文档库 最新最全的文档下载
当前位置:文档库 › 浮子流量传感器线性度的研究

浮子流量传感器线性度的研究

浮子流量传感器线性度的研究
浮子流量传感器线性度的研究

第20卷 第3期2007年3月

传感技术学报

CHINESE JO URNAL OF S ENSO RS AND ACTU ATORS

Vol.20 No.3Mar.2007

Study on the Linearity of Float Flow Sensor *

YE J ia -min *,ZH A N G T ao

(S chool of E lec tr ica l Eng ine ering &Au tomation ,Tianj in Univ er sity ,Tianj in 300072,China)

Abstract:The nonlinear problem is very important to float flow sensor,w hich affects accuracy of rotameter.In order to solve the problem,the characteristics of float flow sensor are studied and the relationship between float height and flux is analyzed by least square method.The obvious nonlinear relationship between flux and float height to shor-t pipe type float flow sensor is presented.It is found that the linearity could be improved by increasing the float distance of

run and decreasing the taper angle,which has good practicability.

Key words:rotameter;linear ity;flo at distance of run ;taper ed angle;flow sensor EEACC :7230;7320W

浮子流量传感器线性度的研究

*

叶佳敏*

,张 涛

(天津大学电气与自动化工程学院,天津300072)

基金项目:天津市自然科学基金资助(023603511)收稿日期:2006-04-14 修改日期:2006-07-05

摘 要:浮子流量传感器中存在的非线性问题是影响浮子流量计测量精度的一个重要因素,为了解决这个问题,作者深入研

究了浮子流量传感器的特性,利用最小二乘法拟合数据,分析浮子高度和流量之间的非线性关系.理论和实验研究结果表明,针对目前应用的短管型浮子流量计流量和浮子高度之间存在明显的非线性关系,并且发现在其他条件相同的情况下浮子行程的增加即锥管锥角的减小对浮子流量传感器线性度的改善具有重要的作用.

关键词:浮子流量计;线性度;浮子行程;锥角;流量传感器中图分类号:TH814

文献标识码:A 文章编号:1004-1699(2007)03-0570-05

浮子流量计又名转子流量计或面积流量计.在测量过程中,始终保持节流件前后的压差不变,通过改变流通面积来改变流量,所以浮子流量计也叫恒压降变截面流量计.浮子流量计的量程比一般可达10:1,准确度约为?(1~2)%.由于浮子流量计具有结构简单、使用方便、直观、压损小、成本低等特点,已被广泛应用于实验室

及生产领域[1]

.浮子流量计在测量过程中流量和浮子高度之间存在非线性关系,影响了测量精度和浮子流量计的性能,这个问题在目前广泛应用的短管型浮子流量计中尤为明显,必须寻求有效的方法来解决.

1 浮子流量计原理及非线性误差计算

1.1 浮子流量计流量计量方程

浮子流量计的体积流量可用公式(1)表示如下[2]:Q V =A P [D 0h tan <+(h tan <)2]

2gV f A f (Q f -Q

Q

)(1)Q v 为浮子流量计的体积流量;A 为流量系数;h 为浮子在锥管中的垂直位置;<为锥形管锥半角;V f 为浮子体积;Q f 为浮子材料密度;Q 为流体密度;A f 为浮子垂直于流向的最大截面积;D 0为浮子最大

迎流面的直径;D h 为浮子平衡在h 高度时锥形管的直径;d f 为浮子最大直径(见图1).

公式(1)是习用的浮子流量计流量计量公式,一般认为[3-5]在锥半角U 足够小的情况下可以忽略二次项(h tan U )2

,公式(1)可写为如下形式:

Q V =A P D 0h tan <

2gV f A f (Q f

-Q Q

)(2)

公式(2)中V f 、A f 、Q f 、Q 、A 、D 0及U 都是确定数值,故公式(2)中流量Q v 与浮子行程h 具有线性

关系.

图1 浮子流量计原理示意图

1.2 研究对象

目前流行的短管型浮子流量计其高度统一为250mm,为了和其他部件相配合,浮子在管体内能移动的最大位移为59mm,在本文中选择浮子行程分别为45mm(锥半角U =21b 06c ),50mm (锥半角U =18b 16c )和55mm(锥半角U =15b 15c )的DN80金属管浮子流量传感器进行线性度的研究,其流量测量范围为4~40m 3

/h ,测量介质为水,对应流量下限时的最低雷诺数为14685.浮子流量传感器的结构如图2所示

.

图2 浮子流量传感器的结构

1.3 非线性误差计算公式

随着现代技术的发展,进行测量的非线性计算已非难事.目前,国内外金属管浮子流量计采用的线性化技术主要有两种:一是应用四连杆进行非线性修正;二是利用凸轮进行非线性修正[6]

.另外,还出现了带微处理器的智能流量计,采用物位传感器检测浮子位移,由微处理器通过软件进行线性化,从而使仪表结构更简化,精确度更高[7].故当前流行的金属管浮子流量计一般均采用250mm 的仪表总长度,如图2所示,不仅可以节约原材料,加工制造简单,而且体积小,重量轻,安装使用方便.但是为了达到更好的流量测量效果,还是应该采用尽可能长的锥管,增加浮子的行程,使仪表一次测量的非线性尽可能减小.

计算仪表一次测量的非线性误差时利用最小二乘法来拟合直线,非线性误差C 计算公式[8]:C =

|$Q v |Q V FS @100%=|$Q V |

k(x n -x 1)

@100%(3)

其中:$Q V 为输出平均值与基准拟合直线间的

偏差,Q VFS 为满量程输出平均值,k 为拟合直线的斜率,x n 为被测物理量的第n 个值,x 1为被测物理量的第1个值.

2 浮子流量计非线性问题的理论分析

2.1 理论计算数据

为了研究浮子流量计的非线性问题,本文利用公式(1)针对浮子在锥管中的垂直位置和流量的对应关系给出了三组理论计算数据.

在公式(1)中,当流量传感器的结构以及被测流体介质确定下来后,<、V f 、Q f 、Q 、A f 、D 0、D h 、d f 以及A 这些变量都是已知量,是不变的.表1、表2,表3分别给出了利用公式(1)计算的行程为45mm,50mm 和55m m 的情况下浮子高度和流量之间的对应关系,其中浮子高度是浮子在锥管中的垂直位置.数据表中的第三列是利用公式(3)计算出来的相应流量点的非线性误差.

