文档库 最新最全的文档下载
当前位置:文档库 › 乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定
乙酸乙酯皂化反应速率常数的测定

实验九 乙酸乙酯皂化反应速率常数的测定

1 前言

1.1 实验目的

测定乙酸乙酯皂化反应的速率常数。 1.2 实验内容

在30℃时,用电导率仪先测定40ml0.0 1mol ·L -1

的NaOH 溶液的电导率,

然后将20ml 0.02mol ·L -1的NaOH 溶液与20ml 0.02mol ·L -1的乙酸乙酯溶液混合,测定其电导率随时间的变化关系;然后将实验温度升高到37℃,重复上述实验。 1.3 实验原理

对于二级反应

A +

B → 产物

如果A ,B 两物质起始浓度相同,均为a ,则反应速率的表示式为

2

x -a )

(k dt

dx = (1) 式中:x 为t 时刻生成物的浓度。式(1)定积分得:

??

??

??

-=)(1x a a x t k (2)

x

a x -对t 作图,若所得为直线,证明是二级反应。并可以从直线的斜率求

出k 。所以在反应进行过程中,只要能够测出反应物或生成物的浓度,即可求得该反应的速率常数k 。

温度对化学反应速率的影响常用阿伦尼乌斯方程描述

2ln RT E dT

k

d a = (3) 式中:Ea 为反应的活化能。假定活化能是常数,测定了两个不同温度下的速率常数k(T 1)和k(T 2)后可以按式(3)计算反应的活化能Ea 。

???? ??-?=12

2112)()

(ln

T T T T R T k T k E a (4)

乙酸乙酯皂化反应是一个典型的二级反应,其反应式为:

OH H C COO CH OH H COOC CH 523523+?+--

反应系统中,OH -电导率大,CH 3COO -电导率小。所以,随着反应进行,电导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显著降低。对于稀溶液,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。若乙酸乙酯皂化反应在稀溶液中进行,则存在如下关系式:

a A 10=κ (5)

a A 2=∞κ (6) x A x a A t 21)(+-=κ (7)

式中:A 1,A 2分别是与温度、电解质性质和溶剂等因素有关的比例常数;κ0、κt 、κ∞分别为反应开始、反应时间为t 和反应终了时溶液的总电导率。

由式(5)—式(7),得

a

x t

???? ??--=∞κ

κκκ00 (8)

代入式(2)并整理,得

∞+??

?

??-=

κκκκt

ak t

t 01 (9)

因此,以t κ对

t

t

κκ-0作图为一直线即说明该反应为二级反应,且由直线的斜

率可求得速率系数k ;由两个不同温度下测得的速率系数k (T 1)与k(T 2),可以求出反应的活化能Ea 。由于溶液中的化学反应实际上非常复杂,如上所测定和计算的是表观活化能。

2 实验方法

2.1 实验仪器和试剂

仪器 DDS-llA 型电导率仪1台;自动平衡记录仪1台;恒温水浴1套;DJS-1型电导电极1支;双管反应器2只、大试管1只;100mL 容量瓶1个;20mL 移

液管3支;0.2mL 刻度移液管1支。

试剂 0.0200mol/L 的NaOH 溶液;乙酸乙酯(AR );新鲜去离子水或蒸馏水。 2.2 实验步骤

1) 仪器准备:接通电导率仪的电源,校正电导率仪,正确选择其量程,并将电导率仪的记录输出与记录仪相连。

2) 配制乙酸乙酯溶液:用容量瓶配制0.0200mol/L 的乙酸乙酯溶液100mL 。乙酸乙酯密度与温度的关系式

ρ=924.54-1.168t-1.95×10-3t 2 (10) 其中ρ、t 的单位分别为kg/m 3和℃(需要乙酸乙酯约0.1762g )。已知室温等于23.8℃,计算得需要0.197ml 乙酸乙酯。

3) 0κ的测量。将恒温水浴调至30℃,用移液管吸取20mL0.200mol/L 的NaOH 溶液装入干净的大试管中再加入20mLH 2O ,将电导电极套上塞子,电极经去离子水冲洗并用滤纸吸干后插入大试管中,大试管放入恒温水浴恒温约10min ,将电导率仪的“校正测量”开关扳到“测量”位置,记录仪开始记录。 4) t κ的测定。将洁净干燥的双管反应器置于恒温水浴中,有移液管取20mL 0.200mol/L 乙酸乙酯溶液,放入粗管。将电极用电导水认真冲洗3次,用滤纸小心吸干电极上的水,然后插入粗管,并塞好。用另一支移液管取20mL

0.200mol/LNaOH 溶液放入细管,恒温约5min 。用洗耳球迅速反复抽压细管两次,将NaOH 溶液尽快完全压入粗管,使溶液充分混合。记录仪必须在反应前开始记录,大约20min 可以停止测量。

5) 重复以上步骤,测定37℃时反应的0κ与t κ。

3 结果与讨论

由实验室仪器读出室温为23.8℃,大气压为103.09kPa 。表1,表2中的第二列由记录仪采集,可见附图(t κ-t 关系图)上的数据。第一列时间并非直接由记录仪采集的数据读出,而是在t κ-t 关系图上找出最高点,记下最高点对应的时间,之后将各数据点对应的时间减去最高点对应的时间即为表中第一列t 。第三列中

的0κ同样由记录仪采集,见附图(0κ的测量),得30℃时,0κ=6.91格,37℃时,

0κ=7.45格。

注:附图分别为30℃时0κ的测量图、37℃时0κ的测量图、30℃时t κ-t 关系图、37℃时t κ-t 关系图。

表1 乙酸乙酯皂化反应动力学实验数据记录(30℃)

时间t/min 格子数t κ/格

(0κ—t κ)/ t

0.2910803.20 5.98 0.271875 4.02 5.81 0.258706 4.82 5.65 0.248963 5.45 5.54 0.240367 6.15 5.43 0.230894 6.83 5.33 0.222548 7.63 5.22 0.213630 8.40 5.12 0.205952 9.50 4.99 0.195789 10.2 4.92 0.189216 10.5 4.84 0.182727 10.9

