文档库 最新最全的文档下载
当前位置:文档库 › linux 编译makefile模板

linux 编译makefile模板

linux 编译makefile模板
linux 编译makefile模板

Makefile模板

2010-04-24 18:52

# CXX = g++

CXXFLAGS = -O2 -I Module1_Dir -I Module2_Dir

TARGET = Project_Name

DIRS = Module1_Dir Module2_Dir .

FILES = $(foreach dir,$(DIRS),$(wildcard $(dir)/*.cpp)) OBJS = $(patsubst %.cpp,%.o,$(FILES))

$(TARGET):$(OBJS)

$(CXX) -o $(TARGET) $(OBJS)

# $(CXX) -o $@ $^

# $(OBJS):%.o:%.cpp

# $(CXX) $(CXXFLAGS) -c -o $@ $<

clean:

$(RM) $(TARGET)

$(RM) $(OBJS)

--------------------------------------------------------------------

生成动态库的Makefile

CXXFLAGS = -O2 -fPIC

LINKFLAGS = -shared

TARGET = $(LIBPATH)/lib Module1_Name.so

OBJS = $(patsubst %.cpp,%.o, $(wildcard *.cpp))

LIBS =

$(TARGET):$(OBJS)

$(CXX) $(LINKFLAGS) -o $(TARGET) $(OBJS) $(LIBS)

# $(CXX) $(LINKFLAGS) -o $@ $^ $(LIBS)

# $(OBJS):%.o:%.cpp

# $(CXX) $(CXXFLAGS) -c -o $@ $<

clean:

$(RM) $(TARGET)

$(RM) $(OBJS)

使用动态库的项目的Makefile

CXXFLAGS = -O2 -I Module1_Dir -I Module2_Dir

# VPATH=Module1_Dir:Module2_Dir:.

TARGET = Project_Name

OBJS = $(patsubst %.cpp,%.o, $(wildcard *.cpp))

export LIBPATH = ${shell pwd}/lib

LIBS = -L$(LIBPATH) -l Module1_Name -l Module2_Name $(TARGET):$(LIBPATH) $(OBJS)

$(MAKE) -C Module1_Dir

$(MAKE) -C Module2_Dir

$(CXX) -o $(TARGET) $(OBJS) $(LIBS) # $(CXX) -o $@ $(OBJS) $(LIBS)

# $(OBJS):%.o:%.cpp

# $(CXX) $(CXXFLAGS) -c -o $@ $< $(LIBPATH):

mkdir -p $(LIBPATH)

clean:

$(RM) $(TARGET)

$(RM) $(OBJS)

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.wendangku.net/doc/f48478015.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

手动建立makefile简单实例解析

手动建立makefile简单实例解析 假设我们有一个程序由5个文件组成,源代码如下:/*main.c*/ #include "mytool1.h" #include "mytool2.h" int main() { mytool1_print("hello mytool1!"); mytool2_print("hello mytool2!"); return 0; } /*mytool1.c*/ #include "mytool1.h" #include void mytool1_print(char *print_str) { printf("This is mytool1 print : %s ",print_str); } /*mytool1.h*/ #ifndef _MYTOOL_1_H #define _MYTOOL_1_H void mytool1_print(char *print_str); #endif /*mytool2.c*/ #include "mytool2.h" #include void mytool2_print(char *print_str) { printf("This is mytool2 print : %s ",print_str); }

