文档库 最新最全的文档下载
当前位置:文档库 › Long-term organic matter effect and the response to compressive stress

Long-term organic matter effect and the response to compressive stress

Long-term organic matter effect and the response to compressive stress
Long-term organic matter effect and the response to compressive stress

Density and permeability of a loess soil:Long-term organic matter effect and the response to compressive stress

E.Arthur a ,?,P.Schj?nning a ,P.Moldrup b ,M.Tuller c ,L.W.de Jonge a

a Department of Agroecology,Faculty of Science and Technology,Aarhus University,Blichers Allé20,P.O.Box 50,DK-8830Tjele,Denmark

b Department of Biotechnology,Chemistry and Environmental Engineering,Aalborg University,Sohngaardsholmsvej 57,DK-9000Aalborg,Denmark c

Department of Soil,Water and Environmental Science,University of Arizona,Tucson,AZ 85721,USA

a b s t r a c t

a r t i c l e i n f o Article history:

Received 7May 2012

Received in revised form 30August 2012Accepted 3September 2012

Available online 18November 2012Keywords:Resistance Resilience Void ratio Compaction

Pore organisation Initial water content

Long-term ?eld trials provide an ideal means to assess effects of cultivation practises (e.g.,fertilisation,tillage,crop rotation etc.)on soil physical properties and soil fertility.To build upon the knowledge of the role of organic carbon (OC)and other soil properties on soil response to compressive stress,undisturbed soil cores were collected from a long-term fertilisation experiment in Bad Lauchst?dt in Germany,including combinations of animal manure and mineral fertilisers.The cores were drained to ?100hPa matric potential and exposed to uniaxial con ?ned compression (200kPa).Investigated indicators for compression response included compression index,precompression stress,and resistance and resilience indices based on measured soil physical properties (air permeability,and void ratio).Soil resilience was assessed following exposure of compacted cores to freeze –thaw (FT)and wet –dry (WD)cycles.The OC content increased with increased fertilisation and resulted in decreased initial bulk density,higher air-?lled and total porosities,and increased organisation of the pore space.Soil resistance decreased with increasing OC content but the correlation was not signi ?cant.However,initial bulk density (ρbi )and initial gravimetric water content (w i )were signi ?cant-ly positively correlated to the indices of soil compression resistance,with the effect of ρbi being signi ?cantly stronger.Signi ?cant recovery of air-?lled void ratio and air permeability was observed following exposure to FT and WD cycles,with the latter cycle showing higher recovery levels.The OC and ρbi signi ?cantly in ?uenced the magnitude of recovery following FT cycles,with ρbi showing contrasting trends on void ratio after both WD and FT cycles.It was concluded that the main drivers in ?uencing soil response to com-pressive stress are ρbi and w i .No direct in ?uence of OC was observed,rather the indirect effect of OC was seen through lower ρbi and greater w i associated with higher OC levels.Further studies are required to differ-entiate the relative effects of OC,ρbi and w i for variably-textured soils.

?2012Elsevier B.V.All rights reserved.

1.Introduction

Physical properties of soils only slowly change in response to cul-tivation practices like crop rotation and fertilisation;therefore long-term ?eld experiments are essential for assessment of the impact of agricultural management.For example,fertilisation studies conducted over a period of 100years in Askov in Denmark show a 23%increase in soil organic carbon (OC)relative to unfertilised condi-tions,a decrease in top-soil bulk density,and an increase in soil strength following amendment with animal manure (AM)or mineral

NPK fertilisers (Schj?nning et al.,1994).Investigating samples from the same site,Munkholm et al.(2002)revealed that aggregates from AM amended plots were more stable when wet and less stable when dry relative to aggregates from plots with no AM amendments,which showed higher stability under dry conditions.They attributed this to the differences in dispersible clay content.Additionally,Watts and Dexter (1997)found that increased OC,arising from 47years of different crop rotation practices,decreased the rate at which clay dispersibility increased with water content.They also showed that while aggregate stability decreased with declining OC,aggregate tensile strength was comparatively insensitive to changes in OC.For the more than 100years old Broadbalk wheat experiment at Rothamsted in the UK,Blair et al.(2006a)showed a signi ?cant impact of AM and mineral N fertilisation on soil aggregation and unsaturated hydraulic conductivity of a silt loam soil.For the 105years long ‘static fertilisation ’experiment in Bad Lauchst?dt (BL)in Germany,which involved application of different rates of sole AM and AM in combination with mineral NPK fertiliser,Koppen and Eich (1991)and Blair et al.(2006b)reported increasing soil OC

Geoderma 193–194(2013)236–245

Abbreviations:AM,animal manure;OC,organic carbon;k a ,soil air permeability;ε,air-?lled porosity;e T ,total void ratio;e a ,air-?lled void ratio;e w ,water-?lled void ratio;Ф,soil total porosity;ρbi ,initial dry bulk density;w i ,initial gravimetric soil water content;σ,applied stress;C c ,compression index;σpc ,precompression stress;PO,pore organisation index;RS,compression resistance index;RL,compression resilience index.

?Corresponding author.Tel.:+4587154756.

E-mail address:emmanuel.arthur@agrsci.dk (E.

Arthur).0016-7061/$–see front matter ?2012Elsevier B.V.All rights reserved.

https://www.wendangku.net/doc/f48506372.html,/10.1016/j.geoderma.2012.09.001

Contents lists available at SciVerse ScienceDirect

Geoderma

j ou r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /g e o d e r m a

and mean weight diameter of aggregates with increasing application rates of AM.For the BL experiment,Eden et al.(2012)also found an increase in air-?lled pore space with increasing OC content for a matric suction range of?100to?1000hPa,which they associated to differences in fertilisation.This gave rise to higher gas diffusivities for soils with high-organic carbon content.

Other long-term studies at various locations show similar results. For example,Rasool et al.(2008)reported an increase in total soil porosity and aggregation due to32years of fertilisation on a sandy loam in India.Yang et al.(2011)showed an increase in water retention in fertilised plots compared to control plots after19years in dry land areas of the Chinese Loess Plateau.A recent study has emphasised the importance of such long-term studies in improving our understanding of mechanisms and processes in soils(Petersen et al.,2012).To further increase our understanding of long-term effects on the physical state of a particular soil,evaluation and analysis of the resistance of developed physical properties to compaction stress and their recovery rate over time is of essence.Soil compaction resulting from agricultural opera-tions(tillage,fertiliser applications and harvesting with heavy machin-ery)leads to undesirable changes in soil physical properties with signi?cant agronomic consequences(Soane and van Ouwerkerk,1994).

In-depth knowledge about the effects of long-term fertilisation and associated increases in OC on the compressive behaviour of soils is crucial for prediction of the changes that might occur when soils are subjected to stresses imposed by agricultural machinery (McBride,1989).Besides potential resistance to externally imposed stress it is essential to also quantify the recovery(resilience)follow-ing stress cessation.Knowledge gained from studying OC effects on soil resistance and resilience will serve as a basis for development of indices for soil vulnerability.For example,soils with low compres-sion resistance may be endured if the resilience—ability to recover—is high,while low resistance in combination with a low resilience is problematic(Gregory et al.,2007).The major soil properties identi-?ed as affecting compaction resistance and/or resilience are texture (Horn,1988;McBride,1989),organic matter content(O'Sullivan, 1992;Soane,1990;Zhang et al.,1997),moisture content(Larson et al.,1980;McBride,1989),and bulk density(Keller et al.,2011;Paz and Guérif,2000).Soil properties especially sensitive to compaction are air permeability,gas diffusivity,and hydraulic conductivity (Arthur et al.,2012a;Berisso et al.,2012;Viklander,1998).

The objective of our study was to reveal long-term fertilisation effects on pore characteristics of a loess soil and to identify the main driver(s)controlling resistance and resilience of various soil physical properties(bulk density,air-?lled porosity,air permeability and com-ponents of the void ratio)to compaction stress based on samples col-lected from the Bad Lauchst?dt site in Germany.

2.Materials and methods

2.1.Experimental site

The Bad Lauchst?dt static fertilisation experiment is located in Saxony-Anhalt,Germany(51°24′N,11°53′E).The mean annual temperature and precipitation for the years1963–2008were9.7°C and585mm,respectively.The soil is a silt loam with26%clay (b2μm),65%silt(2–50μm),and9%sand(50–2000μm)on average. This long-term experiment on a Haplic Chernozem(Altermann et al., 2005)was established in1902and modi?ed in1978.A detailed description of all applied treatments is provided in K?rschens and Pfefferkorn(1998).

Sampling took place in spring2008in a?eld(strip3)with a 4-year crop rotation(winter wheat[Triticum aestivum],sugar beet [Beta vulgaris],spring barley[Hordeum vulgare],and potato[Solanum tuberosum])during the winter wheat season.Tillage operations included an offset disc plough(30-cm depth)followed by harrowing prior to sowing of the winter wheat.The main?eld is divided into three blocks differing in AM management(0,20,and30t ha?1per 2years).Each block has six sub-treatments with different mineral fertilisation strategies,which gives a total of18treatments.The experiment has no true replicates.The present study addressed six treat-ments:the3rates of AM,and with or without NPK mineral fertiliser. Note that,Mx denotes the amount of manure added and±indicates if NPK was added or not.For example,M2+means20t ha?1of AM in combination with NPK and M3?indicates30t ha?1of AM with no NPK.Further details and a schematic of the sampling areas used for this study are given in Eden et al.(2012)and Vendelboe et al.(2012).

