组合问题的解题方法与技巧的总结(完整版)

种。故不同插法的种数为:26A + 22A 16A =42 ,故选A 。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:由题意,选用3种颜色时,C 43种颜色,必须是②④同色,③⑤同色,与①进行全排列,涂色 方法有C 43A 33=24种4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有 C 21A 44=48种所以不同的着色方法共有48+24=72种;故答案为72 六、混合问题--先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4 人,则不同的分配方案共有( )种 A. B.3种 C. 种 D. 解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三 个不同的路口的不同的分配方案共有: 种,故选A 。 例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共 有() A .24种 B .18种 C .12种 D .6种

解:黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33, ∴种法共有C32A33=18,故选B. 七.相同元素分配--档板分隔法 例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。 解一:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有2 C种插法,即有15种分 6 法。 2、解二:由于书相同,故可先按阅览室的编号分出6本,此时已保证各阅览室所分得的书不小于其编号,剩下的4本书有以下四种分配方案:①某一阅览室独得4本,有种分法;②某两个阅览室分别得1本和3本,有种分法;③某两个阅览室各得2本,有种分法;④某一阅览室得2本,其余两阅览室各得1本,有种分法.由加法原理,共有不同的分法3+=15种. 八.转化法: 对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解 。例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他

排列组合常用方法总结

/////////解决排列组合问题常见策略 学习指导 1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。 较复杂的排列组合问题一般是先分组,再排列。必须完成所有的分组再排列,不能边分组边排列。 排列组合问题的常见错误是重复和遗漏。弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧。 集合是常用的工具之一。为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。 “正难则反”是处理问题常用的策略。 常用方法: 一. 合理选择主元 例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同 的元素中任选3个元素放在3个位置上,共有种不同坐法。例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。 二. “至少”型组合问题用隔板法 对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。 例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法? 解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有: (种) 三. 注意合理分类 元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。再用分类计数原理求出总数。 例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。解:比2015大的四位数可分成以下三类: 第一类:3×××,4×××,5×××,共有:(个); 第二类:21××,23××,24××,25××,共有:(个); 第三类:203×,204×,205×,共有:(个) ∴比2015大的四位数共有237个。

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1) 26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

排列与组合解题技巧

佛山学习前线教育培训中心 高二数学(理)讲义 专题:排列与组合解题技巧 主要技巧: 一. 运用两个基本原理 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 二. 特殊元素(位置)优先 例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 三. 捆绑法 例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法? 练习3:记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .A1440种.B960种.C720种.D480种 四. 插入法 例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 练习4:安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种。 五. 排除法 例5:求以一个长方体的顶点为顶点的四面体的个数。 练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 六. 机会均等法 例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 七. 转化法 例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法? 练习8:动点从(0,0)沿水平或竖直方向运动到达(6,8),要使行驶的路程最小,有多少种走法? 八. 隔板法 例14:20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法? 练习9:把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

排列与组合解题技巧

排列与组合解题技巧

佛山学习前线教育培训中心 高二数学(理)讲义 专题:排列与组合解题技巧 主要技巧: 一. 运用两个基本原理 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 二. 特殊元素(位置)优先 例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 三. 捆绑法 例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法? 练习3:记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .A1440种.B960种.C720种.D480种

四. 插入法 例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 练习4:安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种。 五. 排除法 例5:求以一个长方体的顶点为顶点的四面体的个数。 练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 六. 机会均等法 例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 七. 转化法 例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法. ***************************************************************************** 习题 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 2、(1)将4封信投入3个邮筒,有多少种不同的投法? (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 3、七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600) (2)某乙只能在排头或排尾的不同排法有多少种?(1440) (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120) (4)甲、乙必须相邻的排法有多少种?(1440) (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)

排列组合教学设计

数学广角——排列组合 绩溪县实验小学 吴晓秋 教学内容: 人教版数学三年级上册P112例1、例2。 教学分析: 排列与组合不仅是组合数学的最初步知识和学习概率统计的基 础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教 材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测、 操作可以找出最简单的事物的排列数和组合数。本册教材就是在学生 已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动 找出事物的排列数和组合数。 教学目标: 1、学生通过观察、猜测、操作、合作交流等活动,找出简单事 物的排列数和组合数。 2、初步培养有序地全面地思考问题的能力,发展学生的符号感。 3、学生在丰富的生活情境中感受数学与生活的紧密联系,增强 对数学学习的兴趣和用数学的眼光观察生活的数学素养。 教学重点: 经历探索简单事物排列与组合规律的过程,能有序地找出简单事 物的排列数和组合数。 教学难点:培养学生有序地、全面地思考问题的能力。 教具、学具准备: 课件、数字卡片

