文档库 最新最全的文档下载
当前位置:文档库 › 基于6S模型CBERS影像的大气校正研究

基于6S模型CBERS影像的大气校正研究

基于6S模型CBERS影像的大气校正研究
基于6S模型CBERS影像的大气校正研究

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

遥感影像预处理

遥感影像预处理 预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。 本小节包括以下内容: ? ? ●数据预处理一般流程介绍 ? ? ●预处理常见名词解释 ? ? ●ENVI中的数据预处理 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 图1数据预处理一般流程 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍

(一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准 影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。

landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备 Landsa 8遥感影像数据一景,本教程以市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标

地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射 定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。

因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。 注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候;

6S管理之素养(新)

6S管理之素养(新).txt28生活是一位睿智的长者,生活是一位博学的老师,它常常春风化雨,润物无声地为我们指点迷津,给我们人生的启迪。不要吝惜自己的爱,敞开自己的胸怀,多多给予,你会发现,你也已经沐浴在了爱河里。本文由秦朝勇士贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 6S管理知识—— 素养(修养) 讲师:讲师:贺秩勇 1 在企业的经营管理上,在企业的经营管理上,日本在战后产业复兴与重建期间,既吸取了欧美行之有效的科学管理方法,既吸取了欧美行之有效的科学管理方法,又注意了与本国国情的结合,经过多年的努又注意了与本国国情的结合,经过20多年的努力,日本工业在许多方面都达到了世界先进水并在产品品质、准,并在产品品质、效率和成本等方面居于世界领先地位。界领先地位。日式生产管理值得很好仿效的有不少内容是6S涵盖的范畴,从中也可看出是不少内容是涵盖的范畴,从中也可看出6S是涵盖的范畴确保品质与生产的基本工作。确保品质与生产的基本工作。 2 6S定义及目的 从日式生产管理中,不难看出6S推行之目的就是要提高效率,降低生产成本,确保产品品质,并塑造安全、有序、清爽的工作环境。 6S是在5S基础上增加了一项安全,而5S 是起源于日本,是日文的罗马发音的前一字母均为“S”,而安全则是英文的前一字母为“S”。 3 素养的重要性 然而在整个6S活动中,素养又是特别的重要,6S始于素然而在整个6S活动中,素养又是特别的重要,6S始于素 6S活动中养,终于素养,即在6S推行初期要进行培训教育,消除大家终于素养,即在6S推行初期要进行培训教育, 6S推行初期要进行培训教育的抵触情绪,并按规定做事,的抵触情绪,并按规定做事,使之最终达到人人都要养成好习惯终极目标。习惯终极目标。 4 素养的重要性 素养又是6S的基石素养又是6S的基石 6S 屋顶 支柱 地基 5 提升素养的目的 1、改变“人质”、改变“人质” 2、养成工作规范认真的习惯。、养成工作规范认真的习惯规范认真的习惯。 6 提升素养的三步骤 1、遵守规、程做事(培训教育)、遵守规、程做事(培训教育) ? 2、逐步养成良好的习惯(督导)、逐步养成良好的习惯(督导) ? 3、培养主动积极的精神(自我认知)、培养主动积极的精神(自我认知) 7 推行要领

遥感卫星影像辐射校正和大气校正的方法

北京揽宇方圆信息技术有限公司 遥感卫星影像辐射校正和大气校正的方法 辐射校正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。 利用传感器观测目标的反射或辐射能量时,所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值叫做辐射误差。辐射误差造成了遥感图像的失真,影响遥感图像的判读和解译,因此,必须进行消除或减弱。需要指出的是,导致遥感图像辐射量失真的因素很多,除了由遥感器灵敏度特性引起的畸变之外,还有视场角、太阳角、地形起伏以及大气吸收、散射等的强烈影响。 遥感图像辐射校正主要包括三个方面:(1)传感器的灵敏度特性引起的辐射误差,如光学镜头的非均匀性引起的边缘减光现象、光电变换系统的灵敏度特性引起的辐射畸变等;(2)光照条件差异引起的辐射误差,如太阳高度角的不同引起的辐射畸变校正、地面倾斜、起伏引起的辐射畸变校正等;(3)大气散射和吸收引起的辐射误差改正。 辐射校正的目的主要包括:1、尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声等引起的传感器的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异;2、尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作奠定基础。 辐射校正分为辐射定标和大气校正两部分。 辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。 辐射校正流程图 1.4.3.2影像辐射校正方法 辐射定标主要分为两种类型:统计型和物理型。统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。 用于大气辐射传输校正的模型主要有5S模型、6S模型、LOWTRAN模型、MODTRAN模型、ACORN模型、FLAASH模型和ATCOR模型。 1、ACORN模型 一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作波长范围是350-2500nm。在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。