表1 行程是45mm(锥半角U =21b 06c )的理论计算数据浮子高度/mm

流量/m 3#h -1

非线性误差/%

4.5 2.1610.01%9 4.01 3.61%13.5 6.590.93%1810.05 3.23%22.513.26 6.16%2717.187.29%31.521.417.62%3626.23 6.46%40.534.15 2.60%45

43.56

15.46%

表2 行程是50mm(锥半角U =18b 16c )的理论计算数据浮子高度/mm

流量/m 3#h -1

非线性误差/%

5 1.737.32%10 4.29 3.16%157.190.07%2010.29 2.76%2513.64 4.77%3017.38 5.73%3521.65 5.24%4026.78 5.13%4533.27 1.33%50

42.21

14.56%

表3 行程是55mm(锥半角U =15b 15c )的理论计算数据浮子高度/mm

流量/m 3#h -1

非线性误差/%

5 4.37 6.24%107.37 3.27%1510.220.04%2013.33 2.74%2516.81 4.56%3020.73 5.35%3525.23 4.78%4030.48 2.46%4536.41 1.47%5042.27 5.23%571

第3期叶佳敏,张 涛:浮子流量传感器线性度的研究

2.2 理论计算数据分析

对2.1节中的理论计算数据进行非线性误差分析.如图3所示,(a)、(b),(c)分别是行程为45mm,50mm 和55mm 的浮子流量计浮子高度和流量间对应关系曲线及利用最小二乘法拟合的直线.从表1、表2,表3中第三列所示的非线性误差数据可以看出,当利用公式(1)进行流量计算时在不同的流量点处流量和浮子高度之间表现出了不同的非线性误差,流量和浮子高度之间不是线性对应关系

.

(a) 浮子行程是45mm(锥半角U =21b 06c

)

(b) 浮子行程是50mm(锥半角U =18b 16c

)

(c) 浮子行程是55mm(锥半角U =15b 15c )图3 浮子高度和流量关系图及拟合直线

当浮子行程是45m m(锥半角U =21b 06c )时:最大非线性误差C max =15.46%,平均非线性误差C =6.34%

当浮子行程是50mm (锥半角U =18b 16c )时:最大非线性误差C max =14.56%,平均非线性误差C =5.01%.

当浮子行程是55mm (锥半角U =15b 15c )时:最大非线性误差C max = 6.24%,平均非线性误差C =3.61%.

对比三个不同行程下最大非线性误差和平均非线性误差的数值可以看出,当浮子行程分别为45mm 、50mm,55mm,即相应的锥半角为U =21b 06c 、U =

18b 16c ,U =15b 15c 时,无论是非线性误差的最大值

还是平均值都有很明显的减小,尤其是浮子流量计的线性度即最大非线性误差分别为C max =15.46%、C max

=14.56%,C

max =6.24%,浮子流量计的线性度从理论计算上有了明显的改善.

3 浮子流量计非线性问题的实验研究

该过程对如1.2节所述的浮子流量传感器进行实验研究.3.1 实验装置

实验装置如图4所示,采用称重法对金属浮子流量计进行标定.实验过程如下所述:

图4液体流量标准装置

1为进水阀;2为过滤罐;3为标准表;4为电动调节阀;5为平衡罐;6为排污阀;7为支撑板;8为金属浮子流量计;9为卡表器;10为流量调节阀;11为喷嘴;12为换向器;13为量器;14为放水阀;15为电子秤;16为控制柜;17为计算机

实验中所需流体介质来自高位稳压水塔,流体经过进水阀1进入过滤罐2,3为标准表,可以监视

管道中的流量值,电动调节阀4起选通作用,从平衡罐5流出的流体进入金属管浮子流量计8,再经过流量调节阀10从喷嘴11不断向量器13中注入,当量器13中注满流体以后换向器12自动换向,使得从喷嘴11流过来的流体不再进入量器13,而是进

入量器13右侧的回水槽,此时电子秤15可以称出量器13中流体的重量,通过计算机17中的程序显

示结果可以看到流量值,之后打开放水阀14放水,当量器13中的水全部都放完时,电子秤15清零,换向器12又自动换向到量器13一侧,使得流体不断的注入,准备下一次实验.3.2 实验数据

实验过程中选取10个流量点进行实验,单行程每点重复测量3次,正反行程各5次.对每个实验点处的样本取平均(30次平均值).实验数据如表4,表5和表6所示,其中标准流量是实验过程中利用称重法得到的流量,即流过金属浮子流量计的流量,浮子高度是浮子在锥管中的垂直位置.同样数据表中的第三列是利用公式(3)计算出来的非线性误差.

572

传 感 技 术 学 报2007年

表4 行程是45mm(锥半角U =21b 06c )的实验数据流量/m 3#h -1

浮子高度/mm

非线性误差/%4 6.7312.07%813.22 4.68%1219.26 1.43%1624.96 6.57%2029.739.05%2433.358.26%2836.55 6.27%3238.93 1.95%3640.62 4.35%4041.6812.43%

表5 行程是50mm(锥半角U =18b 16c )的实验数据

流量/m 3

#h

-1

浮子高度/mm

非线性误差/%

48.81 2.93%815.23 1.59%1220.79 4.15%1626.25 6.50%2031.137.55%2434.96 6.21%2838.60 4.45%3241.67 1.38%3644.44 4.60%40

46.8411.45%

表6 行程是55mm(锥半角U =15b 15c )的实验数据流量/m 3

#h

-1

浮子高度/mm

非线性误差/%

4 5.08 4.74%812.710.54%1219.79 2.66%1626.32 4.83%2032.13 5.66%2436.49 3.78%2840.66 1.56%3244.47 1.34%3648.47 3.90%40

53.91 3.75%

3.3 实验数据分析

如图5所示为根据实验过程中所得到的标准流

量和浮子高度之间的对应关系曲线及相应的利用最

(a) 浮子行程是45mm(锥半角U =21b 06c

)

(b) 浮子行程是50mm(锥半角U =18b 16c

)

(c) 浮子行程是55mm(锥半角U =15b 15c )图5 浮子流量计流量标定实验数据曲线及拟合直线

小二乘法得到的拟合直线.

下面对行程分别是45m m 、50mm,55m m 的浮子流量计的非线性误差值作一下比较.从表4、表5,表6中的非线性误差数据可以看出,在实验过程中流量和浮子高度之间也并不是简单的一一对应的线性关系,二者之间存在严重的非线性,这也进一步证明了在进行流量计算时不能利用公式(2)对流量和高度之间的关系进行线性化处理,而应该利用公式(1)进行计算.

当浮子行程是45mm (锥半角U =21b 06c )时:最大非线性误差C max =12.43%,平均非线性误差C =6.71%.

当浮子行程是50mm (锥半角U =18b 16c )时:

最大非线性误差C max =11.45%,平均非线性误差C =5.08%.

当浮子行程是55mm (锥半角U =15b 15c )时:最大非线性误差C max = 5.66%,平均非线性误差C =3.28%.

对比上述两组最大非线性误差和平均非线性误差的数值可以看出,当浮子行程为45mm 、50mm,55mm ,相应的锥半角为U =21b 06c 、U =18b 16c ,U =15b 15c 时浮子流量计非线性误差的最大值和平均值也都有了很明显的减小,其中浮子流量计的线性度即最大非线性误差分别为C max =12.43%、C max =11.45%,C max =5.66%,仪表的线性度得到了很好的改善.