/*mytool2.h*/ #ifndef _MYTOOL_2_H #define _MYTOOL_2_H void mytool2_print(char *print_str); #endif 首先了解一下make和Makefile。GNU make是一个工程管理器,它可以管理较多的文件。我所使用的RedHat 9.0的make版本为GNU Make version 3.79.1。使用make的最大好处就是实现了“自动化编译”。如果有一个上百个文件的代码构成的项目,其中一个或者几个文件进行了修改,make就能够自动识别更新了的文件代码,不需要输入冗长的命令行就可以完成最后的编译工作。make执行时,自动寻找Makefile(makefile)文件,然后执行编译工作。所以我们需要编写Makefile文件,这样可以提高实际项目的工作效率。 在一个Makefile中通常包含下面内容: 1、需要由make工具创建的目标体(target),通常是目标文件或可执行文件。 2、要创建的目标体所依赖的文件(dependency_file)。 3、创建每个目标体时需要运行的命令(command)。 格式如下: target:dependency_files command target:规则的目标。通常是程序中间或者最后需要生成的文件名,可以是.o文件、也可以是最后的可执行程序的文件名。另外,目标也可以是一个make执行的动作的名称,如目标“clean”,这样的目标称为“伪目标”。 dependency_files:规则的依赖。生成规则目标所需要的文件名列表。通常一个目标依赖于一个或者多个文件。 command:规则的命令行。是make程序所有执行的动作(任意的shell命令或者可在shell下执行的程序)。一个规则可以有多个命令行,每一条命令占一行。注意:每一个命令行必须以[Tab]字符开始,[Tab]字符告诉make此行是一个命令行。make按照命令完成相应的动作。这也是书写Makefile中容易产生,而且比较隐蔽的错误。命令就是在任何一个目标的依赖文件发生变化后重建目标的动作描述。一个目标可以没有依赖而只有动作(指定的命令)。比如Makefile中的目标“clean”,此目标没有依赖,只有命令。它所指定的命令用来删除make过程产生的中间文件(清理工作)。 在Makefile中“规则”就是描述在什么情况下、如何重建规则的目标文件,通常规则

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

LINUX编程 Makefile中的变量详解应用

第六章:Makefile中的变量 -------------------------------------------------------------------------------- 在Makefile中,变量就是一个名字(像是C语言中的宏),代表一个文本字符串(变量的值)。在Makefile的目标、依赖、命令中引用一个变量的地方,变量会被它的值所取代(与C语言中宏引用的方式相同,因此其他版本的make也把变量称之为“宏”)。在Makefile中变量的特征有以下几点: 1. Makefile中变量和函数的展开(除规则的命令行以外),是在make读取makefile文件时进行的,这里的变量包括了使用“=”定义和使用指示符“define”定义的。 2. 变量可以用来代表一个文件名列表、编译选项列表、程序运行的选项参数列表、搜索源文件的目录列表、编译输出的目录列表和所有我们能够想到的事物。 3. 变量名是不包括“:”、“#”、“=”、前置空白和尾空白的任何字符串。需要注意的是,尽管在GNU make中没有对变量的命名有其它的限制,但定义一个包含除字母、数字和下划线以外的变量的做法也是不可取的,因为除字母、数字和下划线以外的其它字符可能会在以后的make版本中被赋予特殊含义,并且这样命名的变量对于一些shell来说不能作为环境变量使用。 4. 变量名是大小写敏感的。变量“foo”、“Foo”和“FOO”指的是三个不同的变量。Makefile 传统做法是变量名是全采用大写的方式。推荐的做法是在对于内部定义定义的一般变量(例如:目标文件列表objects)使用小写方式,而对于一些参数列表(例如:编译选项CFLAGS)采用大写方式,这并不是要求的。但需要强调一点:对于一个工程,所有Makefile中的变量命名应保持一种风格,否则会显得你是一个蹩脚的程序员(就像代码的变量命名风格一样)。 5. 另外有一些变量名只包含了一个或者很少的几个特殊的字符(符号)。称它们为自动化变量。像“$<”、“$@”、“$?”、“$*”等。 6.1 变量的引用 当我们定义了一个变量之后,就可以在Makefile的很多地方使用这个变量。变量的引用方式是:使用“$(VARIABLE_NAME)”或者“${ VARIABLE_NAME }”来引用一个变量的定义。例如:“$(foo) ”或者“${foo}”就是取变量“foo”的值。美元符号“$”在Makefile中有特殊的含义,所有在命令或者文件名中使用“$”时需要用两个美元符号“$$”来表示。对一个变量的引用可以在Makefile的任何上下文中,目标、依赖、命令、绝大多数指示符和新变量的赋值中。这里有一个例子,其中变量保存了所有.o文件的列表: objects = program.o foo.o utils.o program : $(objects) cc -o program $(objects)

makefile新手教程

makefile新手教程 2013-11-08 本文翻译自https://www.wendangku.net/doc/f48478015.html,/tutorials/ Makefiles --通过示例说明 编译源代码是沉闷的,尤其是当你想要include一些源代码,却又每次都需要手动敲编译命令的时候。 恩,我有个好消息告诉你...你用手敲命令行去编译的日子(基本上)一去不复返了,因为你将会学习如何编写Makefile。Makefile是配合make命令使用的特殊文件,make命令则会帮助你自动地、神奇般地管理你的工程。 这里你需要先准备以下文件: main.cpp