2.2.Sampling and measurements

2.2.1.Soil properties before compression

For each plot,12undisturbed100cm3soil cores(height3.5cm; diameter6.1cm)were taken next to each other from two sampling locations(six from each location)about7m apart at a depth of6to 9.5cm.Soil water retention(using tension tables),and air permeabil-ity(k a)(using the steady state method of Iversen et al.(2001))were measured for all core samples at matric potential of?100hPa.Bulk soil sampled adjacent to cores sampling locations was analysed for soil texture,particle density,and soil OC content(Eden et al.,2012).

The air?lled porosity(ε)of each core was calculated from a com-bination of volumetric soil water content and total porosity(Φ) which in turn was derived from soil bulk density(ρb)and particle density.The soil pore organization index(PO)was calculated as k a/εat?100hPa.

https://www.wendangku.net/doc/f48506372.html,pression test

For the soil resistance and resilience to compression,the following properties were used as functional indicators:k a,total void ratio(e T), air-?lled void ratio(e a)and water-?lled void ratio(e w).After equili-bration of the soil cores at?100hPa,their weight and height(H) (using a specially constructed caliper with6replicate measurements) were determined to enable the calculation of e T,e a,and e w using Eqs.(1)to(3).

e T?

ρs H?d

ρb H

?1e1Te a?e T?ε100=Φ

eTe2T

e w?e T?e ae3T

where d is the displacement of the soil in cm after compression.For ini-tial e T,d=0.Theε100is the air-?lled porosity at?100hPa.The com-pression test involved subjecting soil cores at?100hPa to uniaxial con?ned compression to a maximum load of200kPa at a constant rate of2mm min?1(Koolen,1974)followed by unloading at the same rate.The data acquisition was equidistant on a time scale,with a constant strain of0.03mm s?1,giving about1300data points for constructing the stress–strain curve.This compression stress simulates that imparted by agricultural machinery(e.g.Gregory et al.,2007; Lamandéand Schj?nning,2008).The weight,d and ka of the soil cores were measured immediately(b2min)after compression and unloading.Thereafter,six of the12cores for each plot were subjected to two wet–dry(WD)cycles,comprising?5hPa in a sand tension table for24h,and drying at40°C for another24h followed by satura-tion(via capillary rise for24h)and re-equilibration at?100hPa.The remaining six cores were subjected to two freeze–thaw(FT)cycles comprising freezing at?10°C for24h and saturation/re-equilibrating at?100hPa in a sand tension table.The FT and WD cycles were repeat-ed once(total of two cycles)because the d,e T and ka of the soil did not differ signi?cantly(p>0.05by Student's t test)between the two cycles. After completion of the cycles,all soil cores were oven-dried at105°C for24h.

237

E.Arthur et al./Geoderma193–194(2013)236–245

To estimate the general resistance to compression,the compression index (C c )was used.To obtain C c ,we modelled the soil compression data (applied stress,σ,and e T )using the Gompertz (1825)model (Eq.(4))as suggested by Gregory et al.(2006)by non-linear regression analysis.

e T ?a tc exp ?exp b log 10σ?m eTeT?

e4T

where a ,b ,c and m are the free model parameters.Because of the low stress applied (200kPa)in the study,m was constrained at m ≤log 10200kPa=2.305during model ?tting to avoid obtaining erroneous values of C c when the in ?ection point falls outside the range of the measured data (Keller et al.,2011).The value of a approximately corresponds to the lower (?nal e T )asymptote,while a +c is the upper (initial e T )asymptote (Gregory et al.,2006).The C c was estimated using Eq.(5)as suggested by Gregory et al.(2006).C c ?

bc exp 1eT

e5T

Additionally,the pre-compression stress (σpc )was estimated as the stress at maximum curvature of the compression curve (Gregory et al.,2006;Keller et al.,2011).

When considering the speci ?c soil properties (k a ,e T ,e a ,e w ),the resistance (RS)and resilience (RL)of the measured variables for the different treatments were estimated using Eqs.(6)and (7)as pro-posed by Arthur et al.(2012b).RS ?100?C 0?D c j j

C 0 ?100

e6T

RL ?

D x ?D c j j

D c

?100e7T

where C 0is the original (no load)value,D c is the value immediately after compression and D x is the value following WD or FT cycles.For a given variable,the RS index is bound by 0(no resistance)and 100(full resistance);the RL index is bound by 0(no resilience)and an inde ?nite upper limit (interpretable as a percentage of the stressed state).We used Eq.(7)as an estimate of RL because for soils with dif-ferent initial functions/properties,we believe it better re ?ects how the function/property in question has improved as compared to the stressed situation.Other studies have used resilience indices taking into account the pre-stressed soil property (e.g.Arthur et al.,2012a;Grif ?ths et al.,2000).The RS and RL of various soil properties were then related to soil organic carbon,initial bulk density,and gravimet-ric water content to establish the dominant driver (s).2.3.Statistical analyses

For comparison of the soil properties before compaction,the Kruskal –Wallis non-parametric test in SPSS 19(SPPS Inc.,Chicago,USA)was used to test for signi ?cant differences (p b 0.05)between the means of all variables for the different experimental plots.This test was used because it does not assume normality in the data and is much less sensitive to outliers.When signi ?cant differences occurred among the experimental plots,the Mann –Whitney U test was used to differentiate between the means.The Gompertz model was parameterised using the non-linear regression analysis (solver)feature in Microsoft Excel.Linear and non-linear regression model tests were conducted with SPSS 19.The experimental design of the ?eld trial with no true replicates prevents a real test of the effects of fertilisation strategy on the soil parameters studied.Hence,we will discuss our results primarily in relation to OC and the associated soil bulk density,which displayed a true gradient mirroring the

long-term fertiliser application rates.The intra-plot variation between individual soil cores was used as residual error in the above-mentioned tests of differences between experimental plots.3.Results and discussion

https://www.wendangku.net/doc/f48506372.html,anic carbon,bulk density and soil pore characteristics at ?eld capacity

Application of organic and mineral fertiliser for more than a centu-ry resulted in a gradient in soil organic carbon (OC)from 1.5%to 2.4%with increasing rates of fertiliser application (Table 1;Eden et al.,2012)which is in close agreement with previous measurements (Blair et al.,2006a;Koppen and Eich,1991;K?rschens,2006).There was a signi ?cant negative correlation between OC and initial soil bulk density (ρbi ),with a corresponding increase in Φwith increasing OC (Fig.1)(Arvidsson,1998;Ekwue,1990;Soane,1990).This was expected due to the dilution effect caused by mixing of the added organic material with the denser mineral fraction of the soil (Bronick and Lal,2005;Courtney and Mullen,2008)and —more importantly —the OC-facilitated aggregation of organo-mineral com-plexes in higher OC soils (Tisdall and Oades,1982).However,as reported earlier (Eden et al.,2012),the M3+plot showed a higher ρbi than expected from the general trend with OC,similar to the M2?plot.This is due to the location of that plot within the larger ?eld.The M3+was the outermost plot and was located close to a farm road.Hence,the speed and perhaps depth of tillage operations for this plot most probably were different from the other plots.In addition,the speci ?c sampling location was likely affected by traf ?c to and from the experimental ?eld.Because of this,the exceptionally high ρbi of M3+was considered an outlier and not used in subse-quent regression tests where ρbi was expected to play a prominent role.To put the ρbi of the present study in context,we compared the ρbi with what was expected given the texture and OC content.Heinonen (1960),based on analysis of 111soils from Southern Fin-land,proposed a pedotransfer function for estimating the ρbi of ?elds which have naturally settled for 2–4years after the last tillage opera-tion (Eq.(8)).

ρbi ?1:40?0:072OC ?0:0013Clay t0:0014Sand

e8T

where OC,clay and sand contents are all in g per 100g of soil.One would normally expect that the ρbi values measured for the Bad Lauchst?dt soils will at least be equal to or lower than the predictions from Eq.(8)because they were tilled (ploughed)just 6months prior to sampling.However,the ρbi values of all the plots were much higher than expected (Fig.1),suggesting that we are dealing with a special soil with respect to natural density and structure.This is largely due to the high silt content which gives the soil a massive structure with a relatively low degree of aggregation (considering the clay content).This makes the intact soils similar to sieved-repacked samples as also observed by Eden et al.(2012)when they measured gas diffusivity for the same soils.