理论计算数据是利用公式(1)进行计算预测的非线性误差,实验数据与之相比有一定的偏离,分析

其原因有两个:其一是公式(1)中流量系数的选取问题;其二是实验过程中存在的误差.理论计算和实验数据相比,二者的变化趋势是吻合的,都可以定量的反映出在短管条件下浮子行程的改变(锥管的锥角)对浮子流量传感器线性度的改善.

4 结 论

本文针对浮子流量计的线性度问题进行了研究,文中给出了在三种行程下不同的流量点处的非

573

第3期叶佳敏,张 涛:浮子流量传感器线性度的研究

线性误差值,并从理论和实验做了对比分析.

理论分析和实验研究表明,在目前应用的短管型浮子流量计中流量和浮子高度之间不是一一对应的线性关系,因此在进行流量计时不能选用公式(2),而应该选择公式(1).

分析两个行程下的浮子流量计非线性误差数据可以得到如下结论:浮子的行程(锥管的锥角)是影响浮子流量计线性度的一个重要因素,适当增加浮子的行程、减小锥管的锥角,可以使一次仪表的线性度有很大的改善,这对于浮子流量传感器结构的设计与优化具有重要的指导意义.

参考文献:

[1]苏彦勋,盛健,梁国伟.流量计量与测试[M].北京:中国计量

出版社,1992:152-160.

[2]M iller,R.w.Flow M eas urem ent Engineerin g H andbook[M].

New York:M cGraw-H ill,1983:637-644.

[3]梁国伟、蔡昌武.流量测量技术及仪表[M].北京:机械工业出

版社,2002:156-160.

[4]张毅等.自动检测技术及仪表控制系统[M].北京:化学工业

出版社,2004:81-83.

[5]王化祥.自动检测技术[M].北京:化学工业出版社,2004:188-

190.

[6]肖兴达,高明远,董振红.金属管浮子流量计的线性化技术[J]

.自动化仪表,2004,25(12):35-40.

[7]张涛,徐英,姜印平等.电容角位移式智能金属管浮子流量计的

研究[J].仪器仪表学报,2003,24(3):231-235,244.

[8]王虹,马俊兴.实验曲线的线性度研究[J].河南科学,2005,23

(1):26

-28.

叶佳敏(1983-),女,天津大学自动化学

院流量实验室,博士研究生,主要研究方

向为自动化仪表及流量检测装置.mail_

jiamin831017@y https://www.wendangku.net/doc/f38167082.html,.

cn

张涛(1950-),男,天津大学自动化学

院流量实验室,博士生导师,教授,主要

研究方向为流量检测及非电量测量.

emai_ZT@eyo https://www.wendangku.net/doc/f38167082.html,

574传感技术学报2007年

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

线性度、回差和重复性三大指标的实验室求取法

三大指标的实验室求取法 步骤如下: 1).取其量程的5~10个等分点,输入标准信号,测其输出信号,正反行程各三次。 2).求出正反行程平均值。 3).给出拟合直线(端点连线或最小二乘法)。 4).求出正程平均值与拟合直线在各测点的差值,找出最大值,则可求出线性度 5).求出正反程平均值在各测点的差值,找出最大值,即可求出迟滞(回差)。 6).分别求出正程三次或反程三次在各测点的差值,取其最大值,即可求得重复性误差。 %100max ??± =FS L y L γ%100max ??± =FS H y H γ%100max ??± =FS R y R γ

例题:求表中传感器拟合曲线及求线性度、回差和重复性 表一 据上表1列出表2如下信息: 最小二乘法: 77 .25.17177.2)(5.171)(022.0942.283 .343 .010.008.006.004.002.02 22226 1 26 161 6 1-=-=--= =--=====++++=∑∑ ∑∑∑∑∑∑∑∑∑∑ ∑∑∑====x y x x n y x x y x b x x n y x y x n k x y x y x i i i i i i i i i i i i i i i i i i i i i i

70 .25.1715 .1711 .0) 70.2(45.1415.171106 1 6 1 00-==--= =-===∑∑==x y k y y y y m y y m y n FS i ni n i i % 47.0%10015.1708.0% 58.0%10015.1710.0% 58.0%10015.1710.0%99.0%10015.1717 .0=?=?=?=?=?=?=?= ?R H L L Z D %100%100

生活饮用水标准检验方法18个方法

培训资料 生活饮用水卫生监测 部分水质指标补充检验方法手册 (试行) 国家卫生计生委疾控局 2014年7月

目录 1生活饮用水中55种挥发性有机物的检验方法—吹扫捕集气相色谱质谱法 (1) 2生活饮用水中27种卤代烃的检验方法—顶空毛细管气相色谱法 (9) 3生活饮用水中11种挥发性有机物的检验方法—顶空毛细管柱气相色谱法 (15) 4生活饮用水中丙烯酰胺的检验方法—液相色谱串联质谱联用法 (19) 5生活饮用水中微囊藻毒素的检验方法—液相色谱串联质谱联用法 (24) 6生活饮用水中环氧氯丙烷的检验方法—气相色谱质谱联用 (29) 7生活饮用水中15种半挥发性有机物的检验方法—固相萃取气相色谱质谱法 (32) 8生活饮用水中呋喃丹、草甘膦、灭草松和2,4-滴的检验方法—液相色谱质谱法 (39) 9生活饮用水中灭草松、呋喃丹、草甘膦、2,4-滴、莠去津、五氯酚和甲基对硫磷的测定方法—液相色谱串联质谱联用法 (41) 10生活饮用水中百菌清检验方法—毛细管柱气相色谱法 (48) 11生活饮用水中5种拟除虫菊酯的检验方法—高效液相色谱法 (51) 12生活饮用水中六种卤乙酸检验方法—离子色谱-电导检测法 (53) 13生活饮用水中游离余氯的检验方法—现场N,N-二乙基对苯二胺(DPD)法 (56) 14生活饮用水中总氯的检验方法—现场N,N-二乙基对苯二胺(DPD)法 (57) 15生活饮用水中挥发酚类化合物的检验方法—流动注射法1 (58) 16生活饮用水中挥发酚类化合物的检验方法—流动注射法2 (59) 17生活饮用水中氰化物的检验方法—流动注射法1 (61) 18生活饮用水中氰化物的检验方法—流动注射法2 (62)

《光源与照明专业实验》课程教学大纲.doc

《光源与照明专业实验》课程教学大纲 执笔人:谢嘉宁 审核人:吕健滔 编写日期:2013年9月 一、实验类别:专业实验课程性质:必修课程学分:4 二、实验总学时:64,其中第5学期32学时(理论2学时),第6学期32学时(理论2学时) 三、应开实验个数:10必开实验个数:0选开实验个数:10 四、适用专业:光源与照明专业 五、考核方式:小论文 六、实验成绩评定方法:平时成绩占60%,期末考试成绩占40% 七、实验成绩占课程总成绩比例:100% 八、实验教材或白编指导书:《光源与照明专业实验》讲义(自编) 九、实验项目汇总表: 第5学期学时:32 应开实验个数:5必开实验个数:0选开实验个数:5 实验一光敏元件的特性及电机转速测量 学时:6 (一)实验类型:综合性 (二)实验目的: 1.掌握光敏二极管、光电池、热释电探测器等光电元件的基本特性,了解其应用; 2.掌握用光敏二极管测量电机转速的原理与方法。