实验三 遥感图像的几何校正

实验法三遥感图像的几何校正 一实验目的 通过实验操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 二实验内容 ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(From Viewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下: 表1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 其中,多项式变换(Polynomial)在卫星图像校正过程中应用较多,在调用多项式模型时,需要确定多项式的次方数(Order),通常整景图像选择3次方。次方数与所需要的最

基于6S模型TM遥感影像大气校正

毕业论文 题目:基于6S模型的TM遥感影像大气校正 研究--以张掖地区为例 学院:地理与环境科学学院 专业:地理信息系统 毕业年限:2011年 学生姓名:秦麟 学号:200775000126 指导教师:李净

基于6S模型的TM遥感影像大气校正研究--以张掖地区为例 秦麟 摘要:受大气吸收与散射的影响,电磁波在大气--目标物--遥感器途径传输过程中发生失真,造成目标地物反射辐射能量到达遥感器时被衰减。给计算地表反照率、反射率和地表温度等关键参数带来较大的误差。本文以张掖地区Landsat TM热红外波的遥感图像数据为例,通过利用6S大气辐射传输模型进行大气校正,并在窄波段反照率与宽波段反照率之间存在线性关系的前提下,反演该地区的地表反照率。 关键词:6S模型;大气校正;地表反照率 6S Model Based Atmospheric Correction of Remote Sensing Image in zhangye QIN Lin Abstract : Due to the distortions and noises caused by the presence of the atmosphere on the Sun-target-Sensor path, the space-based and airborne remote sensing information in the solar spectral range do not directly characterize the surface objects. It becomes serious impediments for the quantitative analysis and measurement of resources and environment. This paper discussed the atmospheric correction with 6S model (Second Simulation of Satellite Signal in the Solar Spectrum), reversing surface albedos under the linear relationship between narrow band albedos and broadband albedos in the remote sensing image in zhangye city. Key words: 6S model; atmospheric correction; surface albedo.

遥感图像几何校正

第4讲遥感图像几何校正 遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。 几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。 在开始介绍ENVI的几何校正操作之前,首先对ENVI的几何校正几个功能要点做一个说明。 1几何校正方法 (1)利用卫星自带地理定位文件进行几何校正 对于重返周期短、空间分辨率较低的卫星数据,如A VHRR、MODIS、SeaWiFS等,地面控制点的选择有相当的难度。这时,可以利用卫星传感器自带的地理定位文件进行几何校正,校正精度主要受地理定位文件的影响。 (2) image to image几何校正 通过从两幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置 (3)image to map几何校正 通过地面控制点对遥感图像几何进行平面化的过程。 (4)image to image 自动图像配准 根据像元灰度值或者地物特征自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配置过程。 (5)image registration workflow流程化工具

将具有不同坐标系、不同地理位置的图像配准到同一坐标系下,使图像中相同地理位置包含相同的地物。 2控制点选择方式 ENVI提供以下选择方式: ?从栅格图像上选择 如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,对应的控制点选择模式为Image to Image。 ?从矢量数据中选择 如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为Image to Map。 ?从文本文件中导入 事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map (x,y), Image (x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为Image to Image 和Image to Map。 ?键盘输入 如果只有控制点目标坐标信息或者只能从地图上获取坐标文件(如地形图等),只好通过键盘敲入坐标数据并在影像上找到对应点。 3详细操作步骤 3.1基于自带定位信息的几何校正 下面以MODIS Level 1B级数据为例学习利用自带几何定位文件进行几何校正,数据在"第4讲遥感图像预处理\基于自带定位信息的几何校正\数据\1-Modis"中,具体操作如下: 第一步:打开数据文件

landsat遥感影像地温度反演教程大气校正法

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC81280402016208LGN00 2016/7/26 3:26:56 106.11288 30.30647 …………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。

(1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取;

ERDAS遥感图像的几何校正

遥感图像的几何校正 实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下:

3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作如下:ERDAS图表面板菜单条:Session→Title Viewers 然后,在Viewer1中打开需要校正的Lantsat图像:tmatlanta.img 在Viewer2中打开作为地理参考的校正过的SPOT图像:panatlanta.img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→Geometric Correction →打开Set Geometric Model对话框,如图2