hello.cpp factorial.cpp functions.cpp 我建议你新建一个空的目录,然后将上述4个文件放入其中。

注意:我使用g++命令编译。你完全可以换成别的编译器 make工具 如果你运行make 它会去寻找当前目录下名字为makefile的文件,并按里面的内容执行。 如果你有很多makefile文件,那么可以用这个命令来执行: 当然还有其他的参数来使用make工具,详情请man make。 构建过程 1.编译器编译源代码文件,输出到目标文件 2.链接器将目标文件链接,并创建可执行文件 手动编译 手动编译并获得可执行文件,是一种琐碎的方式: 基本的Makefile

基本的makefile文件组成如下: 将此语法应用到我们的例子中,就是: all: g++ main.cpp hello.cpp factorial.cpp -o hello 我们将此文件保存为Makefile-1。要运行此makefile,则输入:make -f Makefile-1 在这个例子中可以看到,我们的target叫做all。这是makefile中的默认target。若无指定参数,make工具将按这个target 执行。 我们同时发现,这个例子中的target,也就是all,没有dependencies(依赖文件),因此make会安全地执行后续的system commands(系统命令)。 最后,make根据我们设定的命令完成了编译。 使用依赖文件 有时候使用多个不同的target会很有用,因为当你只修改了工程中的一个文件时,不必重新编译所有代码,只需要编译修改过的部分。比如:

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

windows下的makefile教程

windows下的makefile教程 https://www.wendangku.net/doc/f48478015.html,/mirror_hc/archive/2008/03/26/2221117.aspx joeliu 制作4/19/2011 22:10:29 1. 先说几句废话 以前看书时经常遇到makefile,nmake这几个名词,然后随之而来的就是一大段莫名其妙的代码,把我看得云里雾里的。在图书馆和google上搜了半天,也只能找到一些零零星星的资料,把我一直郁闷得不行。最近因缘巧合,被我搞到了一份传说中的MASM6手册,终于揭开了NMAKE的庐山真面目。想到那些可能正遭受着同样苦难的同志以及那些看到E文就头晕的兄弟,所以就写了这篇文章。假如大家觉得有帮助的话,记得回复一下,当作鼓励!如果觉得很白痴,也请扔几个鸡蛋.本文是总结加翻译,对于一些关键词以及一些不是很确定的句子,保留了英文原版,然后再在括号里给出自己的理解以作参考。由于水平有限,加上使用NMAKE的经验尚浅,有不对的地方大家记得要指正唷。MASM6手册在AOGO(好像是)可以download,在我的BLOG上有到那的链接。 2. 关于NMAKE Microsoft Program Maintenance Utility,外号NMAKE,顾名思义,是用来管理程序的工具。其实说白了,就是一个解释程序。它处理一种叫做makefile的文件(以mak为后缀),解释里面的语句并执行相应的指令。我们编写makefile文件,按照规定的语法描述文件之间的依赖关系,以及与该依赖关系相关联的一系列操作。然后在调用NMAKE时,它会检查所有相关的文件,如果目标文件(target file,下文简称target,即依赖于其它文件的文件)的time stamp(就是文件最后一次被修改的时间,一个32位数,表示距离1980年以来经过的时间,以2秒为单位)小于依赖文件(dependent file,下文简称dependent,即被依赖的文件)的time stamp,NMAKE就执行与该依赖关系相关联的操作。请看下面这个例子:foo.exe : first.obj second.obj link first.obj,second.obj 第一行定义了依赖关系,称为dependency line;第二行给出了与该依赖关系相关联的操作,称为command line。因为foo.exe由first.obj和second.obj连接而成,所以说foo.exe依赖于first.ogj和second.obj,即foo.exe为target,first.obj和second.obj为dependent。如果first.obj和second.obj中的任何一个被修改了(其time stamp更大),则调用link.exe,重新连接生成foo.exe。这就是NMAKE的执行逻辑。 综上,NMAKE的核心就是这3个家伙——依赖关系,操作和判定逻辑(target.timestamp < dependent.timestamp,如果为true,就执行相应操作)。 3. MAKEFILE的语法 现在详细讨论一下makefile的语法。makefile就像一个玩具型的程序语言,麻雀虽小,但五脏具全。makefile的组成部分包括:描述语句(description block),推导规则(inference rules),宏和指令(directive)。 描述语句就是dependent lines和command lines的组合;推导规则就是预先定义好的或用户自己定义的依赖关系和关联命令;宏就不用说了吧;指令就是内定的一些可以被NMAKE识别的控制命令,提供了很多有用的功能。 3.1 特殊符号