Table 1

Soil texture,organic carbon contents,and bulk densities of investigated soils (Eden et al.,2012).Treatment

Clay (b 2μm)Silt

(2–50μm)

Sand

(50–2000μm)

Organic carbon

Particle density %by weight

Mg m ?3M0?26.465.87.8 1.53 2.66M0+26.566.37.2 1.82 2.65M2?26.664.98.5 2.01 2.65M2+26.665.38.1 2.18 2.64M3?25.765.09.3 2.22 2.65M3+

25.6

61.9

12.5

2.37

2.63

238 E.Arthur et al./Geoderma 193–194(2013)236–245

At ?eld capacity (?100hPa),volumetric soil water content,θ,increased signi ?cantly with increasing AM application rates.Further,ε,e T ,and k a increased signi ?cantly when the fertilisation rate was above 20t ha ?1of AM in combination with NPK (Table 2).The k a was especial-ly low for the M3+plot (signi ?cantly lower than M0+),re ?ecting the speci ?c conditions for this plot.The k a ,and pore organisation,PO (k a /ε)are important indices for characterising soil pore geometry and hence soil structure (Blackwell et al.,1990;Groenevelt et al.,1984;Moldrup et al.,2001),with highly structured soils usually having greater k a and PO values.The PO for the different plots as a function of εis shown in Fig.2a,with isolines of k a (3,6and 9μm 2)added for comparison.The two plots with OC>2.1%showed signi ?cantly higher PO when com-pared to the rest with bulk densities above 1.55Mg m ?3(Fig.2a;Table 2).This means that the two high-OC plots not affected by traf ?c (M2+and M3?)have higher conductance of soil air per unit volume of ε.

To identify the main driver behind the improved PO for the soils,OC and ρbi were tested as predictors of PO by means of linear regres-sion modelling (excluding M3+).The ρbi was a stronger predictor of PO (Fig.2b;r 2=0.89;p=0.017)than OC (r 2=0.70,p=0.078).The M3+,with traf ?c-induced high ρbi had the lowest PO,and was close to the other two high density plots,despite the higher OC;indi-cating a different soil structure compared to the other plots (Fig.2b).Thus,although the trend in ρbi resulted from the OC gradient (Fig.1),it was the ρbi ,rather than OC which showed a clear relationship with pore connectivity and arrangement.This negative relationship between ρbi and pore connectivity was also observed by D?rner et al.(2010)for an Ultisol for four different matric potentials.

3.2.Resistance to compaction

Analysis of the resistance to compaction was conducted in two ways.First,the parameters (C c and σpc )obtained from the Gompertz model (Eqs.(4)and (5))were used as general indicators for the soil's compaction resistance.Second,the resistance of speci ?c soil proper-ties (k a e T ,e a ,e w )to compaction was assessed using Eq.(6).After-wards,three soil properties (OC,ρbi ,and initial water content,w i ),expected to have an in ?uence on compaction resistance,were evalu-ated using correlation and multiple regression analyses.The results are presented in Table 3,Figs.3,4and Table 4.

Considering the parameters of the Gompertz model,a small C c value indicates that a particular soil is more resistant to compression and vice versa,while a small σpc value re ?ects a low resistance.The C c index is normally interpreted as the strength of the ‘virgin ’part of the soil structure when exposed to compressive stresses higher than pre-viously experienced (https://www.wendangku.net/doc/f48506372.html,rson et al.,1980).The σpc index,in turn,is regarded an estimate of this pre-compression threshold (Lebert and Horn,1991).The Gompertz equation is commonly used to identify the σpc and C c for soils at much higher stresses (up to 800kPa in Keller et al.,2011)than applied here.Strictly speaking,it is possible that stopping the load at 200kPa may not provide standard ‘geotechni-cal ’estimates of both parameters.However,since model ?ts for all soil cores were good (mean r 2=0.99;root mean squared error=0.0014),the estimates given are accurate for comparison purposes.

The C c values ranged from 0.018to 0.177with a mean of 0.05(Fig.3a).These values are on the low end when compared to previous studies (Arthur et al.,2012a;Keller et al.,2011),implying a general higher resistance of this soil to compression.The σpc ranged from 24to 94kPa,with an average of 60kPa for all soils (Fig.3b).There was no signi ?cant difference in σpc among the experimental plots (except the M3-).Generally,pressures exerted on the topsoil by tyres on agri-cultural machinery range from 70to 375kPa with even higher stress for some high-pressure tyres (Schj?nning et al.,2012;Soane,1986).Thus,the σpc values obtained in this study can be considered as low,but they are in agreement with other studies on recently tilled arable land (Horn,2004;Krümmelbein et al.,2010).Also,since sampling was done 6months after ploughing and the sites used for sampling had not been wheeled,we do not interpret the σpc as classical estimates of pre-compression by mechanical loads (which identi ?es the highest load the soil has been subjected to previously)but rather a re ?ection of the strength of the “collection ”of aggregates in the middle of the pro-cess of “age hardening ”.“Age hardening ”in soils occurs due to two mechanisms:(i)formation of particle-particle bonds and (ii)reinforce-ment of the existing particle-particle bonds by cementation mecha-nisms (Dexter et al.,1988).Age-hardening increases compression resistance (Utomo and Dexter,1981)via increases in ρbi which subse-quently accounts for the differences observed in C c and σpc .

The k a ,with RS values ranging from 12to 40%,was most suscepti-ble to compression.The RS of the remaining properties were in the order e w >e T >e a .The RS values of the components of void ratio clear-ly showed that the decrease in e T was mainly due to decrease in e a ,rather than e w .The relatively low resistance of k a compared to e a and e T has also been shown earlier by Arthur et al.(2012b)where the range in RS ka was between 20and 40%for a copper contaminated ?eld.Although k a depends on e a (McCarthy and Brown,1992),the big difference in the RS values of k a and e a is because the remaining pore spaces are not interconnected and hence does not conduct air from and to the atmosphere.The seemingly higher RS of k a for the M3+plot is mainly because it already had very low k a at ?100hPa (Table 2)and the relative reduction was much lower compared to the other plots.

3.2.1.In ?uence of OC

Mean values were used for examining the in ?uence of OC on the compression resistance of the soils since only one OC

measurement

Fig.1.Relationship between initial bulk densities and soil organic carbon contents (regression excludes M3+).Different symbols represent the different plots.△M0?,▲M0+,□M2?,■M2+,○M3?,●M3+.Error bars denote standard error of the mean (SEM).Open diamonds denote predictions of natural bulk density from Heinonen (1960).

Table 2

Soil density,porosity,water content,and pore characteristics (at -100hPa matric potential)of experimental plots.Treatment

Initial bulk density Water content Air-?lled porosity

Total void ratio

Air permeability Mg m ?3

m 3m ?3μm 2M0? 1.64a 0.30b 0.076b 0.61d 2.59bc M0+ 1.61b 0.31b 0.079b 0.65c 3.54b M2? 1.56c 0.32a 0.087b 0.69b 4.24b M2+ 1.48d 0.32a 0.118a 0.79a 7.71a M3? 1.44e 0.32a 0.135a 0.85a 15.13a M3+

1.54c

0.33a

0.082b

0.71b

1.83c

Different letters indicate that means are signi ?cantly different (p b 0.05).

239

E.Arthur et al./Geoderma 193–194(2013)236–245

was conducted per experimental plot.Again,the M3+plot was excluded the analysis due to reasons discussed above.For the ?ve remaining plots,there was a positive correlation between OC and C c and σpc ,and negative correlations with all the other indicators of compression resistance,RS (Table 3).Besides σpc and RS ka ,all other indices had r values higher than 0.60,however,none of these correla-tions were signi ?cant.This indicates a trend of decreasing compres-sion resistance with increasing OC for all the indicators.Soane (1990)reviewed studies on the effect of the amount,composition and distribution of OC on soil compactibility and concluded that OC should in principle reduce soil susceptibility to compaction.Also,O'Sullivan (1992)applied static loads of 25–800kPa on soils (clay b 20%;OC 1.7–3.7%)from three tillage treatments and found a signi ?cant positive in ?uence of OC on compaction resistance.Howev-er,Smith et al.(1997),using soils with a wide range in clay and OC (clay 8-66%;OC,0.3-5.8%)showed that the effect of OC on compac-tion behaviour (using C c )of soils ceases to be signi ?cant beyond clay contents of 25%.Additionally,Zhang et al.(1997)and Arthur et al.(2012a)using soils with clay contents ranging from 4.5to 50%also found no signi ?cant effect of OC on soil compaction behaviour.The effect of OC on soil compressive resistance is likely to be con-founded by ρbi and w i as was also shown by Arthur et al.(2012a),where they used covariate analyses to determine the effect of OC while isolating the contribution of w i .The same could be done here to isolate the effect of both ρbi and w i ,but the absence of true repli-cates and the single measurements of OC per plot limits this option.An alternative is to examine the in ?uence of OC via the complexation

of clay based on the theory that 1g of OC is associated with 10g of clay (Dexter et al.,2008).The clay in excess of OC complexation is termed non-complexed clay (NCC).The NCC signi ?cantly affects soil properties such as aggregate strength and clay dispersibility (de Jonge et al.,2009;Schj?nning et al.,2012).The amount of NCC showed stronger negative correlations with C c and σpc ,and positive correlations with the RS indi-ces than OC.However,the correlations were still insigni ?cant (Table 3).A possible reason for the lack of a signi ?cant effect of OC (or NCC)on the measures of soil compression (especially C c )could be due to the high clay (>25%as noted by Smith et al.,1997)and high silt content of the soil.Smith et al.(1997)found highest C c values for ?ne-textured soils (clay+silt>50%)with OC as high as 4.23%and their reasoning was that the relatively high speci ?c surface area of these soils limits the ex-tent to which OC can interfere with the mineral particle interfaces to limit

compression.