6S管理的作用(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 6S管理的作用(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

6S管理的作用(最新版) 6S管理是企业现场各类管理的的基础活动,它有助于消除企业在生产过程中可能面临的各类不良现象。6S管理在推行过程,通过开展整理、整顿、清扫、安全等基本活,使之成为制度性的清洁,最终提高员工的业务素养。因此,6S管理对企业的作用是基础性的,也是不可估量的。6S管理是环境与行为建设的国际性管理文化,它能有效的解决工作场所凌乱、无序的养况,能有效的提升个人行动能力与素质,有效的改善文件、资料、档案的管理,能有效的处理工具、物品、器械的管理,使工序简洁化、人性化、标准化、节约时间,提升工作效率,有效提升团队业绩。我们可以具体从以下几个方面的来概括6S管理作用。 1、提升企业形象,实施6S管理,有助于企业形象的提升。 因为整齐的清洁工作环境,不仅能使企业员工的士气得到激励,还能增强顾客的满意度,从而吸引更多的顾客与企业进行合作,并

能迅速提升企业的知名度,在同行中脱颖而出。因此,良好的现场管理是吸此顾客、增强客户信心的最佳广告。此外,良好的形象一经传播,就使6S管理企业成为其他企业学习的对象,因此我们完全可以说6S管理是“最佳的推销员”。 2、减少浪费 企业实施6S管理的目地之一就是减少生产过程的浪费。工厂中各种不良现象的存在,在人力、场所、时间、士气、效率等多方面结企业造成了很大的浪费。企业通过对6S管理的实施可以达到提高效率、减少场场浪费、降低不必要的材料及工具的浪费,减少“寻找”的浪费,减少工作差错、降低成本,其直接结果就是为了企业增加利润。因此我们说6S管理是“节约能手”。 3、安全保障的基础 降低安全事故发生的可能性,这是很多企业特别是制造加工类企业一直寻找的重要目标之一,6S管理可以从三个方面保障企业的安全: ①遵守作业标准,不易发生工作事故;

envi遥感图像处理之大气纠正

大气校正说明文档 步骤一:辐射定标 本实验采用的是绝对辐射定标,直接建立遥感影像DN 值与接收到的能量的 之间的关系。 建立关系所采用的公式是:offset DN gain L += * 其中,λ λ λ λ λ λ min max min max min max DN DN L L e fullDNrang L L gain --= -= , λ min L offset = Lmax λ和Lmin λ通过参看遥感影像的头文件进行确定。fullDNrange 取的是 255。 具体操作如下: 1) 打开遥感影像文件及其头文件 2) 根据头文件信息计算gain 和offset 的值 3) 在envi 的Basic Tools 中打开 Band Math 像,将本步骤采用的公式 写入band math 中,计算出L 。

至此,就完成了遥感影像的辐射定标过程。 步骤二:未进行大气校正所得到的反射率 本步骤讲述如何从经过辐射定标的遥感影像直接生成地物的反射率的影像,制作该影像的目的是为了与后面经过大气校正后的影像进行对比。 本步骤所采用的公式是:))cos(*/(**2 θπρESUN d L = 其中,L 是由上步所算出来的,d 指的是实际的日地距离,单位是天文距离,ESUN 指的是太阳平均辐射强度,θ为太阳天顶角。 d 值可以由观测时间查阅相关资料获得。ESUN 值也可以由相关资料获取。 θ可以从头文件中获得。 具体操作如下: 1) 查阅相关资料,确定参数θ、d 、ESUN

2)在envi的Basic Tools中打开Band Math像,将本步骤采 用的公式写入band math中 3)确定变量b2为上步所算的L,并由此计算出未进行大气校正的反射率。 由此,我们就得到了未经大气校正的反射率。 步骤三:进行大气校正,得到地物反射率 由于大气的影响,会使得遥感影像的反射率发生较大的变化,为了得到地表

影像到影像的卫星影像的几何校正

卫星影像的几何校正 以具有地理参考的SPOT 4 10m全色波段为基础,进行Landsat 5 TM 30m影像的几何校正过程,其流程如图1所示。 图1 几何精校正流程 目的: 1、掌握利用地面控制点(GCP)进行影像到影像几何校正的方法 2、影像上GCP的选取方法 数据准备: bldr_tm.img 没有地理坐标的影像 bldr_Sp.img Boulder SPOT带地理坐标的影像 bldr_Sp.hdr ENVI对应的头文件 bldr_Sp.grd Boulder SPOT地理公里网参数 bldr_Sp.ann Boulder SPOT地图标记