4.79

0.177586

以表1中的第二列对第三列作图,得图1。

图1 30.00℃时t κ ~(0κ—t κ)/ t 图线

由图1知,实验的线性拟合较好,该反应为二级反应。由公式(9)得,图1中直线的斜率为

C

a ?30k 1

,在该实验中,a=0.01mol/L ,所以

。)(-1-1-130min mol L 890.80.01mol/L min 11.248/1k ??=?=?C 查阅文献得,30℃时

k=8.7916·mol -1·min -1,相对误差E=1.1%。

表2 乙酸乙酯皂化反应动力学实验数据记录(37℃)

时间t/min 格子数t κ/格

(0κ—t κ)/ t

0.4777781.35 6.91 0.466667 2.53 6.46 0.426877 3.67 6.09 0.395095 5.03 5.76 0.353877 7.08 5.38 0.305085 8.40 5.18 0.280952 10.2 4.95 0.253922 11.8 4.77 0.234746 13.2 4.66 0.218182 14.5 4.55 0.206207 16.0 4.45 0.193125 17.4 4.37 0.182184 18.7 4.29 0.173797 20.3 4.22 0.163547 21.2

4.17

0.158962

图2 37.00℃时t κ ~(0κ—t κ)/ t 图线

以表2中的第二列对第三列作图,得图2。 同样由公式(9)得,图2中直线的斜率为

C

a ?37k 1

,a=0.01mol/L ,所以。)(-1-1-137min mol L 96.120.01mol/L min 8394.7/1k ??=?=?C 查阅文献得,37℃时

k=13.4721·mol -1·min -1,相对误差E=3.8%。

由公式(4)计算,该反应的表观活化能

Ea = ln

(12.96/8.89)·8.314·303.15·310.15/(310.15-303.15)/1000= 43.6KJ·mol -1,查阅文献得,Ea =46.1KJ·mol -1,相对误差E=5.4%。

4 结论

乙酸乙酯皂化反应的速率常数:-1-130min mol L 890.8k ??=?C ,文献值为8.7916·mol -1·min -1,相对误差E=1.1%。-1-137min mol L 96.12k ??==?C ,文献值为13.4721·mol -1·min -1,相对误差E=3.8%。表观活化能Ea= 43.6KJ·mol -1,文献值为46.1KJ·mol -1,相对误差E=5.4%。

参考文献:

【1】 浙江大学化学系.2005.中级化学实验.第一版.北京:科学出版社

乙酸乙酯皂化反应速率常数的测定

宁波工程学院 物理化学实验报告 专业班级化本092姓名周培实验日期2011年5月19日 同组姓名郑志浩,王镇指导老师王婷婷,刘旭峰 实验名称实验九、乙酸乙酯皂化反应速率常数的测定 一、实验目的 1、了解用电导法测定乙酸乙酯皂化反应的速率系数和活化能。 2、了解二级反应的特点,学会用图解法求二级反应的速率系数。 3、掌握电导率仪的使用方法。 二、实验原理 1、二级反应的动力学方程 A+B→产物 t=0a a t=t a-x a-x -dc A/dt=-d(a-x)/dt=dx/dt=k(a-x)2 定积分得:k=x/[ta(a-x)]① 以x/(a-x)~t作图若所得为直线,证明是二级反应,并从直线的斜率求k。 如果知道不同温度下的速率常数k(T1)和k(T2),按阿仑乌斯方程计算出该反应的活化能Ea Ea=ln k(T1)/k(T2)*R[T1T2/(T2-T1)]② 2、乙酸乙酯皂化反应是二级反应,反应式: CH3COOC2H5+NaOH→CH3COONa+C2H5OH t=0a a00 t=t a-x a-x x x t=∞00a a 反应前后CH3COOC2H5和C2H5OH对电导率的影响不大,可忽略,故反应前只考虑NaOH的电大率κ,反应后只考虑CH3COONa的电导率κ。对稀溶液而言,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。 有一下关系: κ0=A1*aκ∞=A2*aκt=A1*(a-x)+A2*x 有三式得:x=[(κ0-κt)/(κ0-κ∞)]*a,将其代入①中 得k=[(κ0-κt)/(κ0-κ∞)ta] 重新排列得:κt=(κ0-κt)/kta+κ∞ 因此,以κt~(κ0-κt)/t作图为一直线即为二级反应,并从直线的斜率求出κ

蔗糖水解反应速率常数的测定实验报告记录

蔗糖水解反应速率常数的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

序号: 6 物理化学实验报告 姓名:××× 院系:化学化工学院 班级:××× 学号:××××××× 指导老师:××× 同组者:×××××××××××

实验项目名称:蔗糖水解反应速率常数的测定 一、实验目的 (1)根据物质的旋光性质研究蔗糖水解反应,测定其反应的速率常数和半衰期; (2)了解旋光仪的基本原理,掌握其使用方法。 二、实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应方程式为 C 12H 22O 11 + H 2O === C 6H 12O 6 + C 6H 12O 6 为使水解反应加速,反应常常以H+为催化剂,故在酸性介质中进行。由于在较稀的蔗糖溶液中,水是大量的,反应达到终点时,虽有部分水分子参加反应,但可认为其没有改变。因此,在一定的酸度下,反应速度只与蔗糖的浓度有关,所有本反应可视为一级反应。该反应的速度方程为: -dt dc =KC 积分后: ln C C O =Kt 或 ㏑C=-k t+㏑C 。 式中,C 。为反应开始时蔗糖的浓度;C 为时间t 时的蔗糖浓度,K 为水解反应的速率常数。 从上式中可以看出,在不同的时间测定反应物的浓度,并以㏑C t 对t 作图,可得一条直线,由直线斜率即可求出反应速率常数K 。然而反应是不断进行的,要快速分析出某一时刻反应物的浓度比较困

难。但根据反应物蔗糖及生成物都具有旋光性,且他们的旋光性不同,可利用体系在反应过程中旋光度的改变来量度反应的进程。 旋光度与浓度呈正比,且溶液的旋光度为各组分的旋光度之和(加和性)。若以α0,αt,α∞分别为时间0,t,∞时溶液的旋光度,则可导出: C0∝(α0-α∞),C t∝(αt-α∞) 所以可以得出: ㏑(α0-α∞)/(αt-α∞)=k t 即:㏑(αt-α∞)=-k t﹢㏑(α0-α∞) 上式中㏑(αt-α∞)对t作图,从所得直线的斜率即可求得反应速度常数K。 一级反应的半衰期则用下式求取: t=㏑2/k=0.693/k 2/1 三、仪器和试剂 仪器:自动指示旋光仪一台;移液管(25 mL)2支;超级恒温槽1台;烧杯(150 mL)2个;恒温水浴锅1台;吸耳球1个;秒表1块;容量瓶(50mL)1个;锥形瓶(100 mL)2个; 试剂:蔗糖(AR);2 mol/L的盐酸溶液。 四、实验操作 1、温度设定与准备