Fig.2.(A)Soil pore organisation (PO =air permeability/air-?lled porosity)as a function of air ?lled porosity at ?100hPa.Air permeability (k a )isolines are shown.(B)Relationship between PO and initial bulk density (regression excludes M3+).Different symbols represent the different plots.△M0?,▲M0+,□M2?,■M2+,○M3?,●M3+.Error bars denote SEM.Different letters indicate that means are signi ?cantly different (p b 0.05).

Table 3

Correlation between soil organic carbon (OC),non-complexed clay (NCC),initial bulk density (ρbi ),and initial gravimetric water content (w i ),and the compression index (C c ),precompression stress (σpc )and indices of soil resistance (RS).Numbers in table are correlation coef ?cients (r ).Compression resistance OC a NCC ac ρbi

b w i

b C

c 0.78ns ?0.82ns ?0.88??0.66??σpc

0.65ns ?0.70ns

?0.45??0.36?RS air permeability ?0.37ns 0.39ns 0.34??0.31?RS total void ratio

?0.76ns 0.82ns 0.87???0.59??RS air-?lled void ratio ?0.73ns 0.77ns 0.78???0.58??RS water-?lled void ratio

?0.76ns

0.82ns

0.87???0.58??

Correlations exclude M3+;a averaged values used (n=5);b values from individual cores used (n=60);c calculated according to Dexter et al.(2008),please consult text;ns Correlation is not signi ?cant;**.Correlation is signi ?cant at the 0.01level;*.Correlation is signi ?cant at the 0.05

level.

Fig.3.(A)Compression index,C c ,and (B)precompression stress,σpc ,for experimental plots.Error bars denote SEM.Different letters indicate that means are signi ?cantly dif-ferent (p b 0.05).

240 E.Arthur et al./Geoderma 193–194(2013)236–245

3.2.2.In ?uence of initial bulk density and initial gravimetric water content

The assessment of the in ?uence of these two variables (ρbi and w i )was carried out in two steps.First,correlation analyses of the two var-iables with the Gompertz parameters and RS indicators were done separately using individual soil core data excluding the M3+plot (Table 3)in addition to linear regression analysis between average compression resistance and ρbi (Fig.4).Second,both ρbi and w i were used for multiple regression analyses as predictors of soil com-pression resistance (using all 72individual cores including M3+).3.2.2.1.Initial bulk density.There was a signi ?cant negative correlation between ρbi and the Gompertz model parameters (C c and σpc )and signi ?cant positive correlations with the RS indices (Table 3;Fig.4).The regression equations for the lines in Fig.4(excluding Fig.4a)showed that ρbi accounted for an average of 85%of the variation in the RS for various variables.The weaker relationship for RS ka is partly due to the dependence of k a on other properties of the existing pore space (pore con ?guration and connectivity).The decrease in RS eT with decreasing ρbi is primarily due to the decreasing RS e a arising from the loss in ε.Although RS e w showed a signi ?cant increase with ρbi ,the range was much smaller (94–98%).As shown above,increased ρbi is associated with increased compression resistance (regardless of which indicator is used).This trend is in agreement with several stud-ies (Imhoff et al.,2004;Keller et al.,2011;Saf ?h-Hdadi et al.,2009)where C c was used to assess compression resistance.Soils with higher

ρbi and lower εare less compressible than their less-dense counter-parts.This is because denser soils have more intricate particle arrangement,less pore space available for particle movement and higher friction forces between particles.Thus,soil deformation becomes more dif ?cult with increase in bulk density (Paz and Guérif,2000).The negative correlation between σpc and ρbi is in dis-agreement with previous studies (Arthur et al.,2012a;da Veiga et al.,2007;Imhoff et al.,2004),which reported the opposite trend.As stated elsewhere,we used σpc as an estimate of the strength of the aggregates that had undergone age-hardening during the six months following tillage.Low ρbi soils had higher OC content and this likely improved the aggregate strength,hence the higher σpc .Similar to this study,Krümmelbein et al.(2010)reported a negative correlation between σpc and ρbi and noted the strength of the structure of recent-ly tilled or re-levelled is largely de ?ned by inter-particle and inter-aggregates forces,rather than the ρbi .

3.2.2.2.Initial gravimetric water content.There was a signi ?cant posi-tive correlation between w i and both C c and σpc and negative correla-tions with the RS indices (Table 3).Higher water contents resulted in lower compression resistance.Existing literature is con ?icting on the effect of w i on compression resistance (using C c and σpc ).Several authors (Imhoff et al.,2004;Larson et al.,1980)have shown that C c is independent of w i across different soil textures.However,studies by Saf ?h-Hdadi et al.(2009)and Zhang et al.(1997)reveal a negative correlation between w i and C c ,especially for clayey soils.Moreover,Arthur et al.(2012a)reported higher C c ,values for higher water contents for three similarly textured soils.In contrast with the present study,sev-eral investigations have reported increased σpc with decrease in soil water content and/or matric water potential (e.g.Arvidsson and Keller,2004;Rücknagel et al.,2012;Saf ?h-Hdadi et al.,2009).The positive rela-tionship between σpc and w i is attributed to a decline in cohesive forces arising from an increase in w i .For this study,the very narrow range in w i (0.18–0.22kg kg ?1)makes it dif ?cult to examine in detail the effect of water content.We believe that in this case,the effect of w i re ?ects differ-ences in ρbi (as explained in the subsequent section).

3.2.2.3.Bulk density and water content.Since both ρbi and w i were sig-ni ?cantly correlated with C c ,σpc and the RS indices,they were used together in multiple regression as predictors of

compression

Fig.4.Relationship between initial bulk density and the resistance (RS)of air permeability (A),total void ratio (B),air-?lled void ratio (C),and water-?lled void ratio (D)after compaction.Regressions exclude M3+.Different symbols represent the different plots.△M0?,▲M0+,□M2?,■M2+,○M3?,●M3+.Error bars denote SEM.The r 2and p values given denote the signi ?cance of the regression model.

Table 4

Relationship between compression index (C c ),precompression stress (σpc ;kPa),and other indices of compression resistance (RS;%),and initial bulk density (ρbi ;Mg m ?3)and initial gravimetric water content (w i ;g g ?1).Regression equation

r 2Signi ?cance C c =1.06?0.51ρbi ?1.05w i

0.84?σpc =237.7?109.1ρbi ?40.1w i

0.28?RS ka =–283.7+122.8ρbi +553.1w i 0.15?RS eT =–118.5+98.3ρbi +274.7w i 0.86?RS ea =–254.3+154.9ρbi +411.7w i 0.64?RS ew =28.12+32.29ρbi +89.57w i

0.86

?

k a ,air permeability;e T ,total void ratio;ea ,air-?lled void ratio;ew ,water-?lled void ratio.?Regression model is signi ?cant (p b 0.05),but w i is not signi ?cant (w i added no further improvement over modelling with ρbi ).?Regression model (including both variables)is signi ?cant (p b 0.05).

241

E.Arthur et al./Geoderma 193–194(2013)236–245

resistance.It must be noted that although the two predictor variables (ρbi and w i)were signi?cantly correlated(r=-0.85),further analyses of multicollinearity showed that the impact of collinearity among the two variables was low enough(Variance In?ation Factor b4;analyses not shown)for both of them to be used in the model.The regression models for all indicators of compression resistance were signi?cant (Table4).The regression equations(Table4)imply that the higher theρbi and w i,the higher the soil resistance to compaction.However, we note that while the relationship betweenρbi and the indicators (C c,σpc,and RS indices)was identical to the correlations seen earlier (Table3),the effect of w i shows an apparent contradiction to that observed earlier in Table3.This could be due to either increased pore water pressure during the compression tests or net suppression effects ofρbi on the in?uence of w i.To clarify,since there was a strong negative correlation betweenρbi and w i,it indirectly in?uenced the relationship between the indicators and w i.For example,in Table3, there was a positive correlation between C c and w i,and a negative correlation between C c andρbi.However,after multiple regression analyses(Table4),there was a negative relationship between C c and w i implying that the simple correlation does not take into account the indirect effect of w i via theρbi.To con?rm this,a simple one-way analysis of covariance usingρbi as a covariate was done.A cor-relation of theρbi-adjusted C c values(evaluated atρbi=1.55Mg m?3) and w i revealed a signi?cant negative correlation(r=?0.82;p b0.05). Similar analyses for the RS indices and w i revealed the same trend with positive correlations(data not shown).

There are some factors which should be taken into account when considering these results.First,all soils used in this study had the same texture.Second,the effect of water content was only assessed at a pre-compression matric potential of?100hPa(resulting in a narrow range of w i).Third,the exceptionally highρbi in comparison with other soil densities,and?nally the low maximum pressure (200kPa)used for compression.These results are valid for similarly textured soils since the effect of soil texture cannot be ruled out.For example,similar covariate analyses ofρb-calibrated C c and w i for pre-viously published data(Schj?nning,1999)with a wide range of soil textures showed no effect of w i on soil compression.Also,in wetter or dryer conditions,the effect ofρbi on w i will be different because ρbi primarily affects the macropores and hence the water holding capacity for less negative matric potentials.A higher or lower matric potential other than used here could lead to different conclusions. Further,other compression studies have used higher maximum pres-sures(up to800kPa),and this could also have an effect on the anal-yses of the factors affecting compression resistance.