利用GCP进行几何校正的具体操作 第一步打开并显示影像文件 (1)在#1窗口中打开bldr_tm.img作为待校正图像,在#2窗口中打开bldr_sp.img作为参考图像(图2)。 图2 参考图像(左)与待校正图像(右) 第二步启动几何校正模块 (1)一旦两幅图像都已经显示,选择主菜单Map→Registration→Select GCPs: Image to Map,打开几何校正模块。 (2)在Image to Image Registration对话框中,选择显示SPOT影像的Display作为基准图像(Base Image),显示TM影像的Display为待校正图像(Warp Image)(图3)。点击OK,进入采集地面控制点。

图3 指定参考图像与待校正图像第三步采集地面控制点 (1)控制点工具对话框说明: 图4 地面控制点工具对话框

①当基准图像没有地理投影时选择这种配准命令;如果基准图像具有地理投影时选择此命令,得到的结果诸如投影参数、像元大小将与基准图像相同。 ②当基准图像有地理投影时,可以选择这种配准命令,在输出结果时候还可以更改校正图像的输出像元大小和投影参数 表2其它功能按钮及功能 ①当控制点数量达到一定数量时才能更改,如控制点数达到6,Degree值可以改为2,最大为3。 (2)地面控制点采集 在图像几何校正过程中,采集地面控制点是一项重要和繁重的工作,直接影响最后的校正结果,具体过程如下: 1)在两个Display中移动方框位置,寻找明显的地物特征点作为输入GCP。 2)在Zoom窗口中,通过将十字光标放置在两幅影像的相同地物点上。

实验二 遥感图像的几何校正

实验二、遥感图像的几何校正 实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。 图2-1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框中,选择输入图像,确定校正图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像主要几何校正模型,具体功能如下:

表2-1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下: 在Viewer1中打开需要校正的图像(或通过图2-1已打开):tmAtlanta.img 在Viewer2中打开作为地理参考的校正过的图像:panAtlanta.img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→ Geometric Correction →打开Set Geometric Model对话框(2-2) →选择多项式几何校正模型:Polynomial→OK →同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(2-4)。 在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数: →定义多项式次方(Polynomial Order):2 →定义投影参数:(PROJECTION):略 →Apply→Close →打开GCP Tool Referense Setup 对话框(2-5)

最新6S培训资料资料

“6S”知识培训资料 “6S”由“5S”引申而来,那么“5S”又是什么意思呢? 一、“5S”定义: 是指在生产现场对人员、机器、材料、方法等生产要素工开展整理、整顿、清扫、清洁、素养等管理活动,从而为企业的各项生产管理改善奠定有效基础。 二、“5S”的起源与发展: “5S”起源于日本,1955年,日本的宣传口号为“安全始于整理,终于整理、整顿”,当时只推行了前两个“S”,其目的仅为了作业空间和安全,后因生产和品质控制的需要,又逐步提出了“3S”,也就是清扫、清洁、素养,从而使应用空间及适用范围进一步拓展,1986年掀起“5S”高潮。日本企业将作为管理工作的基础,推行各种品质管理方法,二次世界大战后,产品品质迅速提升,成为经济大国,而在丰田公司的倡导下,对于塑造企业形象,降低成本、准时交货、安全生产、高度标准化、创造令人心旷神怡的工作场所、改善现场等方面发挥了巨大作用,逐渐被各国管理界所接受、推广,并成为工厂管理的主要模式,被称为生产现场管理的使用工具包。 三、“5S”的含义: 整理(SEIRI)整顿(SEITON)清扫(SEISO)清洁(SEIKETSU)素养(SHITSUKE)因这五个日文单词的罗马拼音都以“S”开头故简称“5S”我国企业在结合实际应用时又增加了安全“Safety”,变成