电导法测定乙酸乙酯的皂化反应速率常数

华南师范大学实验报告 学生姓名 甘汉麟 学 号 20112401028 专 业 化学 (师范) 年级、班级 11化 5 课程名称 物理化学实验 实验指导老师 林 晓 明 试验时间 2014 年 3 月 26 日 试验项目电导法测定乙酸乙酯皂化反应的速率常数 【实验目的】 ①学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; ②了解二级反应的特点,学会用图解计算法求二级反应的速率常数; ③熟悉电导仪的使用。 【实验原理】 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 c 0 c 0 0 0 t=t c t c t c 0 - c t c 0 -c t t=∞ 0 0 c 0 c 0 则2kc dt dc =- ,c 为反应任一时刻的浓度。积分并整理得速率常数k 的表达式为: t 0t c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH - 、CH 3COO - ,而Na + 反应前后不变,OH - 的迁移率远远大于CH 3COO - ,随着反应的进行, OH - 不断减小,CH 3COO - 不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO - 的浓度成正比。 令κ0、κt 和κ∞分别为0、t 和∞时刻的电导率,则: t=t 时,c 0 – c t = K (κ0 - κt ) K 为比例常数 t→∞时,c 0 = K (κ0 - κ∞) 联立以上式子,整理得:

乙酸乙酯皂化反应速率常数测定

乙酸乙酯皂化反应速率系数测定 :腾 学号:2012011864 班级:化21 同组人:田雨禾 实验日期:2014年10月23日 提交报告日期:2014年10月30日 指导教师: 麻英 1 引言 1.1 实验目的 (1)学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 (2)了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 (3)进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 1.2 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc -=k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc - =k dt c ? ? (2) 20 11 -=k t c c (3) 式中: 为反应物的初始浓度;c 为t 时刻反应物的浓度; 为二级反应的反应速率常数。 将1/c 对t 作图应得到一条直线,直线的斜率即为 。 对于大多数反应,反应速率与温度的关系可以用阿累经验方程式来表示: a E ln k=lnA-RT (4) 式中: 乌斯活化能或反应活化能;A 指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21 T a 21T 12k E T -T ln = k R T T ?? ??? (5) 由(5)就可以求出活化能。

乙酸乙酯皂化反应是一个典型的二级反应, 325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k = t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设 、 和 分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得:

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; 2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数; 3.熟悉电导仪的使用。 二、实验原理 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0 速率方程式 2kc dt dc =- ,积分并整理得速率常数k 的表达式为: t 0t 0c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反 应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。 令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则: t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:

∞+-?= κκκκt kc 1t 00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对t t 0κκ-作图,可得一直线,则直线斜率0 kc 1 m = ,从而求得此温度下的反应速率常数k 。 (2)活化能的测定原理: )11(k k ln 2 1a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。 三、仪器与试剂 电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支 氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤 1.标定NaOH 溶液及乙酸乙酯溶液的配制 计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。计算出配制与NaOH 等浓度的乙酸乙酯溶液100mL 所需化学纯乙酸乙酯的质量,根据不同温度下乙酸乙酯的密度计算其体积(乙酸乙酯的取样是通过量取一定量的体积),于ml 100容量瓶中加入约3/2容积的去离子水,然后用1mL 移液管吸取所需的乙酸乙酯加入容量瓶中,加水至刻度,摇匀。 2.调节恒温水浴调节恒温水浴温度为30℃1.0±℃。 3.电导率0K 的测定 用mL 20移液管量取去离子水及标定过的NaOH 溶液各mL 20,在干燥的100mL 烧杯中混匀,用少量稀释后的NaOH 溶液淋洗电导电极及电极管3次,装入适量的此NaOH 溶液于电极管中,浸入电导电极并置于恒温水浴中恒温。将

实验五化学反应速率和速率常数的测定

实验五化学反应速率和速率常数的测定 一、预习要点 ①化学反应速率基本概念以及浓度、温度和催化剂对反应速率的影响。 ②本实验测定反应速率及速率常数的基本原理、实验方法。 二、目的要求 ①了解浓度、温度和催化剂对反应速率的影响。 ②测定过二硫酸俊与碘化钾反应的平均反应速率,并计算不同温度下的反应速率常数。 三、实验原理 在水溶液中,过二硫酸俊与碘化钾发生如下反应: (NH 4)2 S2O8+3KI ——(NH 4)2SO4 + K2SO4 + KI 3 它的离子反应方程式为: S2O8+3I-——2SO4+I3- 因为化学反应速率是以单位时间内反应物或生成物浓度的改变值来表示的,所以上述反 应的平均速率为: 2 2 2 、 C(S2O8 )1 C(S2O8 )2 C(S2O8 ) tT^1 t 式中,△ C(S2O82-)为S2O82-在At时间内浓度的改变值。为了测定出△ C(S2O82-),在混合(NH 4)2 S2O8和KI溶液时,用淀粉溶液作指示剂,同时加入一定体积的已知浓度的N32S2O3,这样 溶液在反应(1)进行的同时,也进行着如下反应: S2O32-+I3-——S4O62-+3I- 反应(2)进行得非常快,几乎瞬间完成,而反应(1)却慢得多,于是由反应(1)生成的碘立 刻与S2O32-反应,生成了无色的S4O62-和I-,因此在开始一段时间内,看不到碘与淀粉作用 而显示出来的特有的蓝色,但是,一旦Na2S2O3耗尽,则继续游离出来的碘,即使是微量的,也能使淀粉指示剂变蓝。所以蓝色的出现就标志着反应(2)的完成。 从反应方程式⑴和⑵的关系可以看出,S2O82-浓度的减少量等于S2O32-减少量的一半, 2 c(S2O8 )c(S2O;) 2 因为S2O32-在溶液显蓝色时几乎完全耗掉,故^ C(S2O32-)实际上就等于反应开始时 Na2S2O3的浓度,由于本实验中的每份混合溶液只改变(NH4)2S2O8和KI的浓度,而使用的Na2S2O3的起始浓度都是相同的,因此到蓝色出现时已耗去的S2O82-即^ C(S2O82-)也都是相同的。这样只要记下从反应开始到溶液出现蓝色所需要的时间(△ t),就可以求算在各种不同浓 2 度下的平均反应速率C(S 2°8) t 实验证明:过二硫酸俊与碘化钾的反应速率和反应的浓度的关系如下: 2 值。8 ) t kc(S2。;)C(I ) k式中的为反应速率常数,C(S2O82-)和C(I-)分别为两种离子的初始浓度(mol ? L-1),利用 (3)即可求算出反应速率常数k值。 四、实验用品 量筒(10mL),烧杯(50mL),秒表,温度计(0?100C)。