To summarise this section,we note that the in?uence of OC con-tent can generally be seen as indirect—affecting compaction resis-tance,mainly through its in?uence onρbi.For the present soil, increasingρbi and w i is associated with higher compression resistance of the‘virgin’soil structure,while the precompression threshold is only dependent onρbi.The suppression effect ofρbi on the effect of w i on resistance implies that simple correlation analysis between w i and compression resistance,while disregarding the effects of other signi?cant variables(ρbi and maybe OC)could lead to erroneous con-clusions.Nevertheless,due to previously mentioned reasons,a direct effect of OC cannot be excluded and we suggest further studies to dif-ferentiate between the relative effects of OC,ρbi and w i.

3.3.Resilience to compaction

The resilience of the soils was estimated following exposure of the samples to separate FT and WD cycles.This was done because in nat-ural environments these cycles are dominating mechanisms for soil structure recovery.For clari?cation of Eq.(7),a RL value of100 means that the value for the measured variable after recovery was twice the value(100%higher than)obtained immediately after com-pression.The imposition of the?rst FT and WD cycles showed considerable recovery for all variables for all experimental plots (Figs.5,6),while the second cycle did not show any signi?cant differ-ence in recovery state following the?rst cycle.The RL ka following WD cycles showed remarkable recovery(>100%)compared to the RL e a (~40%)and RL eT(~12%).Similarly,after FT cycles,the RL ka was much higher than the RL of the other variables.Aside the effect of the cycles on k a recovery,it is important to recognise that the mea-surement method used could pose a challenge in that k a is sensitive to closure of pores at the very edge(top and bottom)of the soil cores when being compacted and this may have contributed to the higher recovery when the pores“opened”during the cycles.The re-markable recovery observed after imposing these cycles has been shown in several studies,where improvements inε(Pillai and McGarry,1999;Pires et al.,2005),k a(Arthur et al.,2012a; Viklander,1998)and soil volume(Pires et al.,2005;Viklander, 1998)were observed.However,previous studies are not in agree-ment on the minimum number of WD cycles required before signi?-cant changes in soil structure are noticed.While Rajaram and Erbach (1999)and the present study suggest that one WD cycle is enough to signi?cantly change several soil properties,other studies have suggested that a minimum of three WD cycles(Pardini et al.,1996; Sarmah et al,1996)are required.This disagreement could be due to differences in methodology used for the wet-dry and freeze-thaw cy-cles(e.g.type,intensity and duration of the cycles),soil texture,ex-tent of structural damage as well as the mineralogy of the soils involved.The WD cycles facilitate recovery of soil structure through mechanisms that occur during the two processes(wetting and dry-ing).The saturation process used for wetting causes expansion of the electrical double layer,and increased contact between clay parti-cles and aggregates.Also,the capillary rise method used to saturate the soils can cause slaking of the soil aggregates leading to modi?ca-tions in structure(Pires et al.,2005).During drying,retraction of the particles leads to reorientation and differential settling of?ner parti-cles between coarser particles resulting in a change in pore structure and increased porosity as shown by the RL values(Shiel et al.,1988; Tessier et al.,1990).The mechanisms involved in the FT cycles are not as strong as the WD cycles as seen from the magnitude of recov-ery(Fig.6).When soils are subjected to FT cycles,pore water turns into ice,resulting in a9%volume change,and formation of ice lenses. These lenses causes fractures and cracks in the soil matrix and upon thawing the developed cracks do not fully close due to soil cohesion (Viklander,1998).Relocation of?ne particles out of large pores dur-ing thawing may also free blocked pores and cavities(Chamberlain and Gow,1979).These processes accounted for the increase in k a after FT cycles.

3.3.1.Drivers controlling resilience in relation to recovery condition

For examining drivers controlling resilience of the soil following com-paction,all6plots were considered,since the index used(Eq.(7))only considers the value immediately after compaction and after recovery—without taking into account the original value.Although the results indi-cate that the structure of the M3+soil is different from the other plots in aspects other than just theρbi(e.g.Figs.2b and4a),we regard theρbi as the main difference.The consideration of the compressed state rather than the initial condition in estimating RL evens out the effects of the highρbi of the M3+plot.The in?uence of OC orρbi on RL due to WD cycles was insigni?cant for all variables(Figs.5,6).There were no signif-icant correlations between OC and the RL of k a or any of the void ratio components(data not shown).Also,RL ka showed no correlation with OC orρbi.Regression analyses(both linear and non-linear)of the compo-nents of e andρbi showed interesting trends.While increasingρbi tended to increase RL e a following WD cycles,the reverse was the case for FT cycles.For RL ew and RL eT following WD cycles,the relationship withρbi was non-linear,decreasing to aρbi of about1.55g cm?3and increasing afterwards.On the other hand,for FT cycles,the same RL parameters increased withρbi to a similar value(1.55g cm?3)and decreased

242 E.Arthur et al./Geoderma193–194(2013)236–245

afterwards.This could indicate that the two cycles act in opposite direc-tions in relation to ρbi and soil resilience.In both cases,however the “threshold ”ρbi of 1.55g cm ?3seems to be the point where the effect on soil RL reverses.This “threshold ”ρbi also approximately relate to the two signi ?cantly different groups of PO (Fig.2).Detailed explanation of the mechanisms involved in these trends is constrained by the limited number of treatments (six)and the non-signi ?cance of the regressions.There is therefore the need for further investigations into this using a combination of a wider range in texture,ρbi ,w i ,and OC to ensure more concrete conclusions.

4.Summary and conclusions

This study examined the dominant drivers affecting the resistance (using measured soil properties and modelling of compression data)and resilience of a loess soil to compressive stress using samples obtained from a 105-year long fertilisation experiment.Long-term fertilisation with organic and mineral fertilisers applied at different rates resulted in a gradient of organic carbon content which was re ?ected in decreased bulk density,greater air-?lled porosity and increased pore connectivity.The dominant drivers in ?uencing the

soil's

Fig.5.Effect of initial bulk density on the resilience (RL)of air permeability (A),total void ratio (B),air-?lled void ratio (C)and water ?lled void ratio (D)after wet –dry cycles.Different symbols represent the different plots.△M0-,▲M0+,□M2?,■M2+,○M3?,●M3+.Error bars denote SEM.The r 2and p values given denote the signi ?cance of the

regression.

Fig.6.Effect of initial bulk density on the resilience (RL)of air permeability (A),total void ratio (B),air-?lled void ratio (C)and water ?lled void ratio (D)after freeze –thaw cycles.Different symbols represent the different plots.△M0?,▲M0+,□M2?,■M2+,○M3?,●M3+.Error bars denote SEM.The r 2and p values given denote the signi ?cance of the regression.

243

E.Arthur et al./Geoderma 193–194(2013)236–245

resistance to compaction were initial bulk density and gravimetric moisture content,with increasing compression resistance observed for soils with higher bulk densities and higher water contents.Climatic conditions(freeze–thaw and wet–dry cycles)signi?cantly facilitated recovery of soil properties following compaction.Additionally,the effect of initial bulk density on recovery of components of void ratio (total,air-?lled and water-?lled void ratio)was contrasting for the two cycle types.The effect of OC was minimal for both resistance and resilience to compaction.This suggests that although OC is important in its effect on soil bulk density,it had no signi?cant direct effect on the resistance and resilience to compaction.However,it is important to note that factors such pre-compression water content,texture as well as magnitude of the stress may be central in de?ning the role of OC and bulk density on soil response to compressive stress.Further studies are therefore required to clearly differentiate these relative roles.

Acknowledgements

The authors thank Ines Merbach from the Department of Communi-ty Ecology,Helmholtz Centre for Environmental Research(UFZ)for pro-viding access to sampling sites at the Static Fertilisation Experiment in Bad Lauchst?dt.The study was?nanced by the Danish Research Council for Technology and Production Sciences under the auspice of the Soil Infrastructure,Interfaces,and Translocation Processes in Inner Space (Soil-it-is)project.The assistance of Bodil B.Christensen and Fatemeh Razzaghi with laboratory work and compression data modelling is gratefully acknowledged.We also acknowledge the constructive sug-gestions and comments of two anonymous reviewers.

References

Altermann,M.,Rinklebe,J.,Merbach,I.,Korschens,M.,Langer,U.,Hofmann,B.,2005.

Chernozem—soil of the year2005.Journal of Plant Nutrition and Soil Science-Zeitschrift Fur P?anzenernahrung Und Bodenkunde168,725–740.

Arthur,E.,M?ldrup,P.,Holmstrup,M.,Schj?nning,P.,Winding,A.,Mayer,P.,de Jonge, L.W.,2012a.Soil microbial and physical properties and their relations along a steep copper gradient.Agriculture,Ecosystems and Environment159,9–18.

Arthur,E.,Schj?nning,P.,Moldrup,P.,de Jonge,L.W.,2012b.Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils.Geoderma 173–174,50–60.