了“6S”如果再加上节约“Saving”、“Satisfaction”Service就成了“7S”甚至“10S”。 ◆1S-整理 定义: 区分要与不要的东西,要的东西留下,不要的东西清离现场。 目的: 将空间腾出来活用,防止误用误送塑造清爽的工作环境。比如;砖架放置区的烂砖架,辊棒房的烂辊棒,窑头窑尾的烂扫把、料砖坯等等。这些东西如果不及时清走,就会使我们工作场所越来越狭小。 ◆2S-整顿 定义:要的东西定位、定量、定标识整齐摆放。比如上面说的有用砖架要放在有标识的指定位置,避免叉车司机要砖架时到处找,有用的辊棒要分高温、中温分别堆放,作好标识,标明数量,,让人一看就知道。换棒时马上能拿到,试想如是不开堆放,混在一起,没个数,当换棒时,有可能换下200根旧棒,两个磨棒工找了一个小时,最后只能找到150根新棒,还差50根怎么办?没办法只好旧棒也好、脏棒也好凑合用。需清扫工具如扫把之类要放在清扫工具架上,不要随便放,这一个那一个。需要的时候,随时都能拿到。再比如工具,高温区棒套上的卡簧片互相打架了,眼看再打下去,会断棒甚至堵窑,急死人!但你又是一个不喜欢整理东西的人,一个马大哈,什么工具不分类别乱放在一起,出事时,偏偏找不到那个4MM内六角扳手。最后花了十几分钟才在哪个角落找到了,太晚了!此时辊棒断了好几

遥感大气校正

实验四遥感图像的大气校正 实验目的:通过实习操作,掌握遥感图像大气校正的基本方法和步骤,掌握遥感图像波段计算及其应用。 实验内容: 环境小卫星的数据读取; 辐射定标、图像配准、大气校正; 植被反演、植被覆盖变化监测 1、实验相关知识及背景 ◆传感器定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面 温度等物理量的处理过程;传感器定标可分为绝对定标和相对定标,绝对定标是获取图像上目标物的绝对辐射值等物理量。 ◆遥感图像的大气校正方法很多,这些校正方法按照校正后的结果可以分为2种:绝 对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 ◆ENVI下FLAASH大气校正工具是基于MODTRAN4+辐射传输模型,FLAASH对图 像文件有以下几个要求: (1)数据是经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 (2)数据带有中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 (3)数据类型支持四种数据类型:浮点型(floating)、长整型(long integer )、整型(integer)和无符号整型(unsigned int)。数据存储类型:ENVI标准栅格格式文件,且是BIP或者BIL。 (4)波谱范围:400-2500nm ◆浑善达克地区位于内蒙古草原锡林郭勒高原中部。近年来频频发生在京津地区的沙 尘暴与该地区生态环境恶化相关。据统计,京津地区沙尘暴70%的沙源来自于这个区域。通过对该区域植被覆盖度的定量反演,植被覆盖的变化检测,可以实现草原植被的高频率、大范围、高实时的变化监测。 2、实验步骤 根据环境小卫星CCD数据特点及草原植被变化监测的要求,采用以下处理流程: 一、数据预处理: https://www.wendangku.net/doc/fc8087848.html,D数据读取; 2.辐射定标; 3.大气校正; 4.研究区裁剪; 二、反演模型建立 1.归一化植被指数; 2.植被覆盖度;