教学过程: 一、激情引趣 想和我一起去数学广角吗?相信凭借你们的智慧,今天一定会玩的非常开心! 二、操作探究 1、破译密码——体会排列。 (1)初步体会 课件出示:请输入密码 密码提示:用1、2、3组成的三位数。 有多少种可能性? (2)深入探究 用手中的数字卡片摆一摆,共有几种可能?一人摆数字卡片,一人写在答题卡上。 学生活动,教师巡视。 实物投影仪展示不同写法。 (3)比较优化:你喜欢哪一种?为什么? (4)输入密码,开启数学广角 2、握手庆贺——体会组合 (1)实际感知 同桌互相握手庆贺合作愉快。 两个人握手几次?如果每两个人握一次手,三人一共要握手多少次呢?猜猜看? 现在四人一小组,请小组长作指挥,小组内的另外三个同学握一握,看看一共握手多少次? 学生活动,教师巡视。选择小组上台展示有序握手的方法。 (2)提炼符号 有没有好方法把这个结果简单而有条理地记录下来呢?用自己喜

排列组合7个解题技巧

排列组合7个解题技巧 一、排列和组合的概念 排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。 二、七大解题策略 1.特殊优先法 特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) (A) 280种 (B)240种 (C)180种 (D)96种 正确答案:【B】 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。 2.科学分类法 问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。 例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。 A.84 B.98 C.112 D.140 正确答案【D】 解析:按要求:甲、乙不能同时参加分成以下几类: a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;

排列组合常用方法总结

排列组合常用方法总结 导读:排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是排列组合常用方法总结,请参考! 排列组合常用方法总结 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法

中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?

排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法 一、相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 例1:五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么不同的 排法种数有种。 二、相离问题插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相 离的几个元素插入上述几个元素间的空位和两端. 例2:七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是。 三、定序问题缩倍法 在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法. 例3:A、B、C、D、E五个人并排站成一排,如果 B必须站A的右边(A、B可 不相邻),那么不同的排法种数有。 四、标号排位问题分步法 把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一 个元素,如此继续下去,依次即可完成. 例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。 五、有序分配问题逐分法 有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。 例5:有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人 中选出4人承担这三项任务,不同的选法总数有。 六、多元问题分类法 元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计。 例6:由数字 0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数 字小于十位数字的共有个。 例7:从1,2,3,…100这100个数中,任取两个数,使它们的乘积能被7 整除,这两个数的取法(不计顺序)共有多少种? 例8:从1,2,…100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 七、交叉问题集合法 某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 n A B n A n B n A B ?=+-?。 ()()()() 例 9:从6名运动员中选出4个参加4×100m接力赛,如果甲不跑第一棒,乙 不跑第四棒,共有多少种不同参赛方法? 八、定位问题优先法 某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素。 例10:1名老师和4名获奖同学排成一排照像留念,若老师不在两端,则有不

(完整版)高中数学《排列组合》教学设计

高中数学《排列组合》教案设计 【教案目标】 1.知识目标 (1)能够熟练判断所研究问题是否是排列或组合问题; (2)进一步熟悉排列数、组合数公式的计算技能; (3)熟练应用排列组合问题常见解题方法; (4)进一步增强分析、解决排列、组合应用题的能力。 2.能力目标 认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。3.德育目标 (1)用联系的观点看问题; (2)认识事物在一定条件下的相互转化; (3)解决问题能抓住问题的本质。 【教案重点】:排列数与组合数公式的应用 【教案难点】:解题思路的分析 【教案策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。 【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。 【教案过程】 一、知识要点精析 (一)基本原理 1。分类计数原理 2。分步计数原理 3。两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”: (1)对于加法原理有以下三点: ①“斥”——互斥独立事件; ②模式:“做事”——“分类”——“加法” ③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。 (2)对于乘法原理有以下三点: ①“联”——相依事件; ②模式:“做事”——“分步”——“乘法” ③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。(二)排列 1.排列定义 2.排列数定义 3.排列数公式 (三)组合 1.组合定义 2.组合数定义

排列组合问题的解题方法与技巧的总结(完整版)

学员数学科目第次个性化教案 授课时间教师姓名备课时间 学员年级高二课题名称排列组合问题的解题策略 课时总数共课时教育顾问学管邱老师 教学目标1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 3、运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题) 教学重点1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 教学难点运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题) 教学过程 教师活动 一、作业检查与评价(第一次课程) 二、复习导入 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 三、内容讲解 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 1 m种不同的方法,在第2类办法中有 2 m种不同的 方法,…,在第n类办法中有 n m种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 1 m种不同的方法,做第2步有 2 m种不同的方法,…, 做第n步有 n m种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 排列组合问题的解题策略

相关文档
相关文档 最新文档