Arvidsson,J.,1998.In?uence of soil texture and organic matter content on bulk density, air content,compression index and crop yield in?eld and laboratory compression experiments.Soil and Tillage Research49,159–170.

Arvidsson,J.,Keller,T.,2004.Soil precompression stress.I.A survey of Swedish arable soils.Soil and Tillage Research77,85–95.

Berisso,F.E.,Schj?nning,P.,Keller,T.,Lamandé,M.,Etana,A.,de Jonge,L.W.,Iversen,

B.V.,Arvidsson,J.,Forkman,J.,2012.Persistent effects of subsoil compaction on

pore size distribution and gas transport in a loamy soil.Soil and Tillage Research 122,42–51.

Blackwell,P.S.,Ringrosevoase,A.J.,Jayawardane,N.S.,Olsson,K.A.,Mckenzie,D.C., Mason,W.K.,1990.The use of air-?lled porosity and intrinsic permeability to air to characterize structure of macropore space and saturated hydraulic conductivity of clay soils.Journal of Soil Science41,215–228.

Blair,N.,Faulkner,R.D.,Till,A.R.,Korschens,M.,Schulz,E.,2006a.Long-term management impacts on soil C,N and physical fertility—Part II:Bad Lauchstadt static and extreme FYM experiments.Soil and Tillage Research91,39–47.

Blair,N.,Faulkner,R.D.,Till,A.R.,Poulton,P.R.,2006b.Long-term management impacts on soil C,N and physical fertility—Part1:Broadbalk experiment.Soil and Tillage Research91,30–38.

Bronick,C.J.,Lal,R.,2005.Soil structure and management:a review.Geoderma124, 3–22.

Chamberlain,E.J.,Gow,A.J.,1979.Effect of freezing and thawing on the permeability and structure of soils.Engineering Geology13,73–92.

Courtney,R.G.,Mullen,G.J.,2008.Soil quality and barley growth as in?uenced by the land application of two compost types.Bioresource Technology99,2913–2918. da Veiga,M.,Horn,R.,Reinert,D.J.,Reichert,J.M.,2007.Soil compressibility and penetrability of an Oxisol from southern Brazil,as affected by long-term tillage systems.Soil and Tillage Research92,104–113.

de Jonge,L.W.,Moldrup,P.,Schj?nning,P.,2009.Soil Infrastructure,interfaces& translocation processes in inner space(‘Soil-it-is’):towards a road map for the constraints and crossroads of soil architecture and biophysical processes.

Hydrology and Earth System Sciences13,1485–1502.

Dexter,A.R.,Horn,R.,Kemper,W.D.,1988.2Mechanisms for age-hardening of soil.

Journal of Soil Science39,163–175.Dexter,A.R.,Richard,G.,Arrouays,D.,Czyz,E.A.,Jolivet,C.,Duval,O.,https://www.wendangku.net/doc/f48506372.html,plexed organic matter controls soil physical properties.Geoderma144,620–627.

D?rner,J.,Sandoval,P.,Dec,D.,2010.The role of soil structure on the pore functionality of an Ultisol.Journal of Soil Science and Plant Nutrition10,495–508.

Eden,M.,Moldrup,P.,Schj?nning,P.,Vogel,H.J.,Scow,K.M.,de Jonge,L.W.,2012.

Linking soil physical parameters along a density gradient in a loess-soil long-term experiment.Soil Science177,1–11.

Ekwue,E.I.,https://www.wendangku.net/doc/f48506372.html,anic-matter effects on soil strength properties.Soil and Tillage Research16,289–297.

Gompertz,B.,1825.On the nature of the function expressive of the law of human mortality, and on a new model of determining the value of life contingencies.Philosophical Transactions of the Royal Society of London115,513–585.

Gregory,A.S.,Whalley,W.R.,Watts,C.W.,Bird,N.R.A.,Hallett,P.D.,Whitmore,A.P., 2006.Calculation of the compression index and precompression stress from soil compression test data.Soil and Tillage Research89,45–57.

Gregory,A.S.,Watts,C.W.,Whalley,W.R.,Kuan,H.L.,Grif?ths,B.S.,Hallett,P.D.,Whitmore,

A.P.,2007.Physical resilience of soil to?eld compaction and the interactions with plant

growth and microbial community structure.European Journal of Soil Science58, 1221–1232.

Grif?ths,B.S.,Ritz,K.,Bardgett,R.D.,Cook,R.,Christensen,S.,Ekelund,F.,Sorensen,S.J., Baath,E.,Bloem,J.,de Ruiter,P.C.,Dol?ng,J.,Nicolardot,B.,2000.Ecosystem re-sponse of pasture soil communities to fumigation-induced microbial diversity re-ductions:an examination of the biodiversity-ecosystem function relationship.

Oikos90,279–294.

Groenevelt,P.H.,Kay,B.D.,Grant,C.D.,1984.Physical assessment of a soil with respect to rooting potential.Geoderma34,101–114.

Heinonen,R.,1960.Das Volumengewicht als Kennzeichen der“normalen”Bodenstruktur.

Zeitschrift der Landwirtschafts-wissenschaftlichen Gesellschaft in Finland32,81–87. Horn,R.,https://www.wendangku.net/doc/f48506372.html,pressibility of arable land.Impact of water and external forces on soil structure:In:Drescher,J.,Horn,R.,de Boodt,M.(Eds.),Catena Suppl.,11,pp.53–71. Horn,R.,2004.Time dependence of soil mechanical properties and pore functions of arable soils.Soil Science Society of America Journal68,1131–1137.

Imhoff,S.,Da Silva,A.P.,Fallow,D.,2004.Susceptibility to compaction,load support capacity,and soil compressibility of Hapludox.Soil Science Society of America Journal68,17–24.

Iversen,B.V.,Schj?nning,P.,Poulsen,T.G.,Moldrup,P.,2001.In situ,on-site and laboratory measurements of soil air permeability:boundary conditions and measurement scale.

Soil Science166,97–106.

Keller,T.,Lamande,M.,Schj?nning,P.,Dexter,A.R.,2011.Analysis of soil compression curves from uniaxial con?ned compression tests.Geoderma163,13–23. Koolen,A.J.,1974.A method for soil compactibility determination.Journal of Agricultural Engineering Research19,271–278.

Koppen,D.,Eich,D.,1991.In?uence from a85-year differentiated organic manuring and mineral fertilization on soil fertility in the static experiment at Bad Lauchstadt.

Zeitschrift Fur P?anzenernahrung Und Bodenkunde154,245–252.

K?rschens,M.,2006.The importance of long-term?eld experiments for soil science and environmental research—a review.Plant Soil and Environment52,1–8.

K?rschens,M.,Pfefferkorn,A.,1998.Bad Lauchstadt-Der Statische Düngungsversuch und andere Feldversuche(The Static Fertilization Experiment and Other Long-term Field experiments).Umweltfor-schungszentrum UFZ,Leipzig-Halle,Germany.

Krümmelbein,J.,Horn,R.,Raab,T.,Bens,O.,Huttl,R.F.,2010.Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in Eastern Germany.Soil and Tillage Research111,19–25.

Lamandé,M.,Schj?nning,P.,2008.The ability of agricultural tyres to distribute the wheel load at the soil-tyre interface.Journal of Terramechanics45,109–120. Larson,W.E.,Gupta,S.C.,Useche,R.A.,https://www.wendangku.net/doc/f48506372.html,pression of agricultural soils from 8soil orders.Soil Science Society of America Journal44,450–457.

Lebert,M.,Horn,R.,1991.A method to predict the mechanical strength of agricultural soils.Soil and Tillage Research19,275–286.

McBride,R.A.,1989.Estimation of density–moisture–stress functions from uniaxial compression of unsaturated,structured soils.Soil and Tillage Research13, 383–397.

McCarthy,K.P.,Brown,K.W.,1992.Soil gas-permeability as in?uenced by soil gas-?lled porosity.Soil Science Society of America Journal56,997–1003.

Moldrup,P.,Olesen,T.,Komatsu,T.,Schj?nning,P.,Rolston,D.E.,2001.Tortuosity, diffusivity,and permeability in the soil liquid and gaseous phases.Soil Science Society of America Journal65,613–623.

Munkholm,L.J.,Schj?nning,P.,Debosz,K.,Jensen,H.E.,Christensen,B.T.,2002.Aggregate strength and mechanical behaviour of a sandy loam soil under long-term fertilization treatments.European Journal of Soil Science53,129–137.

O'Sullivan,M.F.,1992.Uniaxial compaction effects on soil physical-properties in relation to soil type and cultivation.Soil and Tillage Research24,257–269.

Pardini,G.,Guidi,C.V.,Pini,R.,Regues,D.,Gallart,F.,1996.Structure and porosity of smectitic mudrocks as affected by experimental wetting–drying cycles and freezing–thawing cycles.Catena27,149–165.

Paz,A.,Guérif,J.,2000.In?uence of initial packing density,water content and load applied during compaction on tensile strength of dry soil structural units.

Advances in Geoecology32,22–31.