乙酸乙酯皂化反应的速率常数

实验六 电导法测定乙酸乙酯皂化反应的速率常数 一、实验目的 1. 用电导法测定乙酸乙酯皂化反应速率常数; 2. 了解二级反应的特点,学会应用图解法求二级反应速率常数; 3. 通过不同温度下测量速率常数,培养学生解决实验实际问题的能力和使用计算机软件来处理问题的能力。 二、预习要求 1. 了解速率常数随温度的变化关系以及二级反应的特点; 2. 掌握活化能的概念及计算方法; 3. 正确使用电导率仪。 三、实验原理 乙酸乙酯皂化反应是一个典型的二级反应: CH 3COOC 2H 5 + OH -—→CH 3COO -+ C 2H 5OH 其反应速度可用下式表示: t x d d =k 2()c x - 积分得 kt =() x c c x - 随着皂化反应的进行,溶液中导电能力强的OH -逐渐被导电能力弱的CH 3COO -所取代,溶液导电能力逐渐降低。 本实验用电导率仪跟踪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 设G 0、G t 、G ∞分别表示反应起始时、反应时间t 时、反应终了时的电导, 则 t=t x = β(G 0 - G t ) t=∞ c =β(G t - G ∞) kt =0()()t t G G x c c x c G G ∞-=-- 或者0() t t G G ckt G G ∞-=- 由于电导率与电导成正比(κ=G ?K cell )代人上式得, o t t κκκκ∞--=ckt 由上式可看出,作 o t t κκκκ∞ --~t 图,得一直线,其斜率为1ck ,由此可求出反应的速率常数k 。

四、仪器和试剂 DZDS-A 型电导率仪一台;恒温槽一套;移液管若干;250 ml 容量瓶一个;100ml 锥形瓶二个;烧杯一个 NaOH 标准溶液(0.01 mol/dm 3,0.02 mol/dm 3新鲜并标定);乙酸乙酯(A.R, 0.02 mol/dm 3)和乙酸钠(0.01 mol/dm 3) 五、实验步骤 1. 调节恒温水浴的温度至25 o C ,并将电导率仪接通电源预热。 2. κ0、κ∞的测定:用两个单口电导池分别盛入0.0100 M 的氢氧化钠35 ml (用以 测定κ0)和0.0100 M 的醋酸钠35 ml (用以测定κ∞),恒温10分钟后测其溶液的 电导值,每2分钟读一次数,读三次。 3. κt 的测定:双口电导池A 支管内准确盛入25 ml 0.0200 M 的氢氧化钠溶液,B 支管内准确盛入25 ml 0.0200 M 的乙酸乙酯,与测κ0、κ∞的溶液同时放入水浴中 恒温10 min 并记下此时温度。 用洗耳球将B 管溶液压入A 管,压入一半时开始计时,反复压几次使溶液混合均匀,混合后要立即用橡皮塞塞住瓶口,并观察液面是否淹没电极,并立即开始测其电导值。每2分钟读一次数,直到电导值变化不大为止。 4. 测定完κ0、κ∞的溶液不要弃去,待测定κt 后再测量一次,以验证及供另一温度下测定之用。用同样方法测定另一温度下的κ0、κ∞、κt 。 5. 实验完成后,将电极用电导水淋洗干净,并浸入盛电导水的烧杯中保存。 六、数据记录与处理 以o t t κκκ∞--对t 作图,由所得直线斜率求出25 o C 和30 o C 时乙酸乙酯皂化反应的速率常数k 。 根据Arrhenius 公式计算可求得反应活化能: 221112ln a E k T T k R T T ??-= ???? 七、注意事项 1. 动力学速率常数与温度有关,反应液加入反应器应恒温3~5 min ,不可立即测量。 2. 电导率仪的使用方法:每次更换溶液时要先用蒸馏水淋洗电极,再用待测液仔细淋洗电极后再进行测量。不可用纸擦拭铂黑电极。 3. 在实验中最好用煮沸且置于密闭容器中的重蒸馏水,同时在配好的NaOH 溶液上装配碱石灰吸收管,以防止空气中CO 2的溶入。

一级反应速率常数测量

一级反应速率常数测量 一、 实验原理 1. 蔗糖水解反应是典型的一级,是一个准一级反应而已。 C 12H 22O 11+H 2O (酸催化)= C 6H 12O 6(葡萄糖)+C 6H 12O 6(果糖) 本是二级反应,由于水是大量的, 成为准一级反应。 -dc/dt =k 1c 积分: lnc = k 1t + B 或 lnc 0/c = k 1t 2. 旋光度α与浓度的关系。 20℃时,蔗糖的比旋光度〔α〕=66.6°;葡萄糖比旋光度〔α〕=52.5°; 果糖的比旋光度〔α〕=-91.9° 蔗糖水解反应,开始体系是右旋的角度大,随反应进行,旋光角度减少,变成左旋。旋光角度α与浓度关系式:α=〔α〕Lc L 是旋光管长度,〔α〕仅与温度有关,当温度,旋光管长度一定,α与浓度c 成正比。可写成 α=Kc 3 .用α表示的一级反应动力学方程: A ――→ B + D t=0 C 0 α0=K A C 0 (1) t=t CA C B =C 0-C A ; C D =C 0-C A αt =αA +αB +αD =K A C A +(K B +K D ) (C B +C D ) (2) t=∞ 0 C 0 ; C 0 α∞=(K B +K D )C 0 (3) (1)-(3): α0-α∞=(K A -K B -K D )C 0 C0=(α0-α∞)/(K A -K B -K D ) (2)-(3):α0-αt =(K A -K B -K D )C A C A =(α0-αt )/(K A -K B -K D ) 代入一级反应动力学方程: ∝-∝-==ααααt A c c t k 001ln ln 或 B t k c +-=1ln 得到 ')ln(1B t k t +-=-∝αα 二、仪器药品(略)