(三)实验内容: 1.测量光电池的短路电流、开路电压及光电流随光照度的变化曲线; 2.测量热释电探测器的输出电压与人体感应距离的关系曲线及与环境温度的关系; 3.用光电开关测量电机转速。 (四)要求:选开 (五)每组人数:4 (六)主要仪器设备及套数:CSY10G光电传感系统实验仪,示波器;4套。 (七)所属实验室:物理实验教学中心 实验二光电探测器灵敏度及线性度研究 学时:6 (一)实验类型:综合性 (二)实验目的: 1.掌握光电探测器灵敏度和线性度的概念; 2.掌握光电探测器(光敏电阻、光电池、光敏二极管)灵敏度和线性度的测量方法。(三)实验内容: 1.熟悉光敏电阻、光电池、光敏二极管的结构; 2.了解并掌握光电探测器测量系统的基本结构; 3.测量光电探测器的灵敏度和线性度,并绘制相应关系曲线。 (四)要求:选开 (五)每组人数:2 (六)主要仪器设备及套数:自制仪器(2套) (七)所属实验室:物理实验教学中心 实验三半导体泵浦固体激光器综合实验 学时:6 (一)实验类型:综合性 (二)实验目的: 掌握半导体泵浦固体激光器的工作原理和调试方法,学会测量阈值及功-功转换效率,了解固体激光器倍频的基本原理。 (三)实验内容: 1.调试半导体泵浦固体激光器; 2.测量阈值及功一功(泵浦光功率一输出激光功率)转换效率; 3.研究腔长对阈值及功一功转换效率的影响; 4.在半导体激光泵浦的固体激光器实验系统的基础上,在激光谐振腔内插入KTP晶体, 进行腔内倍频,产生532nm的绿光输出。 (四)要求:选开 (五)每组人数:4 (六)主要仪器设备及套数:半导体激光泵浦固体激光器及其倍频和调Q实验系统,示波器,光电探测器,光谱仪(OSA)。2套 (七)所属实验室:物理实验教学中心

转子流量计的原理及计算【最新版】

转子流量计的原理及计算 1概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1)

1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。 当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为Wf(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为Sf(m2),转子体积Vf(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密

软化水设备的工作原理介绍

软化水设备的工作原理 全自动钠离子交流器选用离子交流原理,去除水中的钙、镁等结 垢离子。当含有硬度离子的原水经过交流器内树脂层时,水中的钙、镁离子便与树脂吸附的钠离子发作置换,树脂吸附了钙、镁离子而钠离子进入水中,这样从交流器内流出的水就是去掉了硬度的软化水。 由于水的硬度首要由钙、镁构成及表示,故一般选用阳离子交流树脂(软水器),将水中的Ca2+离子交流图、Mg2+构成水垢的首要成份)置换出来,跟着树脂内Ca2+ Mg2+勺添加,树脂去除Ca2+ Mg2+ 的效能逐步下降。 当树脂吸收一定量的钙镁离子之后,就必须进行再生,再生进程 就是用盐箱中的食盐水冲刷树脂层,把树脂上的硬度离子在置换出来,随再生废液排出罐外,树脂就又康复了软化交流功能。 由于水的硬度主要由钙、镁形成及表示由于水的硬度主要由钙、镁形成及表示钠离子交换软化处理的原理是将原水通过钠型阳离子交换树脂,使水中的硬度成分Ca2+ Mg2与树脂中的Na+相交换,从而吸附水中的Ca2+ Mg2+使水得到软化。如以RNa代表钠型树脂,其交换过程如下:软化水设备单阀单罐 2RNa + Ca2+ = R2Ca + 2Na+ 2RNa + Mg2+ = R2Mg + 2Na+

即水通过钠离子交换器后,水中的Ca+ Mg+被置换成Na+。 一般控制阀的运行流程为:运行、反洗、吸盐、慢洗、盐箱补水、正洗。 工作流程及要求 1)工作流程 工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 软化水设备工作流程示意图反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15 分钟左右。 吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的 速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水

生活饮用水标准检验方法

生活饮用水标准检验方法 在各种水体,特别是污染水体中存在有大量的有机物质,适于各种微生物的生长,因此水体是仅次于土壤的第二种微生物天然培养基。水体中的微生物主要来源于土壤,以及人类的动物的排泄物及污染。水体中微生物的数量和种类受各种环境条件的制约。 一般认为,水中微生物以革兰氏阴性杆菌占有较大优势。与其他水体相比,河水及溪水中革兰氏阳性菌相对较多,这是因为陆地微生物冲洗污染的缘故。 《中华人民共和国国家标准生活饮用水标准检验法》提供了水质中细菌总数和总大肠菌群的检测方法。 1、国家标准中,细菌总数是指1ml水样在营养琼脂培养基中,于37℃经24h培养后,所生长的细菌菌落的总数。 对生活饮用水,直接吸取1ml水样于平皿中,加入营养琼脂后混匀,37℃培养24h,进行计数。 对水源水,根据情况对样品进行10倍梯度稀释,选择适宜稀释液1ml,加注平皿,营养琼脂混匀,37℃培养24h,进行计数。 按照规定格式报告每毫升水中细菌总数。 2、国家标准中,利用总大肠菌群作为粪便污染的指标。总大肠菌群是指一群需氧及兼性厌氧的,37℃生长时能使乳糖发酵,在24h内产酸产气的革兰氏阴性无芽胞杆菌。水样中总大肠菌群数的含量,表明水被粪便污染的程度,而且间接地表明有肠道致病菌存在的可能。 国家标准物质提供了多管发酵法及滤膜法检测总大肠菌群的方法。 3、多管发酵法检测总大肠菌群,分为三步:初发酵试验,平板分离,复发酵证实试验。 初发酵试验,采用乳糖蛋白胨培养液37℃培养24h,观察产酸产气情况。对阳性管培养物,接种于品红亚硫酸钠培养基或伊红美蓝培养基,观察菌落特征,并进行革兰氏染色和镜检。对典型和可疑菌落,接种于乳糖蛋白胨培养液,进行复发酵证实试验,并根据标准所附检数表报告结果。 其中,对生活饮用水,初发酵试验接种水样总量300ml,即100ml接种2管,10ml接种10管,采用两个稀释度,12支发酵管。对水源水,初发酵试验接种水样总量55.5ml,即10ml接种5管,1ml接种5管,0.1ml接种10管,共采用三个稀释度,15支发酵管。两种接种方法,所用的检数表是不同的。 4、滤膜法检测总大肠菌群,就是利用微孔滤膜,过滤一定量水样,将水样中含有的细菌截留在滤膜上,然后将滤膜帖放在选择性培养基上(如品红亚硫酸钠培养基),经培养和证实试验后,直接计数滤膜上生长的典型大肠菌群菌落,并计算出每升水样中含有的总大肠菌群数 注意;菌落总数测定中,应选择合适的稀释度进行。生活饮用水,国家标准规定每毫升不得超过100个,因此可以直接吸取1毫升到平板进行培养。 培养时间。与食品中菌落计数不同,测定水中细菌总数,培养时间采用24h。