Petersen,G.A.,Lyon,D.J.,Fenster,C.R.,2012.Valuing long-term?eld experiments: quantifying the scienti?c contribution of a long-term tillage experiment.Soil Science Society of America Journal.https://www.wendangku.net/doc/f48506372.html,/10.2136/sssaj2011.0413. Pillai,U.P.,McGarry,D.,1999.Structure repair of a compacted vertisol with wet–dry cycles and crops.Soil Science Society of America Journal63,201–210.

Pires,L.F.,Bacchi,O.O.S.,Reichardt,K.,2005.Gamma ray computed tomography to evaluate wetting/drying soil structure changes.Nuclear instruments and methods in physics research section B:beam interactions with materials and atoms229,443–456.

244 E.Arthur et al./Geoderma193–194(2013)236–245

Rajaram,G.,Erbach,D.C.,1999.Effect of wetting and drying on soil physical properties.

Journal of Terramechanics36,39–49.

Rasool,R.,Kukal,S.S.,Hira,G.S.,2008.Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize–wheat system.Soil and Tillage Research101,31–36.

Rücknagel,J.,Christen,O.,Hofmann,B.,Ulrich,S.,2012.A simple model to estimate change in precompression stress as a function of water content based on the basis of precompression stress at?eld capacity.Geoderma177–178,1–7.

Saf?h-Hdadi,K.,Defossez,P.,Richard,G.,Cui,Y.J.,Tang,A.M.,Chaplain,V.,2009.A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density.Soil and Tillage Research105,96–103. Sarmah, A.K.,PillaiMcGarry,U.,McGarry, D.,1996.Repair of the structure of a compacted Vertisol via wet/dry cycles.Soil and Tillage Research38,17–33.

Schj?nning,P.,1999.Mechanical properties of Danish soils—a review of existing knowledge with special emphasis on soil spatial variability.Experiences with the impact and prevention of subsoil compaction in the European Community:In: Van den Akker,J.J.H.,Arvidson,J.,Horn,R.(Eds.),Proceedings of the?rst workshop of the Concerted Action‘Experiences with the impact of subsoil compaction on soil, crop growth and environment and ways to prevent subsoil compaction’,28–30 May1998,Wageningen,The Netherlands,pp.290–303.

Schj?nning,P.,Christensen,B.T.,Carstensen,B.,1994.Physical and chemical-properties of a sandy loam receiving animal manure,mineral fertilizer or no fertilizer for 90years.European Journal of Soil Science45,257–268.

Schj?nning,P.,de Jonge,L.W.,Munkholm,L.J.,Moldrup,P.,Christensen,B.T.,Olesen, J.E.,2012.Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation.concept.Vadose Zone Journal11,174–187.

Schj?nning,P.,Lamandé,M.,Keller,T.,Pedersen,J.,Stettler,M.,2012.Rules of thumb for minimizing subsoil compaction.Soil Use and Management28,378–393.

https://www.wendangku.net/doc/f48506372.html,/10.1111/j.1475-2743.2012.00411.x.

Shiel,R.S.,Adey,M.A.,Lodder,M.,1988.The Effect of successive wet dry cycles on aggregate size distribution in a clay texture soil.Journal of Soil Science39,71–80.Smith,C.W.,Johnston,M.A.,Lorentz,S.,1997.Assessing the compaction susceptibility of South African forestry soils.II.Soil properties affecting compactibility and compressibility.Soil and Tillage Research43,335–354.

Soane,B.D.,1986.Process of soil compaction under vehicular traf?c and means of alleviating it.In:Lal,R.,et al.(Ed.),Land clearing and development in the tropics.

Balkema Publ.,Rotterdam,pp.265–297.

Soane,B.D.,1990.The role of organic-matter in soil compactibility—a review of some practical aspects.Soil and Tillage Research16,179–201.

Soane,B.D.,van Ouwerkerk,C.,1994.Soil compaction problems in world agriculture.

In:Soane,B.D.,van Ouwerkerk,C.(Eds.),Soil Compaction and Crop Production, Developments in Agricultural Engineering,vol.11.Elsevier,Amsterdam,pp.1–21. Tessier,D.,Beaumont,A.,Pedro,G.,1990.In?uence of clay mineralogy and rewetting rate on clay microstructure.In:Doyles,L.A.(Ed.),Soil Micromorphology:A Basic and Applied Science.Elsevier,Amsterdam,pp.115–121.

Tisdall,J.M.,Oades,J.M.,https://www.wendangku.net/doc/f48506372.html,anic matter and water-stable aggregates in soils.

Journal of Soil Science33,141–163.

Utomo,W.H.,Dexter,A.R.,1981.Age hardening of agricultural top soils.Journal of Soil Science32,335–350.

Vendelboe,A.L.,Moldrup,P.,Schj?nning,P.,Oyedele,D.J.,Jin,Y.,Scow,K.M.,de Jonge, L.W.,2012.Colloid release from soil aggregates:application of laser diffraction.

Vadose Zone Journal11.https://www.wendangku.net/doc/f48506372.html,/10.2136/vzj2011.0070.

Viklander,P.,1998.Permeability and volume changes in till due to cyclic freeze/thaw.

Canadian Geotechechnical Journal35,471–477.

Watts, C.W.,Dexter, A.R.,1997.The in?uence of organic matter in reducing the destabilization of soil by simulated tillage.Soil and Tillage Research42,253–275. Yang,X.,Li,P.,Zhang,S.,Sun,B.,Chen,X.,2011.Long-term-fertilization effects on soil organic carbon,physical properties,and wheat yield of a loess soil.Journal of Plant Nutrition and Soil Science174,775–784.

Zhang,H.Q.,Hartge,K.H.,Ringe,H.,1997.Effectiveness of organic matter incorporation in reducing soil compactibility.Soil Science Society of America Journal61, 239–245.

245

E.Arthur et al./Geoderma193–194(2013)236–245

2017山香教育理论基础整理笔记(教育学、心理学、教育心理学)

第一章教育与教育学 1、《学记》——“教也者,长善而救其失者也” 2、战国时荀子——“以善人者谓之教” 3、许慎在《说文解字》中认为“教,上所施,下所效也。”“育,养子使作善也。” 4、最早将“教育”一词连用的则是战国时期的孟子:“得天下英才而教育之,三乐也。” 5、分析教育哲学的代表人物谢弗勒在《教育的语言》中把教育定义区分为三种: 规定性定义:作者自己认为的定义,即不管他人使用的“教育”的定义是什么,我认为“教育”就是这个意思。运用规定性定义虽然有一定的自由度,但是,要求作业在后面的论述和讨论中,前后一贯地遵守自己的规定。 描述性定义:回答“教育实际上是什么”的定义。尽量不夹杂自己的主观看法,适当地对术语或者使用该术语的方法进行界定。 纲领性定义:回答“教育应该是什么”的定义。即通过明确或隐含的方式告诉人们教育应该是什么或者教育应该怎么样。 6、教育是一种活动。“教育”是以一种“事”的状态存在,而不是以一种“物”的状态出现。因而。我们就把“活动”作为界定教育的起点。 7、教育活动是人类社会独有的活动。 8、“生物起源论”代表人物: 利托尔诺在《各人种的教育演变》中指出教育是超出人类社会以外的,在动物界中就存在的。 沛西·能在《教育原理》中也认为教育是一个生物学过程,扎根于本能的不可避免的行为。 9、“终身教育”概念的提出,指明人在生理成熟后仍继续接受教育。 10、社会性是人的教育活动与动物所谓“教育”活动的本质区别。 11、教育的本质:教育活动是培养人的社会实践活动。 12、教育是人类通过有意识地影响人的身心发展从而影响自身发展的社会实践活动。 13、学校教育是一种专门的培养人的社会实践活动。 14、学校教育自出现以来就一直处于教育活动的核心。 15、学校教育是由专业人员承担的,在专门机构——学校中进行的目的明确、组织严密、系统完善、计划性强的以影响学生身心发展为直接目标的社会实践活动。 16、学校教育的特征:①可控性②专门性③稳定性 17、教育概念的扩展——大教育观的形成 18、1965年,法国教育家保罗·朗格朗在《终身教育引论》中指出,教科文组织应赞同“终身教育”的原则。 19、1972年,埃德加·富尔在《学会生存》中对“终身教育”加以确定,并提出未来社会是“学习化社会”。 20、“终身教育”概念以“生活、终身、教育”三个基本术语为基础。 从时间上看,终身教育要求保证每个人“从摇篮到坟墓”的一生连续性的教育过程; 从空间上看,终身教育要求利用学校、家庭、社会机构等一切可用于教育和学习的场所; 从方式上看,终身教育要求灵活运用集体教育、个别教育、面授或远距离教育; 从教育性质上看,终身教育即要求有正规的教育与训练,也要求有非正规的学习和提高,既要求人人当先生,也要求人人当学生。 21、教育的形态,是指教育的存在特征或组织形式。 22、在教育发展史上,教育的形态经历了从非形式化到形式化,再到制度化教育的演变。