乙酸乙酯皂化反应速率常数的测定

工程学院物理化学实验报告— 实验名称乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.了解用电导法测立乙酸乙酯皂化反应速率常数和活化能: 2.了解二级反应的特点,学会用图解法求二级反应的速率常数; 3.掌握电导率仪的使用方法。 二、实验原理 1.二级反应动力学方程 A 4? B->产物 t=0 a a t=t a-x a-x -dc A/dt=-d(a-x)/dt=dx/dt=k(a-x) (2.9.1) 定积分得:kt=x/a(a-x) (2.9.2) 以x/(a-x)对t作图,若所得为一直线,证明是二级反应,由斜率即可求出反应速率常数k值如果知道不同温度下的速率常数k(T】)和k(T2),按阿仑尼乌斯方程计算岀该反应的活化能Ea?Ea=ln( k(T2)/k(TJ) xRTi T2/ (T2-T J)(2.93) 2.乙酸乙酯皂化反应是二级反应,反应式为: CH3COOC2H5+NaOH T CH3COONa+ C2H5OH t=0a a00 t=t a-x a-x X X (Toe00a a iq)=Ara K QO=A2 * a K l=Ai(a-x)+A2x 由上三式得:x=(Ku-K()a/ (KO-K?)>代入式(2.9.2),得 K=(KO-Kl) /ta(Ki-Kx) (2.9.4) 重新排列得:Z N KO-K O/kat g (2.9.5) 因此,以z对(KO-K.) /t作图为一直线即为二级反应,由斜率即可求岀反应速率常数k值: 由两个不同温度下测得的速率常数k(「)和k(T2),按式(2.93)计算出该反应的活化能Ea.

三、仪器和试剂 1.仪器:数字电导率仪1台,恒温水槽1套,叉形电导管2只,移液管(10ml,胖肚)3根; 2.药品:乙酸乙酯标准溶液(0.0212 mol-dnr3), NaOH标准溶液(0.0212 mol dml。 四、实验步 1.调节恒温槽 调肖温度为25°C,同时电导率仪提前打开预热。 2.Ko的测定 分别取10ml蒸餾水和10ml NaOH标准溶液,加到洁净干燥的叉形管中充分混匀,然后将其置于 25°C恒温槽中,恒温5min,并接上电导率仪,测其电导率值心。 3.z的测定 在另一支叉形管的直支管中加10ml CH3COOC2H5标准溶液,侧支管中加10ml NaOH标准溶液,放入25°C恒温5min后,将其混合均匀并立即记时,同时用该溶液冲洗电极三次,开始测 量其电导率值(由于反应为吸热反应,开始时会有所降低,因此一般从第6min开始读数)当反 应进彳亍6min, 9min, 12min, 15min, 20min, 25min, 30min, 35min, 40min时各测电导率一次,记录电 导率M及时间t。 反应结束后,倾去反应液,洗净电导池及电极,将钳黑电极浸入蒸慵水中。 4.调节恒温槽温度为35°C,重复上述步骤测左其心和M ,但在测圮时是按照进行4min, 6min, 8min. 10min, 12min, 15min> 18min, 21 min, 24 min, 27min, 30min 时测其电导率。 五、数据记录与处理 室温:24.9C 大气压力:100.46 kPa 初始浓度:C CH3COOC2H5=0.0212 mol? dm' C Naon=0.0212mol dnr3 ,

乙酸乙酯皂化反应速率常数的测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:乙酸乙酯皂化反应速率常数的测定应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxx 指导老师:李旭老师 实验日期: 2013-10-29 湘南学院化学与生命科学系

一、实验目的: 1、了解测定化学反应速率常数的一种物理方法——电导法。 2、了解二级反应的特点,学会用图解法求二级反应的速率常数。 3、掌握DDS-11A 型数字电导率仪和控温仪使用方法。 二、实验原理: 1、对于二级反应:A+B →产物,如果A ,B 两物质起始浓度相同,均为a ,则反应速率的表示式为 2)(x a K dt dx -= (1) 式中x 为时间t 反应物消耗掉的摩尔数,上式定积分得: x a x ta K -= ·1 (2) 以 t x a x ~-作图若所得为直线,证明是二级反应。并可以从直线的斜率求出k 。 所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。 如果知道不同温度下的速率常数k (T 1)和k (T 2),按Arrhenius 公式计算出该反应的活化能E ??? ? ??-?=122112)() (ln T T T T R T K T K E a (3) 2、乙酸乙酯皂化反应是二级反应,其反应式为: OH -电导率大,CH 3COO -电导率小。因此,在反应进行过程中,电

导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显著降低。对稀溶液而言,强电解质的电导率L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式: a A L 10= (4) a A L 2=∞ (5) x A x a A L t 21)(+-= (6) A 1,A 2是与温度、电解质性质,溶剂等因素有关的比例常数,0L , ∞L 分别为反应开始和终了时溶液的总电导率。t L 为时间t 时溶液的总 电导率。由(4),(5),(6)三式可得: a L L L L x t ·0 0??? ? ??--=∞ 代入(2)式得: ??? ? ??--=∞ L L L L a t K t t 0·1 (7) 重新排列即得: ∞+-= L t L L k a L t t 0·1 三、实验仪器及试剂 DDS-11A 型数字电导率仪1台(附铂黑电极1支),恒温槽1台, 秒表1只,电导池3支,移液管3支;0.0200mol /L 乙酸乙酯(新配的),O.0200mol /L 氢氧化钠(新配的)