软化水工作原理

一、软化水设备的定义 软化水设备,顾名思义即降低水硬度的设备,主要除祛水中的钙、镁离子,软化水设备在软化水的过程中,不能降低水中的总含盐量。 软化水设备 二、软化水设备的工作原理 由于水的硬度主要由钙、镁形成及表示,故一般采用阳离子交换树脂(软水器),将水中的Ca2+、Mg2+(形成水垢的主要成份)置换出来,随着树脂内Ca2+、Mg2 +的增加,树脂去除Ca2+、Mg2+的效能逐渐降低。 当树脂吸收一定量的钙镁离子之后,就必须进行再生,再生过程就是用盐箱中的食盐水冲洗树脂层,把树脂上的硬度离子在置换出来,随再生废液排出罐外,树脂就又恢复了软化交换功能。 由于水的硬度主要由钙、镁形成及表示由于水的硬度主要由钙、镁形成及表示钠离子交换软化处理的原理是将原水通过钠型阳离子交换树脂,使水中的硬度成分Ca 2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化。如以RNa代表钠型树脂,其交换过程如下: 2RNa + Ca2+ = R2Ca + 2Na+ 2RNa + Mg2+ = R2Mg + 2Na+ 即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+。 一般控制阀的运行流程为:运行、反洗、吸盐、慢洗、盐箱补水、正洗。三、软化水设备工作流程及工作要求 1)软化水设备工作流程 工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。

各种流量计工作原理结构图

第一节节流式流量检测 如果在管道中安置一个固定的阻力件,它的中间是一个比管道截面小的孔,当流体流过该阻力件的小孔时,由于流体流束的收缩而使流速加快、静压力降低,其结果是在阻力件前后产生一个较大的压力差。它与流量(流速)的大小有关,流量愈大,差压也愈大,因此只要测出差压就可以推算出流量。把流体流过阻力件流束的收缩造成压力变化的过程称节流过程,其中的阻力件称为节流件。 作为流量检测用的节流件有标准的和特殊的两种。标准节流件包括标准孔板、标准喷嘴和标准文丘里管,如图9.1所示。对于标准化的节流件,在设计计算时都有统一标准的规定要求和计算所需的有关数据、图及程序;可直接按照标准制造、安装和使用,不必进行标定。 标准节流装置9.1 图 圆缺喷特殊节流件也称非标准节流件,如双重孔板、偏心孔板、圆缺孔板、1/4嘴等,他们可以利用已有实验数据进行估算,但必须用实验方法单独标定。特殊节流件主要用于特殊;介质或特殊工况条件的流量检测。目前最常见的节流件是标准孔板,所以在以下的讨论中将主要以标 准孔板为例介绍节测式流量检测的原理、设计以及实现方法等。一、检测原理

设稳定流动的流体沿水平管流经节流件,如刚在节流件前后将产生压力和速度的变化,流在截面 1处流体未受节流件影响,所示。9.2,流体静压力为p,束充满管道,管道截面为A11?是经节,流体密度为平均流速为v2。截面11,A流件后流束收缩的最小截面,其截面积为2?。图,流体密度为,平均流速为压力为Pv222中的压力曲线用点划线代表管道中心处静9.2流体的静压力压力,实线代表管壁处静压力。充分地反映和流速在节流件前后的变化情况,流体向中心在节流件前,了能量形式的转换。. 9.2 流体流经节流件时压力和流速变化情况图处,流束截面收缩到最小,流速达到最大,静压力最低。然后流束扩加速,至截面2处。由于涡流区的存在,导致流体能量张,流速逐渐降低,静压力升高,直到截面3?。P不等于原先静压力p,而产生永久的压力损 失损失,因此在截面3处的静压力13p设流体为不可压缩的理想流体,在流经节流件时,流体不 对外作功,和外界没有热 处沿管中心的流线、2能交换,流体本身也没有温度变化,则根据伯努利方程,对于截面1 有以下能量关系:22ppvv10201020???(9-1) ??2221?????。由于流速分布的不均匀,因为是不可压缩流体,则2处平均流速与截面1、21管中心的流速有以下关系:vCv,v?v?C) ( 9-222110120处流速分布不均匀的修正系数。1、2式中C,C为截面2112??v为能 量其损失的能量为,考虑到实际流体有粘性,在流动时必然会产生摩擦力,22损失系数。处的能量关系可写成:在考虑上述因素后,截面1、222?ppCC222102021v?v?v??) (9-3 212??222根据流体的连续性方程,有??vAvA? 9-4)(2211?,(9-2)-A 。/A ,收缩系数联解式=A/。又设节流件的开孔面积为A 定义开口截面比m=A 0210)可得式(9-421??p?pv?9-5)(20210?2222??mC?C?12的位置随流速而变,而实际取压点的位置是固定的;另外实际取2因为流束最小截面 压是在管壁取的,所测得的压力是管壁处的静压力。考虑到上述因素,设实际取压点处取??p

电磁流量计的工作原理

电磁流量计的工作原理 电磁流量计(Eletromagnetic Flowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是根据法拉第电磁感应定律制成的,电磁流量计用来测量导电液体体积流量的仪表。由于其独特的优点,电磁流量计目前已广泛地被应用于工业过程中各种导电液体的流量测量,如各种酸、碱、盐等腐蚀性介质;电磁流量计各种浆液流量测量,形成了独特的应用领域。 在结构上,电磁流量计由电磁流量传感器和转换器两部分组成。传感器安装在工业过程管道上,它的作用是将流进管道内的液体体积流量值线性地变换成感生电势信号,并通过传输线将此信号送到转换器。转换器安装在离传感器不太远的地方,它将传感器送来的流量信号进行放大,并转换成流量信号成正比的标准电信号输出,以进行显示,累积和调节控制。电磁流量计的基本原理 一、测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B, L,u三者互相垂直,则e=Blu。与此相仿,在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极,则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势:e=BD。式中,为管道截面上的平均流速.由此可得管道的体积流量为:qv=πDUˉ。由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关.这就是电磁流量计的测量原理。需要说明的是,要使式qv=πDUˉ严格成立,必须使测量条件满足下列假定: ①磁场是均匀分布的恒定磁场; ②被测流体的流速轴对称分布; ③被测液体是非磁性的; ④被测液体的电导率均匀且各向同性。 二、励磁方式 励磁方式即产生磁场的方式。由前述可知,为使式qv=πDUˉ严格成立,第一个必须满足的条件就是要有一个均匀恒定的磁场.为此,就需要选择一种合适的励磁方式。目前,一般有三种励碰方式,即直流励磁、交流励磁和低频方波励磁。现分别予以介绍。 1.直流励磁 直流励磁方式用直流电产生磁场或采用永久磁铁,它能产生一个恒定的均匀磁场。这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响。但是,使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正负离子。在电场力的作用下,负离子跑向正极,正离子跑向负极。这样,将导致正负电极分别被相反极性的离子所包围,严重影响电磁流量计的正常工作。所以,直流励磁一般只用于测量非电解质液体,如液态金属等。 2.交流励磁 目前,工业上使用的电磁流量计,大都采用工频50Hz电源交流励磁方式,即它的磁场是由正弦交变电流产生的,所以产生的磁场也是一个交变磁场。交变磁场变送器的主要优点是消除了电极表面的极化于扰。另外,由于磁场是交变的,所以输出信号也是交变信号,放大和转换低电平的交流信号要比直流信号容易得多。