make工程管理器及其Makefile 及其使用

make工具及其使用 make工程管理器是一种能够自动识别更新了文件代码的工具,同时又不需要重复输入冗长的命令行,当文件较多是比较实用 Autoconf和Automake等是这样的工具可以自动生成Makefile文件 1:Make命令和Makefile 要使用make,必须编写一个叫Makefile的文件,它描述了软件包中各个文件之间的关系,提供了更新每个文件的命令 Make程序利用Makefile的数据和每个文件最近一次更改的时间来确定哪个文件需要更新,对每个更新文件,make程序使用Makefile中定义的命令来更新它,Makefile在文件说明如何编译个源文件并链接生成可执行文件,并要求源文件之间的依赖关系 Makefile文件的格式: 目标:依赖项列表 [命令] 其中,通常目标是要产生的文件的名称,目标可以是可执行文件或OBJ文件,也可以是一个执行的动作名称,比如clean。命令所在的行首要有空格,空格数为一个制表位(Tab),Makefile文件也可以在描述语句行前加“#”表示注释,make程序将跳过此行不执行,相关命令如果过长,还可以使用反斜杠“\”作为后接行符来续行。Make程序执行Makefile的相关行的默认情况是将执行状态显示出来,如果在相关行前加“@”,就可以避免显示该行 Makefile的最大特点是“自动化编译”,只需一个make命令,整个工程完全自动编译,极大的提高了软件开发效率,如果想要删除执行文件和所有的中间目标文件,那么只需要简单地执行一下“make clean”即可,这里要说明的一点是,clean不是一个文件,它只不过是一个动作名词,也可称为标签,其后的冒号什么都没有。这样make就不会自动去查找文件之间的依赖性,因此也就不会自动执行其后所定义的命令 make的命令格式:#make [选项] [宏] [目标] 宏是执行make时使用的宏值 其中选项有: -f 指定Makefile文件名 -p 打印出Makefile中变量数据库和隐含规则 -i 忽略linux命令返回的错误,继续执行下面的命令,如果没有该选项,则遇到linux命令 出错就会停止-s 表示执行不显示执行命令 -r 忽略内部规则 -n 按实际运行时的执行顺序显示命令,包括以“@”开头的命令,但并不真正执行,这个 选项常用来检查Makefile文件的正确性-d Debug模式,输出有关文件和检测时间的详细信息 -t 修改每个目标文件的更新日期,但不重写创建这些文件 -c dir 在读取Makefile之前改变到指定的目录dir -I dir 指定使用的Makefile所在的目录 -w 在处理Makefile之前和之后,都显示工作目录 如果只输入 #make

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

make_Makefile 结构分析

Makefile结构分析 -----uClinux (2.6.x内核)系统映像过程 刘江欧阳昭暐吕熙隆 1、源代码文件及目录构成 解压缩uClinux-dist-20070130.tar.gz压缩文件,在uClinux-dist原始子目录下主要有:config、Bin、linux-2.4.x、linux-2.6.x 、lib、tools、Include、user和vendors,以及文件Makefile。另外,在编译后生成子目录images和romfs,以及文件autoconfig.h、config.in和两个隐含文件:.config和.depend。 config子目录包含文件及下一级子目录,如 config.in、configure.help、Fixconfig、Makefile、 Mkconfig、Setconfig所有这些文件及子目录 Scripts均与系统配置有关; linux-2.6.x子目录是嵌入式操作系统 uClinux-2.6.x的核心目录,包括下一级子目录 arch、include、init、drivers、fs、ipc、kernel、 lib、Mm、scripts和关键文件Makefile、 rules.make,编译后还要生成新文件romfs.o、linux 和system.map;lib子目录为嵌入式操作系统提供 压缩和改进了的函数库支持;tools子目录包含 romfs-inst.sh文件,通过调用此文件,可以把目录 或文件加入到romfs子目录中;user子目录包含各 种驱动程序文件目录,根据用户的配置情况,不同的 驱动程序会被编译进最后形成的操作系统中; vendors子目录包括与特定硬件平台相关的分类目录 组。目录结构如图1所示。 Makefile的详细介绍情况在 uClinux-dist\linux-2.6.x\Documentation\kbuil d中,如图2所示。图1、目录结构即Linux 内核中的 Makefile 以及与 Makefile 直接相关的文件有:

3-Makefile书写规则

3 Makefile书写规则 规则包含两个部分,一个是依赖关系,一个是生成目标的方法。 在Makefile中,规则的顺序是很重要的,因为,Makefile中只应该有一个最终目标,其它的目标都是被这个目标所连带出来的,所以一定要让make知道你的最终目标是什么。一般来说,定义在Makefile中的目标可能会有很多,但是第一条规则中的目标将被确立为最终的目标。如果第一条规则中的目标有很多个,那么,第一个目标会成为最终的目标。make所完成的也就是这个目标。 好了,还是让我们来看一看如何书写规则。 3.1 规则举例 foo.o : foo.c defs.h # foo模块 cc -c -g foo.c 看到这个例子,各位应该不是很陌生了,前面也已说过,foo.o是我们的目标,foo.c和defs.h是目标所依赖的源文件,而只有一个命令“cc -c - g foo.c”(以Tab键开头)。这个规则告诉我们两件事: 1. 文件的依赖关系,foo.o依赖于foo.c和defs.h的文件,如果foo.c 和defs.h的文件日期要比foo.o文件日期要新,或是foo.o不存 在,那么依赖关系发生。 2. 如果生成(或更新)foo.o文件。也就是那个cc命令,其说明 了,如何生成foo.o这个文件。(当然foo.c文件include了defs.h 文件) 3.2 规则的语法 targets : prerequisites command

... 或是这样: targets : prerequisites ; command command ... targets是文件名,以空格分开,可以使用通配符。一般来说,我们的目标基本上是一个文件,但也有可能是多个文件。 command是命令行,如果其不与“target:prerequisites”在一行,那么,必须以[Tab键]开头,如果和prerequisites在一行,那么可以用分号做为分隔。(见上) prerequisites也就是目标所依赖的文件(或依赖目标)。如果其中的某个文件要比目标文件要新,那么,目标就被认为是“过时的”,被认为是需要重生成的。这个在前面已经讲过了。 如果命令太长,你可以使用反斜框(‘\’)作为换行符。make对一行上有多少个字符没有限制。规则告诉make两件事,文件的依赖关系和如何成成目标文件。 一般来说,make会以UNIX的标准Shell,也就是/bin/sh来执行命令。3.3 在规则中使用通配符 如果我们想定义一系列比较类似的文件,我们很自然地就想起使用通配符。make支持三各通配符:“*”,“?”和“[...]”。这是和Unix的B-Shell是相同的。 波浪号(“~”)字符在文件名中也有比较特殊的用途。如果是“~/test”,这就表示当前用户的$HOME目录下的test目录。而“~hchen/test”则表示用户hchen的宿主目录下的test目录。(这些都是Unix下的小知识了,make也支持)而在Windows或是MS-DOS下,用户没有宿主目录,那么波浪号所指的目录则根据环境变量“HOME”而定。

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

Makefile 语法分析

Makefile 语法分析第一部分 VERSION = 2 # 给变量VERSION赋值 PATCHLEVEL = 6 # 给变量PATCHLEVEL赋值 SUBLEVEL = 22 # 给变量SUBLEVEL赋值 EXTRAVERSION = .6 # 给变量EXTRAVERSION赋值 NAME = Holy Dancing Manatees, Batman! # 给变量NAME赋值 # *DOCUMENTATION* # To see a list of typical targets execute "make help" # More info can be located in ./README # Comments in this file are targeted only to the developer, do not # expect to learn how to build the kernel reading this file. # Do not: # o use make's built-in rules and variables # (this increases performance and avoid hard-to-debug behavour); # o print "Entering directory ..."; MAKEFLAGS += -rR --no-print-directory # 操作符“+=”的作用是给变量(“+=”前面的MAKEFLAGS)追加值。 # 如果变量(“+=”前面的MAKEFLAGS)之前没有定义过,那么,“+=”会自动变成“=”; # 如果前面有变量(“+=”前面的MAKEFLAGS)定义,那么“+=”会继承于前次操作的赋值符;# 如果前一次的是“:=”,那么“+=”会以“:=”作为其赋值符 # 在执行make时的命令行选项参数被通过变量“MAKEFLAGS”传递给子目录下的make程序。# 对于这个变量除非使用指示符“unexport”对它们进行声明,它们在整个make的执行过程中始终被自动的传递给所有的子make。 # 还有个特殊变量SHELL与MAKEFLAGS一样,默认情况(没有用“unexport”声明)下在整个make的执行过程中被自动的传递给所有的子make。 # # -rR --no-print-directory # -r disable the built-in impilict rules. # -R disable the built-in variable setttings. # --no-print-directory。 # We are using a recursive build, so we need to do a little thinking # to get the ordering right. # # Most importantly: sub-Makefiles should only ever modify files in # their own directory. If in some directory we have a dependency on # a file in another dir (which doesn't happen often, but it's often # unavoidable when linking the built-in.o targets which finally # turn into vmlinux), we will call a sub make in that other dir, and