丙酮碘化反应速率常数的测定讲义

丙酮碘化反应速率常数的测定 一、实验目的 1、掌握利用分光光度法测定酸催化时丙酮碘化反应速度常数及活化能的实验方法。 2、加深对复杂反应特征的理解。 二、实验原理 酸溶液中丙酮碘化反应是一个复杂反应,反应方程为: CH 3H 3C O +I 2 H + CH 2I H 3C O +I -+H + H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以这是一个自动催化反应。 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,其动力学方程式为: r q p A A H c I c kc dt I dc dt dc )()()(22+=-=- =υ (1) 式中υ为反应速率,A c 、)(2I c 、)(+ H c 分别为丙酮、碘、盐酸的浓度(mol/L ),κ为反应速率常数,p 、q 、r 分别为丙酮、碘和氢离子的反应级数。速率、速率常数和反应级数均可由实验测定。 实验证明丙酮碘化反应是一个复杂反应,一般认为可分成两步进行,即: H + 2 C CH 2 H 3C OH C CH 2 H 3C O ( i ) C H 3C O C CH 2 H 3C OH I 2 CH 2I I - k 3 (ii) 反应(i)是丙酮的烯醇化反应,反应可逆且进行的很慢。反应(ii)是烯醇的碘化反应,反应快速且能进行到底。因此,丙酮碘化反应的总速度可认为是由反应(i)所决定。丙酮碘化反应对碘的反应级数是零级,故碘的浓度对反应速率没有影响,即动力学方程中q 为零,原来的速率方程可写成: r p A I H c kc dt dc )(2+=- =υ (2)

由于反应并不停留在一元碘化丙酮上,还会继续反应下去,故采取初始速率法,因此丙酮和酸应大大过量,而用少量的碘来限制反应程度。这样在碘完全消耗之前,丙酮和酸的浓度基本保持不变。由于反应速率与碘浓度无关(除非在酸度很高的情况下),因而直到碘全部消耗前,反应速率是常数。即: 常数==- =+r p A I H c kc dt dc )(2υ (3) 因此,将)(2I c 对时间t 作图为一直线,直线斜率即为反应速率。 为了测定指数p ,需要进行两次实验。先固定氢离子的浓度不变,改变丙酮的浓度,若分别用I 、II 表示这两次实验,使)(II A c =u )(I A c ,)(+ II H c = )(+ I H c ,由式子(3)可得: p I p I p p I r I p II r II p I II u A C A C u H C A kC H C A kC ===++ ) ()()()()()(υυ (4) u p I II lg lg =υυ (5) u p I II lg /lg υυ= (6) 同样方法可以求指数r 。使)(II A c =)(I A c I ,)(+ II H c =w )(+ I H c ,可得出: w r I III lg /lg υυ= (7) 根据式子(2),由指数、反应速率和浓度数据就可以计算出速率常数κ。由两个温度下的速率常数,由阿累尼乌斯公式: 1 21221lg 303.2k k T T T T R E -= (8) 求得化学反应的活化能E 。 因碘溶液在可见区有宽的吸收带,而在此吸收带中,盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度法直接测量碘浓度的变化,以跟踪反应进程。在本实验中,通过测定溶液510nm 光的吸收来确定碘浓度。溶液的吸光度A 与浓度c 的关系为: A=Kcd (9) 其中A 为吸光度,K 为吸光系数,d 为溶液厚度,c 为溶液浓度(mol/L )。在一定的溶质、

皂化反应速率常数的测定实验数据处理

五、实验记录和处理 1、将实验数据记录于下表一中。 室温:24℃ 大气压:100.42KPa k0(25℃)=2.510 k∞(25℃)=0.896 k0 2、以k t对(k0-k t)/t作图,根据直线斜率求速率常数值。拟合直线见图一、图二。

k t (k 0-k t )/t 图一25℃下k t ~(k 0-k t )/t 拟合直线 注:拟合度R 2=0.99089,说明直线拟合的很好,可以用于计算。 k t (k 0-k t )/t 图二35℃下k t ~(k 0-k t )/t 拟合直线

注:拟合度R 2=0.9694,说明直线拟合地较好,可以用于计算。 (1)由图一知,直线斜率为15.70158 NaOH (分析纯):0.0832g 定容体积:100mL NaOH 浓度:0.0208mol/L 稀释后NaOH 浓度:0.0104mol/L ,即a=0.0104mol/L 。 根据推导公式: k t = ∞+-?k t k k t 0ak 1 所以,25℃时反应速率常数k=6.1238L/(mol ·min) 查阅书籍:25℃时的反应速率常数标准值为:6.4254L/(mol ·min) 因此实验测量的相对误差为:4.69% (2)由图二知,直线斜率为8.23511, a=0.0104mol/L 。 根据推导, k t = ∞+-?k t k k t 0ak 1 所以,35℃时反应速率常数k=11.6761L/(mol ·min) 查阅书籍,35℃时的反应速率常数标准值为:11.9411L/(mol ·min) 因此实验测量的相对误差为:2.2% 3、计算反应活化能。 根据Arrhenius 公式: lnk 2/k 1=E(T 2-T 1)/(RT 1T 2) 所需物理量的相关数值见表二: 表二求活化能所需物理量的相关数值 将数值代入公式,求得:E=49.29kJ/mol 将反应速率常数标准值代入公式,求得反应活化能的标准值:E=47.34kJ/mol 因此实验测量的相对误差为:4.12%

乙酸乙酯皂化反应速率常数及活化能的测定

乙酸乙酯皂化反应速率常数及活化能的测定 一、实验目的 1.通过电导法测定乙酸乙酯皂化反应速度常数。 2.求反应的活化能。 3.进一步理解二级反应的特点。 4.掌握电导仪的使用方法。 二、实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应。其速率方程为 4.1 将速率方程积分可得动力学方程: 4.2 式中为反应物的初始浓度,为时刻反应物的浓度,为二级反应的速率常数。以 对时间作图应为一直线,直线的斜率即为。 对大多数反应,反应速率与温度的关系可用阿仑尼乌斯经验方程来表示: 4.3 式中为阿仑尼乌斯活化能或叫反应活化能,为指前因子,为速率常数。 实验中若测得两个不同温度下的速率常数,由(4.3)式很容易得到: 4.4 由(4.4)式可求活化能。 乙酸乙脂皂化反应是二级反应 = 动力学方程为 4.5 由(4.5)式可以看出,只要测出t时刻的x值,c0为已知的初始浓度,就可以算出速率常数k2。实验中反应物浓度比较低,因此我们可以认为反应是在稀的水溶液中进行,CH3COONa 是全部解离的。在反应过程中Na+的浓度不变,OH-的导电能力比CH3COO-的导电能力大,随着反应的进行,OH-不断减少,CH3COO-不断增加,因此在实验中我们可以用测量溶液的电导(G)来求算速率常数k2。 体系电导值的减少量与产物浓度x的增大成正比: 4.6