离子交换树脂在工业软化水设备中的作用

离子交换树脂在工业软 化水设备中的作用 工业软化水设备工作原理是利用离子交换技术,通过树脂上的功能离子与水中的钙、镁离子进行交换,从而吸附水中多余的钙、镁离子,达到去除水垢的目的。 全自动软水装置中装有软化树脂,这种人造的离子交换树脂上有软性矿物质钠,可以与溶解在水中的钙、镁等硬性矿物质发生离子交换反应,而钠离子不会以水垢的形式堆积在物体表面上,所以对与它接触的物体危害很小。树脂是一种多孔不可溶性交换材料。 在软水装置中装有千百万颗微细的塑料球,所有小球都含有许多吸收正离子的负电荷交换位置。当树脂处在新生状态时,这些电荷交换位置被带正电荷的钠离子占据。树脂优先结合带较强电荷的阳离子,钙和镁离子的电荷比钠离子强,当含有钙、镁离子的水经过树脂贮槽时,钙、镁离子与树脂小珠接触,从交换位置上取代钠离子。经过离子交换后,钙、镁离子就被吸附在软水机内的树脂上,流出的水就变软了。最后,所有树脂都吸附满钙、镁离子后,就不能再进行工作了,而需要再生处理。 软水处理设备树脂的再生是用氯化钠和水的稀溶液进行的。在再生过程中,首先停止软化水机的工作水流,从盐水槽引出的盐水与另

外的稀释水流混合,稀盐水溶液流经树脂,与附有钙、镁离子的树脂接触。尽管钙和镁离子带有的电比钠离子强,但浓盐溶液含有千百万个较弱电荷的钠离子,有取代数目较少的钙和镁离子的能力。这样,当钙、镁离子被取代交换后,树脂就再生了,便为下一次软化工作做好了准备。 全自动软水设备主要有三部分组成: 1、自动控制装置:根据用户需要,可配置时间控制、流量控制两种控制方式的全自动控制器,并可选配阿图祖、富莱克、润新等控制阀,也可选用液动、气动、电动多阀控制系统。 2、罐体部分:根据用户要求,交换罐、盐罐可采用玻璃钢、碳钢衬胶、不锈钢等材质, 配件部分:包括布水装置、吸盐装置、管路配件等。 工作程序 1.供水:未处理的水通过树脂层,发生交换反应,产生软水。 2.反洗:水从树脂层下部进入,松动树脂,去掉细碎杂物。 3.进盐再生:利用较高浓度的盐水(NaCl)流过树脂,将失效的树脂重新还原为钠型可用树脂。

生活饮用水标准检验方法微生物指标

生活饮用水标准检验方法 微生物指标 1 菌落总数 1.1平皿计数法 1.1.1范围 本标准规定了用平皿计数法测定生活饮用水及其水源水中的菌落总数。 本法适用于生活饮用水及其水源水中菌落总数的测定 1.1.2术语和定义 下列术语和定义适用于本标准。 1.1. 2.1 菌落总数 standard plate-count bacteria 水样在营养琼脂上有氧条件下37℃培养48h后,所得1mL水样所含菌落的总数 1.1.3 培养基与试剂 1.1.3.1 营养琼脂 1.1.3.1.1 成分: A 蛋白胨10g B 牛肉膏 3 g C 氯化钠5g D 琼脂10g~20g E 蒸馏水1000mL 1.1.3.1.2 制法:将上述成分混合后,加热溶解,调整pH为7.4~7.6,分装于玻璃容器中(如用含杂质较多的琼脂时,应先过滤),经103.43kPa(121℃,151b)灭菌20min,储存于冷暗处备用。 1.1.4 仪器 1.1.4.1 高压蒸汽灭菌器。 1.1.4.2 千热灭菌箱。 1.1.4.3 培养箱36℃±1℃。 1.1.4.4 电炉。 1.1.4.5 天平。 1.1.4.6 冰箱。 1.1.4.7 放大镜或菌落计数器。 1.1.4.8 pH计或精密pH试纸。 1.1.4.9 灭菌试管、平皿(直径9cm)、刻度吸管、采样瓶等。 1.1.5 检验步骤 1.5.1 生活饮用水。 1.1.5.1.1 以无菌操作方法用灭菌吸管吸取1mL充分混匀的水样,注入灭菌平皿中,倾注约15mL 已融化并冷却到45℃左右的营养琼脂培养基,并立即旋摇平皿,使水样与培养基充分混匀。每次检验时应做一平行接种同时另用一个平皿只倾注营养琼脂培养基作为空白对照。

软化水设备运行及吸盐原理介绍

软化水设备运行及吸盐原理介绍 软化水处理不难理解主要是降低水质硬度的处理过程,通过去除原水中的钙、镁离子,使水质变软,但是在软化水设备处理过程中,不能降低原水中的总含盐量。 沈阳软化水设备工作原理 软化水处理核心技术采用离子交换原理,去除原水中的钙、镁等结垢离子。当含有硬度离子的原水通过交换器内树脂层时,水中的钙、镁离子会被树脂所吸附,钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入水中,这样从交换器内流出的水就是去掉了硬度的软化水。 由于水的硬度主要由钙、镁形成及表示,故一般采用阳离子交换树脂,将水中的Ca2+、Mg2+置换出来,随着树脂内Ca2+、Mg2+的增加,树脂去除Ca2+、Mg2+的效能逐渐降低。 沈阳软化水设备中当树脂吸收一定量的钙、镁离子后,就必须进行再生过程,就是用盐箱中的食盐水冲洗树脂层,把树脂上的硬度离子在置换出来,随再生废液排出罐外,树脂就又恢复了软化交换功能。 软化水设备吸盐工艺阐述 吸盐工艺就是将盐水注入树脂罐体的过程,传统装置是采用盐泵将盐水注入,而全自动的设备是采用专用的内置喷射器将盐水吸入。设备在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以去离子水装置都是采用盐水慢速流过树脂的方法再生,这个过程一般需要半个小时左右即可,实际时间受用盐量的影响。 软化水处理装置安装调试