如何学好并精通C语言

程序员之路——如何学习C语言并精通C语言 程序员之路——如何学习C语言 学习C语言不是一朝一夕的事情,但也不需要花费十年时间才能精通。如何以最小的代价学习并精通C 语言是本文的主题。请注意,即使是“最小的代价”,也绝不是什么捷径,而是以最短的时间取得最多的收获,同时也意味着你需要经历艰苦的过程。 一、要读就读好书,否则不如不读 所有初学者面临的第一个问题便是:如何选择教材。好的开始是成功的一半,选择一本优秀的教材是事半功倍的关键因素。不幸的是,学校通常会帮你指定一本很差劲的C语言课本;而幸运的是,你还可以再次选择。 大名鼎鼎的谭浩强教授出了一本《C语言程序设计》,据说发行量有超过400万,据我所知,很多学校都会推荐这本书作为C语言课本。虽然本人的名字(谭浩宇)跟教授仅仅一字之差,但我是无比坚定地黑他这本书的。这本书不是写给计算机专业的学生的,而是给那些需要考计算机等级考试的其它专业学生看的。这本书的主要缺点是:例子程序非常不专业,不能教给你程序设计应该掌握的思考方式;程序风格相当地不好,会让你养成乱写代码的恶习;错误太多,曾经有人指出过这本书的上百个错误,其中不乏关键的概念性错误。好了,这本书我也不想说太多了,有兴趣大家可以百度一下:) Kernighan和Ritchie的《The C Programming Language》(中译名《C程序设计语言》)堪称经典中的经典,不过旧版的很多内容都已过时,和现在的标准C语言相去甚远,大家一定要看最新的版本,否则不如不看。另外,即使是最经典最权威的书,也没有办法面面俱到,所以手边常备一本《C语言参考手册》是十分必要的。《C语言参考手册》就是《C Reference Manual》,是C语言标准的详细描述,包括绝大多数C标准库函数的细节,算得上是最好的标准C语言的工具书。顺便提一句,最新的《C程序设计语言》是根据C89标准修订的,而《C语言参考手册》描述的是C99标准,二者可能会有些出入,建议按照C99标准学习。还有一本《C和指针》,写得也是相当地不错,英文名是《Pointers on C》,特别地强调指针的重要性,算是本书的一个特点吧。不过这本书并不十分适合初学者,如果你曾经学过C语言,有那么一些C语言的基础但又不是很扎实,那么你可以尝试一下这本书。我相信,只要你理解了指针,C语言便不再神秘。 如果你已经啃完了一本C语言教材,想要更进一步,那么有两本书你一定要看。首先是《C Traps and Pitfalls》(中译名《C陷井与缺陷》),很薄的一本小册子,内容非常非常地有趣。要注意一点,这本书是二十多年前写成的,里面提到的很多C语言的缺陷都已被改进,不过能够了解一些历史也不是什么坏事。然后你可以挑战一下《Expert C Programming》(中译名《C专家编程》),书如其名,这本书颇具难度,一旦你仔细读完并能透彻理解,你便可以放心大胆地在简历上写“精通C语言”了。 切记一个原则,不要读自己目前还看不懂的书,那是浪费生命。如果你看不懂,那你一定是缺失了某些必需基础知识。此时,你要仔细分析自己需要补充哪些内容,然后再去书店寻找讲述的这些内容的书籍。把基础知识补充完毕再回头来学习,才会真正的事半功倍。 二、Unix/Linux还是Windows,这是个很大的问题 不同的编程环境会造就出不同思维的程序员。Windows的程序员大多依赖集成开发环境,比如Visual Studio,而Unix程序员更加钟爱Makefile与控制台。显而易见,集成开发环境更容易上手,在Windows上学习C语言,只需要会按几个基本的Visutal C++工具栏按钮就可以开始写Hello, World!了,而在Unix下,你需要一些控制台操作的基本知识。有人也许认为Unix的环境更简洁,但习惯的力量是很大的,大家都很熟悉Windows的基本操作,而为了学习C语言去专门装一个Unix系统,似乎有点不划算。 对于一个只懂得Windows基本操作、连DOS是什么都不知道的新手而言,尽快做一些有趣而有意义的事情才是最重要的。用C语言写一个小程序远比学习ls、cat等命令有趣,况且我们要专注于C语言本身,就不得不暂时忽略一些东西,比如编译链接的过程、Makefile的写法等等等等。 所以我建议初学者应该以Visual C++ 6.0(不是VisualC++ .NET)或者Dev C++作为主要的学习环境,而且千万不要在IDE的使用技巧上过多纠缠,因为今后你一定要转向Unix环境的。Visual C++ 6.0使用很方便,调试也很直观,但其默认的编译器对C标准的支持并不好,而Dev C++使用gcc编译器,对C99的标准都支持良好。使用顺带提一下,很多大学的C语言课程还在使用Turbo C 2.0作为实验环境,这是相当不可取的,原因其一是TC 2.0对C标准几乎没有支持,其二是TC 2.0编译得到的程序是16位的,这对今后理解32位的程序会造成极大的困扰(当然,用djgpp之类的东西可以使TC