4.7 式中为时溶液的电导,为时间时溶液的电导,为反应进行完全(→∞)时溶液的电导。将(4.6)、(4.7)两式代入(4.5)式得: 整理得: 4.8 实验中测出及不同时刻所对应的,用对作图得一直线,由直线的斜率 可求出速率常数。若测得两个不同温度下的速率常数,后,可用(4.4)式求出该反应的活化能。 三、仪器与试剂 1、仪器 电导率仪(附DJS-1型铂黑电极)1台;电导池1只;恒温水浴1套;停表1只;移液管(10ml)3只;磨口三角瓶(200ml)1个。 2、药品 NaOH水溶液(0.0200mol·dm-3);乙酸乙酯(A.R.);电导水。 四、实验步骤 1. 配制溶液 配制与NaOH准确浓度(约0.0200mol· L-1)相等的乙酸乙酯溶液。其方法是:找出室温下乙酸乙酯的密度,进而计算出配制250mL0.0200mol· L-1(与NaOH准确浓度相同)的乙酸乙酯水溶液所需的乙酸乙酯的毫升数V,然后用lmL移液管吸取Vml乙酸乙酯注入250ml容量瓶中,稀释至刻度,即为0.0200 mol· L-1的乙酸乙酯水溶液。 2. 调节恒温槽 将恒温槽的温度调至(25.0±0.1)℃[或(30.0±0.1)℃]。 3. 调节电导率仪 4. 溶液起始电导率κ0的测定 在干燥的200ml磨口三角瓶中,用移液管加入50ml 0.0200 mol· L-1的NaOH溶液和同数量的电导水,混合均匀后,倒出少量溶液洗涤电导池和电极,然后将剩余溶液倒入电导池 (盖过电极上沿约2cm),恒温约15min,并轻轻摇动数次,然后将电极插入溶液,测定溶液电导率,直至不变为止,此数值即为κ0。 5. 反应时电导率κt的测定 用移液管移取50ml 0.0200mol· L-1的CH3COOC2H5,加入干燥的200mL磨口三角瓶中,用另一只移液管取50ml 0.0200 mol· L-1的NaOH,加入另一干燥的200ml磨口三角瓶中。将两个三角瓶置于恒温槽中恒温15min,并摇动数次。同时,将电导池从恒温槽中取出,弃去上次溶液,用电导水洗净。将温好的NaOH溶液迅速倒入盛有CH3COOC2H5的三角瓶中,同时开动停表,作为反应的开始时间,迅速将溶液混合均匀,并用少量溶液洗涤电导池和电极,然后将溶液倒入电导池(溶液高度同前),测定溶液的电导率kt,在4min、6min、8min、10min、12min、15min、20min、25min、30min、35min、40min各测电导率一次,记下kt和对应的时间t。 6. 另一温度下κ0和kt的测定 调节恒温槽温度为(35.0±0.1)℃[或(40.0±0.1)℃]。重复上述4、5步骤,测定另一温度下的κo和kt。但在测定κt时,按反应进行4min、6min、8min、10min、12min、15min、18min、21min、24min、27min、30min测其电导率。实验结束后,关闭电源,取出电极,用电导水洗净并置于电导水中保存待用。 五、数据的记录及处理

乙酸乙酯皂化反应速率常数测定实验报告

乙酸乙酯皂化反应速率常数测定实验报 告 学号:201114120222 基础物理化学实验报告 实验名称: 乙酸乙酯皂化反应速率常数的测定 应用化学二班 班级 03 组号 实验人姓名: xx 同组人姓名: xxxx 指导老师:

李旭老师 实验日期: 2013 3- - 10- -2 29 9 湘南学院化学与生命科学系 一、实验目的: 1、了解测定化学反应速率常数的一种物理方法——电导法。 2、了解二级反应的特点,学会用图解法求二级反应的速率常数。 3、掌握DDS-11A型数字电导率仪和控温仪使用方法。 二、实验原理: 1、对于二级反应:A+B→产物,如果A,B两物质起始浓度相同,均为a,则反应速率的表示式为 2) ( x a Kdtdx (1) 式中x为时间t反应物消耗掉的摩尔数,上式定积分得: x axtaK·1 (2) 以 tx ax~作图若所得为直线,证明是二级反应。并可以从直线的斜率求出 k 。

所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。 如果知道不同温度下的速率常数 k (T 1 )和 k (T 2 ),按Arrhenius公式计算出该反应的活化能 E 1 2 2 112) () (lnT TT TRT KT KE a (3) 2、乙酸乙酯皂化反应是二级反应,其反应式为: OH- 电导率大,CH3 COO- 电导率小。因此,在反应进行过程中,电导率大的OH- 逐渐为电导率小的CH3 COO- 所取代,溶液电导率有显著降低。对稀溶液而言,强电解质的电导率 L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式: a A L1 0 (4) a A L2 (5) x A x a A L t2 1) (

反应速率常数和活化能的测定[8]