1、再生盐罐及树脂的位置应该尽量安放在交换柱的附近,为了充分利用盐水溶液,应该尽可能地缩短吸盐塑料管的尺寸。 2、软水设备的位置选择应放置于牢固的水平地面上,距离排水沟的距离要短,绝对要禁止靠近酸性液体或气体的地方。

传感器线性度的概念及表示方法

传感器线性度的概念及表示方法 1传感器线性度的概念 线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。 线性度又称非线性,表征传感器输出—输入校准曲线(或平均校准曲线)与所选定的作为工作直线的拟合直线之间的偏离程度。这一指标通常以相对误差表示如下。 %100.max ??±=S F L y L ξ (1) 式中:max L ?——输出平均校准曲线与拟合直线间的最大偏差; S F y .——理论满量程输出。 由式(1)可见,拟合直线是获得相应的线性度的基础,选择的拟合直线不同,max L ?不同,计算所得的线性度数值也就不同。 2线性度表示方法 线性度表示方法很多,一般常用的有以下四种方法。 2.1理论直线法 理论直线法是以传感器的理论特性直线作为拟合直线,与传感器被测输出值无关。 例如:在一个标准大气压力试验条件下,设定被测温度传感器下限值为0℃,上限值为100℃,以测量范围为0℃~100℃的二等标准水银温度计作为标准计量器具,不管温度标定试验级数如何确定,均以标准水银温度计示值作为拟合直线,即试验各温度测试点温度传感器计算温度值均直接与该测试点标准水银温度计示值进行比较,从中获取max L ?,max L ?值即为被测温度传感器线性误差,暂名之以“理论线性度”。理论直线法示意见图1。 图1 理论直线法示意图 0 y x

2.2最佳直线法 通过图解法或计算机辅助解算,获得一条“最佳直线”,使得传感器正反行程校准曲线相对于该直线的正、负偏差相等且最小,如图2所示。由此所得的线性度称为“独立线性度”。 2.3端点直线法 以传感器校准曲线两端点间的连线作为拟合直线,这种方法可为称之为端点直线法,端基直线法,相应地线性度称之为端点线性度或端基线性度。端点直线法示意见图3。 图3 端点直线法示意图 端点直线法拟合直线方程为: kx b y += (2) 2.4最小二乘直线法 利用最小二乘原理获取拟合直线的方法称为最小二乘直线法。这种方法的基本原理是使传感器校准数据的残差的平方和最小。 最小二乘法拟合直线以式(2)表示,设定传感器校准测试点为n ,第i 个标准数据i y 的残差i ?为: )(i i i kx b y +-=? (3) 按最小二乘法原理,应使∑=?n i i 12 最小。因此,以∑=?n i i 12 分别对b 和k 求一阶偏0 x y 0

软化水手动阀如何控制软化水系统应用流程

软化水手动阀如何控制软化水系统应用流程 软化水处理设备由于试剂工作的需要,软化水设备的标准工作流程主要包括:做产水、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 软化水手动阀控制软化水设备工艺流程 软化水设备树脂再生步骤:打开进盐阀,其余阀门关闭,启动原水泵,把盐箱中的盐水全部吸入软化器内,放置4小时以上。 洗盐:树脂再生后,必须将软化器内的盐冲洗干净方可使用,按手动阀冲洗方法(包括正冲洗和反冲洗)。 软化水设备水中的钙镁离子的存在是水温变化时形成水垢的主 要原因。目前在国内常用的软化水设备主要有手动式、国产组合式、国产多阀式、进口多路阀式几种,其中进口多路阀式软化水设备是目前市场上的主要产品,这种设备以进口的多路阀及控制器为核心,配用国产的树脂罐、盐箱、管道等材料构成全自动软化水设备。 由于水垢的沉积对人们的生活及生产均有很明显的影响,所以生产用水和生活用水均对硬度指标有一定的要求,特别是锅炉用水中若含有硬度盐类,会在锅炉受热面上生成水垢,从而降低锅炉热效率、增大燃料消耗,甚至因金属壁面局部过热而损伤部件、引起爆炸。因

此软化水设备对于低压锅炉要进行水的软化处理;对于中、高压锅炉要进行水的软化与脱盐处理。 离子交换法:采用特定的阳离子交换树脂,以钠离子将水中的钙镁离子置换出来,由于钠盐的溶解度很高,所以就避免了随温度的升高而造成水垢生成的情况。这种方法是目前最常用的标准方式。主要优点是:效果稳定准确,工艺成熟。 手动软化水设备吸盐操作参照反渗透预处理树脂再生操作方法,具体如下 当树脂吸附一定量的钙、镁离子之后,就必须进行再生。时间为每运行48小时左右(原水为市政自来水时),须再生一次。再生过程就是用盐箱中的工业盐冲洗树脂层,把树脂上的钙、镁等硬度离子再置换出来,随再生废液排出罐外,树脂就又恢复了软化交换能力(软水器不可用加碘盐、加钙盐作再生剂、定期向盐箱加盐确保盐水饱和浓度),再生时间推荐在晚上最好,设备停机后吸完盐,放置一晚上,第二天必须按反洗、正洗步骤清洗干净后,在启动主机。

大连理工大学测试技术实验报告

测试技术实验报告总结 第一部分:应变类 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 了解应变片半桥(双臂)工作特点及性能。 了解应变片全桥工作特点及性能。 了解应变直流全桥的应用及电路的标定。 二、基本原理:1、应变片的电阻应变效应 2、应变灵敏度 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ?ρ。 3、贴片式应变片应用 一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。 4、箔式应变片的基本结构 应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成,。 5. 测量电路 为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。为了得到较大的输出电压或电流信号一般都采用双臂或全桥工作。 三、实验步骤: 1. 在应变梁自然状态的情况下,用4 1位数显万用表2kΩ电阻档测量所有应变片阻值; 2 2.差动放大器调零。 ⑴将主板上传感器输出单元中的箔式应变片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中。 图1—8 应变片单臂电桥特性实验接线示意图 ⑵检查接线无误后合上主电源开关,在机头上应变梁的振动台无砝码时调节电桥的 直流调节平衡网络W1电位器,使电压表显示为0。 ⑶在应变梁的振动台中心点上放置一只砝码(20g/只),读取数显表数值,依次增加砝码和读取相应的数显表值,记下实验数据