c 程序的书写格式

c 程序的书写格式 c++程序的书写格式2010-05-18 17:03文件结构文件头注释所有C++的源文件均必须包含一个规范的文件头,文件头包含了该文件的名称、功能概述、作者、版权和版本历史信息等内容。标准文件头的格式为:/*!@file*PRE模块名:文件所属的模块名称文件名:文件名相关文件:与此文件相关的其它文件文件实现功能:描述该文件实现的主要功能作者:作者部门和姓名版本:当前版本号--备注:其它说明--修改记录:日期版本修改人修改内容YYYY/MM/DD X.Y作者或修改者名修改内容/PRE*/如果该文件有其它需要说明的地方,还可以专门为此扩展一节:/*!@file*PRE模块名:文件所属的模块名称文件名:文件名相关文件:与此文件相关的其它文件文件实现功能:描述该文件实现的主要功能作者:作者部门和姓名版本:当前版本号--备注:其它说明--修改记录:日期版本修改人修改内容YYYY/MM/DD X.Y作者或修改者名修改内容/PRE**项目1-项目1.1-项目1.2==*项目2-项目2.1-项目2.2.*/每行注释的长度都不应该超过80个半角字符。还要注意缩进和对其,以利阅读。关于文件头的完整例子,请参见:文件头例子关于文件头的模板,请参见:文件头注释模板头文件头文件通常由以下几部分组成:文件头注释每个头文件,无论是内部的还是外部的,都应该由一个规范的文件头注释作为开始。预处理块为了防止头文件被重复引用,应当用ifndef/define/endif结构产生预处理块。函数和类/结构的声明等声明模块的接口需要包含的内联函数定义文件(如果有的话)如果类中的内联函数较多,或者一个头文件中包含多个类的定义(不推荐),可以将所有内联函数定义放入一个单独的内联函数定义文件中,并在类声明之后用 "#include"指令把它包含进来。头文件的编码规则:引用文件的格式用 #include filename.h格式来引用标准库和系统库的头文件(编译器将从标准库目录开始搜索)。用#include"filename.h"格式来引用当前工程中的头文件(编译器将从该文件所在目录开始搜索)。分割多组接口(如果有的话)如果在一个头件中定义了多个类或者多组接口(不推荐),为了便于浏览,应该在每个类/每组接口间使用分割带把它们相互分开。关于头文件的完整例子,请参见:头文件例子内联函数定义文件如上所述,在内联函数较多的情况下,为了避免头文件过长、版面混乱,可以将所有的内联函数定义移到一个单独的文件中去,然后再用#include指令将它包含到类声明的后面。这样的文件称为一个内联函数定

相关文档