实验一氯化一氯五氨合钴水合反应速率常数和活化能的测定[8] 1.实验仪器与药品 分析天平、722型分光光度计、秒表、恒温水浴、烧杯、25ML容量瓶、量筒、微型过滤装置、烘箱 CoCl2·6H2O(固体)、30%H2O2、0.3mol /L HNO3、6.0 mol/L HNO3 、NH4Cl (固体)、浓氨水、6mol/L HCl、浓HCl 、五水乙醇、丙酮、水。 2. 实验过程与方法 (1)[CoCl(NH3)5]Cl2的制备 在小烧杯中加入3ML浓氨水,再加入0.5g氯化铵搅拌使其溶解。在不断搅拌下分数次加入1g 研细的CoCl2·6H2O,得到黄红色[Co(NH3)6]Cl2沉淀。在不断搅拌下慢慢滴入1ML 30%H2O2溶液,生成深红色[Co(NH3)5H2O]Cl3溶液。慢慢注入3ML浓盐酸,生成紫红色[CoCl(NH3)5]Cl2晶体。将次混合物在水浴上加热15min 后,冷却至室温,用微型过滤装置抽滤。用2ML冰冷水洗涤沉淀,然后用2ML冰冷的6mol/L 盐酸洗涤,再用少量乙醇洗涤一次,最后用丙酮洗涤一次,在烘箱中于100---110℃干燥1---2h 。 (2)[CoCl(NH3)5]Cl2水合速度率常数和活化能的测定 称取0.0750g放入小烧杯中,加入少量水,置于水浴中加热使其溶解,再转移至25ML容量瓶中。然后加入1.25ML 6mol/LHNO3,用水稀释至刻度。溶液中配合物浓度为1.2×10-2mol/L,HNO3浓度为0.3mol/L。 将溶液分成二份,分别放入60℃和80℃的恒温水浴中,每隔5min测一次吸光度,当吸光度变化缓慢时,每隔10min测定一次,直至吸光度无明显变化为止。测定时以0.3mol/LHNO3溶液为参比液,用1cm 比色皿在550nm波长下进行测定。 以-ln(A-A∞)对t作图,由直线斜率计算出水合反应速率常数k。由60℃的k60和80℃的k80计算出水合反应的活化能。 ⒊实验结果与讨论 (1)实验结果 A∞=εcl=21.0×1×(0.75÷250.5÷0.025)=0.25

实验七 乙酸乙酯皂化反应速率常数的测定演示教学

实验七乙酸乙酯皂化反应速率常数的测定

实验七乙酸乙酯皂化反应速率常数的测定 [日期:2008-06-1 来源:作者:[字体:大中小] 8] 乙酸乙酯皂化反应速率常数的测定 一、目的及要求 1、测定皂化反应中电导的变化,计算反应速率常数。 2、了解二级反应的特点,学会用图解法求二级反应的速率常数。 3、熟悉电导率仪的使用。 二、原理 乙酸乙酯的皂化反应为二级反应: CH3COOC2H5+NaOH=CH3COONa+C2H5OH 在这个实验中,将CH3COOC2H5和NaOH采用相同的浓度,设a为起始浓度,同时设反应时间为t时,反应所生成的CH3COONa和C2H5OH的浓度为x,那么CH3COOC2H5和NaOH的浓度为(a-x),即 CH3COOC2H5+NaOH= CH3COONa+ C2H5OH t=0时, a a 0 0 t=t时, a-x a-x x x t→∞时, 0 0 a a 其反应速度的表达式为: dx/dt=k(a-x)2 k—反应速率常数,将上式积分,可得 kt=x/[a(a-x)] * 乙酸乙酯皂化反应的全部过程是在稀溶液中进行的,可以认为生成的CH3COONa是全部电离的,因此对体系电导值有影响的有Na+、OH-和CH3COO-,而Na+、在反应的过程中浓度保持不变,因此其电导值不发生改变,可以不考虑,而OH-的减少量和CH3COO-的增加量又恰好相等,又因为OH-的导电能力要大于CH3COO-的导电能力,所以体系的电导值随着反应的进行是减少的,并且减少的量与CH3COO-的浓度成正比,设L0—反应开始时体系的电导值,L∞—反应完全结束时体系的电导值,L t—反应时间为t时体系的电导值,则有 t=t时, x=k'(L0-L t) t→∞时, a=k'(L0-L∞) k'为比例系数。

过氧化氢催化分解反应速率常数的测定(精)

过氧化氢催化分解反应速率常数的测定 一、实验目的 (1)了解过氧化氢催化分解反应速率常数的测定方法。 (2)熟悉一级反应的特点,了解催化剂对反映速率的影响。 (3)掌握用图解计算法求反应速率常数。 二、实验用品 1、仪器 玻璃反应容器1个、水准瓶1个、50mL量气管1个、超级恒温槽1套、三通活塞1个、秒表1块、10mL量筒1个、5mL吸量管2支、胶管3m。 2、药品 质量分数为2%的H2O2溶液(新鲜配制)、0.1mol·L-1KI溶液。 三、实验原理与技术 过氧化氢很不稳定,在常温下的分解反应式为: H2O2→H2O+1/2O2(Ⅰ) 在KI作用下的分解反应机理为: H2O2+KI→KIO+ H2O (慢)(Ⅱ) KIO→KI+1/2O2 (快)(Ⅲ) (Ⅱ)式是H2O2分解的速控步骤,H2O2分解反应的反应速率方程为: -dc H2O2/d t=k′c H2O2·c KI (Ⅳ)

因为c KI近似不变,(Ⅳ)式可简化为: -dc H2O2/d t=k c H2O2 (Ⅴ) (其中k=k′c KI)。 H2O2的催化分解反应为一级反应,对(Ⅴ)式积分可得:ln(c/ c0)=-kt (Ⅵ) (其中c0为H2O2的初始浓度;c为反应至t时刻H2O2的浓度;k为H2O2的催化分解反应的速率常数)。 反应的半衰期为: t1/2= ln2/k=0.693/k (Ⅶ) 在等温等压条件下,在H2O2的分解反应中,氧气体积增长速率反映了H2O2的分解速率,本实验就是通过测定不同时刻放出的氧气的体积,间接地求出H2O2在相应时刻的浓度,这种方法称为物理法。 令ⅴ∞表示H2O2全部分解放出的O2的体积;ⅴt表示反应至t时刻放出的O2的体积;则由(Ⅰ)式可看出: 定温定压下反应产生的O2的体积ⅴt与被消耗的H2O2的浓度成正比,而ⅴ∞则与H2O2的初始浓度成正比,且两者比例系数为定值,则:c。∝ⅴ∞;c∝(ⅴ∞-ⅴt)。 代入(Ⅵ)式可得:ln[(ⅴ∞-ⅴt)/ⅴ∞]=-kt (Ⅷ) →ln(ⅴ∞-ⅴt)=-kt+lnⅴ∞(Ⅸ) (其中ⅴ∞可以通过外推法或加热法求得)。 四、实验步骤 (1)组装仪器(实验室工作人员已经装好)。

相关文档
相关文档 最新文档