水流量传感器工作原理及特点

水流量传感器工作原理及特点 水流量传感器主要由涡轮开关壳、磁性转子、制动环组成。可用于测量进水流量。 水流量传感器工作原理 当水流量传感器使用水流开关方式时,其性能优于机械式压差盘结构,且尺寸明显缩校当水流通过涡轮开关壳,推动磁性转子旋转,不同磁极靠近时水流量传感器导通,离开时水流量传感器断开。由此,可测量出转子转速。根据实测的水流量、转子转速和输出信号(电压)的曲线,便可确定出热水器的启动水压,以及启动水压相对应的启动水流量与转子的启动转速。由控制电路,便可实现当转子转速大于启动转速时热水器启动工作;在转速小于启动转速时,热水器停止工作。这样热水器启动水压一般设定在0.01MPa,启动水流量为 3~5L/min(需满足热水器标准对最高温升的限制)。另外,由于水在永磁材料磁场切割下,变成磁化水,水中的含氧量增加,使人洗浴后感觉清爽。制动环的作用是停水时,制止高速旋转的磁性转子转动,终止脉冲信号输出。水流量传感器的控制器接收不到脉冲信号,立即控制燃气比例阀关阀,切断气源,防止干烧。 水流量传感器在工业生产中的优势分析 1.在需要更为准确水控体系中,水流量传感器用起来会更有用更直观。以脉冲信号输出的水流量传感器为例:在IC水表和流量操控需要更高的水电加热环境中,水流量传感器有更强的优势。由于PLC 操控的便利性。

2.水流量传感器的线形输出信号能够直接地接入PLC乃至进得修正和抵偿。 3.水流量传感器可进行定量操控和开关电气,因而在一些相对需要更高的水控体系。 4.水流量传感器的运用逐渐代替了水流开关。具有了水流开关的感应功用的一同还满意https://www.wendangku.net/doc/f38167082.html,了水流量计量的需要。 水流量传感器从根本上解决了压差式水气联动阀启动水压高以 及翻板式水阀易误动作出现干烧等缺点。它具有反映灵敏、寿命长、动作迅速、安全可靠、连接方便利启动流量超低(1.5L/min)等优点,深受广大用户喜爱。但水流量传感器在日常生产中要注意:避开有较强轰动和摇晃的环境;为了防止颗粒、杂物进入水流量传感器,在传感器的入水口有必要装置过滤网。

软化水设备的工作原理介绍.doc

软化水设备的作业原理 全主动钠离子沟通器选用离子沟通原理,去除水中的钙、镁等结 垢离子。当含有硬度离子的原水经过沟通器内树脂层时,水中的钙、 镁离子便与树脂吸附的钠离子发生置换,树脂吸附了钙、镁离子而 钠离子进入水中,这样从沟通器内流出的水便是去掉了硬度的软化 水。 因为水的硬度首要由钙、镁构成及表明,故一般选用阳离子沟通 树脂( 软水器) ,将水中的Ca2+离子交流图、Mg2+(构成水垢的首要成份) 置换出来,跟着树脂内Ca2+、Mg2+的添加,树脂去除Ca2+、Mg2+ 的效能逐步下降。 当树脂吸收必定量的钙镁离子之后,就有必要进行再生,再生进程便是用盐箱中的食盐水冲刷树脂层,把树脂上的硬度离子在置换出 来,随再生废液排出罐外,树脂就又恢复了软化沟通功用。 因为水的硬度首要由钙、镁构成及表明因为水的硬度首要由钙、 镁构成及表明钠离子交流软化处理的原理是将原水经过钠型阳离子 交换树脂,使水中的硬度成分Ca2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化。如以RNa代表钠型树脂,其交流进程如下:软化水设备单阀单罐 2RNa + Ca2+ = R2Ca + 2Na+

2RNa + Mg2+ = R2Mg + 2Na+ 即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+。 一般操控阀的作业流程为:作业、反洗、吸盐、慢洗、盐箱补水、正洗。 作业流程及要求 1) 工作流程 工作(有时叫做产水,下同) 、反洗、吸盐( 再生) 、慢冲洗( 置换) 、快冲刷五个进程。不同软化水设备的一切工序十分接近,仅仅因为 实践工艺的不同或操控的需求,或许会有一些附加的流程。任何故钠 离子交流为根底的软化水设备都是在这五个流程的根底上开展来的 ( 其中,全自动软化水设备会增加盐水重注过程) 。 软化水设备作业流程示意图反洗:作业一段时刻后的设备,会在树脂上部阻拦许多由原水带来的污物,把这些污物除掉后,离子交 换树脂才干完全曝露出来,再生的作用才干得到保证。反洗进程便是 水从树脂的底部洗入,从顶部流出,这样能够把顶部阻拦下来的污物 冲走。这个进程一般需求 5-15 分钟左右。 吸盐( 再生) :即将盐水注入树脂罐体的过程,传统设备是采用盐 泵将盐水注入,全主动的设备是选用专用的内置喷射器将盐水吸入 ( 只要进水有一定的压力即可) 。在实际工作过程中,盐水以较慢的

质量流量计工作原理

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计 ?正比于2 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合 v 构成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合

如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘测得的输出信号与流体体积流量 v 法运算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为 (1-3) 图2体积流量计和密度计组合图3 节流式流量计和其他体积流量计组合除上述几种组合式质量流量计外,在工业上还常采用温度、压力自动补偿式质量流量计。由于流体密度是温度和压力的函数,而连续测量流体的温度和压力要比连续测量流体的密度容易,因此,可以根据已知被测流体密度与温度和压力之间的关系,同时测量流体的体积流量以及温度和压力值,通过运算求得质量流量或自动换算成标准状态下的体积流量。但这种测量方式不适合高压或温度变化范围大的情形,因为在此条件下自动补偿检测出来的温度、压力很困难。 2.直接式质量流量计 直接式质量流量计的输出信号直接反映质量流量,其测量不受流体的温度、压力、密度变化的影响。直接式质量流量计有许多种形式。

软化水设备的工作原理

软化水设备的工作原理 由于水的硬度主要由钙、镁形成及表示,故一般采用阳离子交换树脂(软水器),将水中的Ca2+、Mg2+(形成水垢的主要成份)置换出来,随着树脂内Ca2+、Mg2+的增加,树脂去除Ca2+、Mg2+的效能逐渐降低。当树脂吸收一定量的钙镁离子之后,就必须进行再生,再生过程就是用盐箱中的食盐水冲洗树脂层,把树脂上的硬度离子在置换出来,随再生废液排出罐外,树脂就又恢复了软化交换功能。由于水的硬度主要由钙、镁形成及表示由于水的硬度主要由钙、镁形成及表示钠离子交换软化处理的原理是将原水通过钠型阳离子交换树脂,使水中的硬度成分Ca2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化。如以RNa代表钠型树脂,其交换过程如下:2RNa + Ca2+ = R2Ca + 2Na+ 2RNa + Mg2+ = R2Mg + 2Na+ 即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+。一般控制阀的运行流程为:运行、反洗、吸盐、慢洗、盐箱补水、正洗。 软化水设备工作流程及工作要求 1)软化水设备工作流程 工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。软化水设备工作流程示意图 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。 2)软化水设备技术指标及工作要求: 入口水压:0.18-0.6Mpa 工作温度:1-55℃源水硬度:<8mmol/L 操作方式:自动/手动出水硬度:≤0.03mmol/L 再生剂:NaCL 再生方式:顺流/逆流交换剂:001*7强酸性离子交换树脂控制方式:时间/流量工作电源:220V/50Hz

相关文档
相关文档 最新文档