基于遥感图像大气校正的意义与发展

基于遥感图像大气校正的意义与发展 随着多光谱、多时相传感器的发展,定量遥感也获得了很好的发展契机。虽然对于影像分类、变化检测的情况不需要进行大气校正,但大气校正作为光学遥感信息定量化研究中必不可少的一步,已受到越来越多的重视。近年来,传统的大气校正方法也在不断改进,越来越多的大气校正模型将更多的大气参数纳入定量分析范围,以提高大气校正的精度和适用性。 标签:大气校正;定量遥感;模型 引言 随着近年来定量遥感的迅速发展,尤其是越来越多地将多传感器、多时相遥感数据利用于土地利用分析、土地覆盖变化监测、全球资源环境分析、气候变化监测等领域,遥感图像大气校正方法的研究越来越受到重视。大气是影响遥感定量分析与应用的重要因素,因此消除大气效应、卫星姿态角和太阳高度角等因素对结果的影响也成为了决定定量遥感分析精度的重要前提。尤其是近年来高光谱技术的发展,极大地提高了高光谱影像的分辨率。因此,对参数更为详细的描述方法及适用性更强的大气校正方法必不可少。 1 大气校正的意义 大气校正广泛应用于定量遥感中。为了实现反演模型的时空扩展,大气校正的精度直接决定了后续定量分析的精度。定量反演的目的是获取地球信息,精确识别地物,尤其是在生物特性方面具有广泛的应用,比如水体特性分析及生物指数分析。 定量遥感在海洋湖泊、水体污染程度、水体生物量组成等方面有着广泛的应用。在水体特征研究中,大气的衰弱作用使得卫星遥感信号不能正确表现自然水体的表观光学特性和内在光学特性,对水体样本层次的变化不敏感。尤其在蓝绿波段,大气对光谱数据的污染最为严重。此外,被动遥感信号从大气顶层出发,经两次大气散射和吸收及地面目标反射才被记录,所以大气条件对信号污染作用使传感器接收到的辐射信息存在较大误差,定量分析与处理过程中需剔除。比如环境卫星的CCD图像数据具有较高空间分辨率、时间分辨率和较宽的刈幅。在接受到的辐射信息中,有90%属于大气信号,而能反映水体生物光学信号的仅占5%~15%。 定量遥感在林业方面也有这广泛的应用,比如从植被中提取生物量、叶面积指数、叶绿素、树冠郁闭百分比等。在对植被指数进行分析时,太阳光照角度和观测视角以及大气、云的条件的变化都很大,因此得到的是大气上界的双向反射率信息(也称表现反射率)。此外,大气中水蒸气和气溶胶对辐射的散射和吸收有较大影響。因此,如何分离地气耦合效应,得到准确的地面反射率信息是卫星遥缚中基础但极为重要的工作。归一化植被指数NDVI及ARVI等可部分校正大

遥感卫星影像图的几何校正

何精校正。几何粗校正是针对造成畸变的原因进行的校正,我们得到的卫星遥感数据一般都是经过几何粗校正处理的。几何精校正是利用地面控制点进行的几何校正,它是用一种数学模型来接近描述遥感图像的几何畸变过程,并利用标准图像和畸变的遥感图像之间的一些对应点(地面控制点数据)确定几个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑畸变的具体形成原因,而只考虑如何让利用畸变模型来校正遥感图像 由于几何校正后的影像可以用于提取精却的距离、多边形面积以及方向等信息,同时可以建立遥感提取的信息与地理信息系统(GIS)或空间决策支持系统(SDSS)中其他专题信息之间的联系,所以对遥感数据进行预处理,消除几何畸变是十分重要的。 二、研究方法 遥感影像一般存在内部误差和外部误差,识别内外部误差源以及他们是系统误差还是随机误差非常重要。一般来说,内部误差引起的畸变通常是系统性的、可预测的,外部误差引起的畸变通常是随机的。系统误差通常比较容易改正,方法简单,而随机误差相对复杂,所以本文主要是讨论随机误差的几何校正。 1,内部误差的产生原因及消除方法 内部误差引起的几何畸变主要包括:地球自转引起的偏差、扫描系统引起的标称地面分辨率变化、扫描系统一维高程投影差、扫描系统切向比例畸变。

对于地球自转引起的偏差,通常进行偏差校正,偏差校正就是将影像像幅中的像元向西做系统的位移调整,改正卫星传感器系统的角速度和地表线速度的相互作用。 扫描系统引起的标称地面分辨率变化主要是指亚轨道多光谱扫 描系统,由于距星下点越远,地面分辨率就越低,所以大多数科学家主要使用横向扫描数据·幅中央70%的区域(星下点左右各35%)。 在星下点曝光瞬间,垂直航摄相片仅有一个位于飞行器正下方的像主点,这种透视几何关系使得所有高于周围地面的目标地物会出现从像主点向外放射状分布的不同程度的平面维系。这就产生了扫描系统一维高程投影差。由于扫描镜匀速旋转,传感器扫描星下点的地理距离要比影像边缘区域的短,这就使垂直于轨道方向的一个轴发生了压缩。离星下点地面分辨单元越远,影像压缩的比例就越大,这就是切像比例畸变。然而,现在大多数商业数据提供者把GPS安装到飞机上,从而获取精确的航线坐标,这对于纠正航摄MSS数据有很大的帮助。 1、外部误差的产生原因 遥感数据几何误差的主要外部因素是数据采集时飞机或航天器 的随机运动,主要包括:高度变化、姿态变化(翻转、俯仰和偏航)。 在理想的情况下,遥感系统距地面的飞行高度应该不变,以保持影像比例尺沿飞行方向不变。然而,即使遥感系统距离水平面飞行高度固定不变,影像比例尺也会变化,这种情况发生是由于地面起伏变

相关文档