教育学教育心理学理论及代表人物

教育学有关理论、代表人物 1、神话起源说—— 2、生物起源说——利托尔诺(法国) 3、心理起源说——孟禄(美国) 4、劳动起源说——马克思(前苏联) 5、中国史上第一部教育文献——《学记》——乐正克 6、西方较早讨论教育问题的着作——《论演说家的培养》(《雄辩术原理》)——昆体良(古罗马) 7、非制度化教育思潮——库姆斯、伊里奇 8、雄辩与问答法——苏格拉底(古希腊) 9、《理想国》——柏拉图(古希腊) 10、《政治学》——亚里士多德(古希腊) 11、教育学作为一门独立学科的萌芽——《大教学论》——夸美纽斯(捷克) 班级授课制,泛智教育。 12、首次提出把教育学作为一门独立的学科——培根(英国) 13、自然主义教育——《爱弥儿》——卢梭(法国) 14、教育学进入大学讲坛——康德(德国)、《林哈德与葛笃德》——裴斯泰洛齐(瑞士)

15、科学教育思潮的兴起,课程体系——《教育论》——斯宾塞(英国) 16、实验教育学——梅伊曼、拉伊(德国) 17、发展性教学理论——《教育与发展》——赞科夫(前苏联) 高难度进行教学的原则、高速度进行教学的原则、理论知识主导作用原则(重理性原则)、理解学习过程原则、对差等生要下功夫的原则 18、范例教学——瓦.根舍因(德国) 19、和谐教育思想——苏霍姆林斯基(前苏联) 20、《教育漫话》——洛克(英国) “白板说”、绅士教育、国民教育思想与民主教育思想。 22、规范教育学的建立——《普通教育学》——赫尔巴特(德国) 传统教育学代表、教师中心,教材中心,课堂中心、四段教学法、统觉观念。 23、实用主义教育学——《民本主义与教育》——杜威(美国) 现代教育学代表、教育即生长,教育即生活,教育即经验的改造或重组、在做中学、儿童中心主义。 24、第一部马克思主义的教育学着作——《教育学》——凯洛夫(前苏联) 25、我国第一部马克思主义的教育学着作——《新教育大纲》——杨贤江 26、设计教学法——克伯屈(美国)

教育心理学理论

教育心理学理论 一、学习分类理论 1、加涅 (1)学习八水平分类 按学习水平简繁程度分为:①信号学习;②刺激—反应学习;③连锁反应;④言语联想学习;⑤辨别学习;⑥概念学习;⑦规则学习;⑧解决问题学习 (2)学习六水平分类 ①连锁学习;②辨别学习;③具体概念学习;④定义概念学习;⑤规则学习;⑥解决问题学校 (3)学习结果分类 ①言语信息的学习;②智慧技能的学习;③认知策略的学习;④态度的学习;⑤运动技能的学习 2、奥苏贝尔学习性质分类(两个维度互不依赖、相互独立) (1)根据学习的方式:接受学习、发现学习 (2)根据学习材料与学习者原有知识结构的关系:有意义学习、机械学习 3、我国学习结果的分类 ①知识学习;②技能学习;③道德品质或行为习惯的学习 二、学习理论 1、联结理论 (1)经典条件反应论 ①巴甫洛夫:学习就是形成刺激与反应之间的联系 一级条件反射、二级条件反射 动力定型:大脑皮层对刺激的定型系统所形成的反应定型系统 外抑制、超限抑制、消退、泛化、分化 正诱导:一个部位发生抑制引起周围发生兴奋地过程。 负诱导:一个部位发生兴奋引起周围发生抑制的过程。 同时诱导、继时诱导 第一信号系统:能够引起条件反应的物理性的条件刺激。 第二信号系统:能够引起条件反应的以语言符号为中介的条件刺激。 ②华生:通过建立条件作用,形成刺激与反应间的联结的过程。遵循频因律、 近因律。(学习的实质在于形成习惯) (2)操作性条件说 ①桑代克(联结试误说):在一定的情景和一定的反应之间建立联结,这种联结 通过尝试错误的过程而自动形成。三条学习规律:效果率、练习律、准备率②斯金纳 正强化、负强化、消退 惩罚:惩罚Ⅰ呈现厌恶刺激;惩罚Ⅱ消除愉快刺激 普雷马克原理:用学生喜爱的活动去强化学生参与不喜爱的活动。 强化程式:连续强化程式(灯一开就亮); 间接强化程式:a 定时强化(按时发工资) b 定比强化(计件工作) c 变时强化(随堂测验)d 变比强化(买彩票) (3)社会学习理论(班杜拉) 学习分为参与性学习和替代性学习(通过观察别人而进行的学习。) 观察学习:注意——保持——复制——动机

教育心理学的各种理论

1.桑代克的尝试——错误说 刺激——反应联结 基本规律:效果律练习律准备律 2.巴普洛夫——经典性条件作用论俄国 没有食物,只有铃声产生的唾液是条件刺激 看到食物就产生唾液是无条件反应 基本规律:获得与消退刺激泛化(对事物相似性的反应)与分化(对事物差异性的反应) 3.斯金纳——操作性条件作用论 基本规律:强化(+-)逃避条件作用和回避条件作用(负强化)消退惩罚 4.加涅——信息加工学习理论 模式——信息流控制结构(期望执行控制) 5.1-4属于联结学习理论 6.7-10属于认知学习理论 7.苛勒——完形、顿悟说 德国基本内容:学习是通过顿悟过程实现的学习的实质是在主体内部构成完形 8.布鲁纳——认知、结构学习理论 美国学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 学习观——实质是主动地形成认知结构过程包括获得转化评价教学观——目的在于理解学科的基本结构 教学原则——动机原则结构原则程序原则强化原则 9.奥苏泊尔——有意义的接受学习美国 学习方式分类:接受学习发现学习 学习材料与原有知识结构分类:机械学习意义学习 先行组织者:是先于学习任务本身呈现的一种引导性材料,他的抽象,概括和综合水平高于学习任务,并且与认知结构中原有的观念和新的学习任务相关联。 10.建构主义学习理论

学习动机 1.学习动机的两个基本成分:学习需要学习期待 2.奥苏泊尔学校情境中的成就动机: 认知内驱力(要求理解掌握事物内部动机) 自我提高内驱力(个人学业的成就“三好学生”) 附属内驱力(获得教师、家长的赞扬) 在儿童早期,附属内驱力最为突出 在青年期,认知内驱力和自我提高内驱力成为学习的主要动机 学习期待就其作用来说就是学习诱因 3.学习动机的种类: 社会意义:低级动机(个人、利己主义) 高尚动机(利他主义) 与学习活动的关系:近景的直接性动机(兴趣、爱好、求知欲) 远景的间接性动机(个人前途,父母期望)动力来源:内部动机(个体需要引起) 外部动机(由外部诱因引起) 4.学习动机理论 强化理论:外部强化自我强化 需要层次理论:美国马斯洛五需要(从低级到高级排列) 生理的需要安全的需要归属和爱的需要 尊重的需要自我实现的需要自我实现的需要包括:认知审美创造的需要(最高级的需要)成就动机理论:代表人:阿特金森 力求成功的动机避免失败的动机 成败归因理论:美国维纳三维度六因素 6因素:能力高低努力程度任务难度运气好坏身心状态外界环境3维度:稳定性可控性内在性 自我效能感理论:美国班杜拉 人的行为受行为的结构因素与先行因素的影响。 行为的结果因素就是通常所说的强化: A.直接强化:外部因素(惩罚奖励) B.替代性强化:通过一定的榜样 C.自我强化:自我评价自我监督 5.学习动机的激发:

3中学教育心理学考试测试题第三章 学习的基本理论

中学教育心理学考试测试题第三章学习的基本理论 一、单项选择题(下列各题所给选项中只有一个符合题意的正确答案,答错、不答或多答均不得分) 1.根据学习的定义,下列属于学习的现象是( D )。 A.吃了酸的食物流唾液 B.望梅止渴 C.蜘蛛织网 D.儿童模仿电影中人物的行为 2.对黑猩猩做“顿悟实验”的是( A )。 A.苛勒 B.托尔曼 C.桑代克 D.巴甫洛夫 3.加涅提出了( A )模式。 A.积累学习 B.发现学习 C.观察学习 D.接受学习 4.操作性条件反射学说的代表人物是( A )。 A.斯金纳 B.巴甫洛夫 C.桑代克 D.班杜拉 5.美国心理学家布鲁纳认为学习的实质在于( B )。 A.构造一种完形 B.主动地形成认知结构 C.形成刺激与反应间的联结 D.对环境条件的认知 6.( B )强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。A.斯金纳 B.布鲁纳 C.苛勒 D.加涅 D A D 10.下列不属于意义学习的条件的一项是( D ) A.材料本身必须具有逻辑意义 B.学习者认知结构必须具有能够同化新知识的适当的认知结构 C.学习者必须具有积极主动地将新知识与认知结构中的适当知识加以联系的倾向性,并使两者相互作用D.学习材料要高于学习者的能力范围 11.( A )学习理论认为学习是学生建构自己的知识的过程,学生是信息意义的主动建构者。 A.建构主义 B.认知一结构 C.信息加工 D.尝试一错误 12.“一朝被蛇咬,十年怕井绳”,这种现象指( C )。 A.消退 B.刺激比较 C.刺激泛化 D.刺激分化 13.根据经典条件反射作用理论,食物可以诱发狗的唾液分泌反应,则唾液是( C )。 A.中性刺激 B.无条件刺激 C.条件反应 D.无条件反应 14.看见路上的垃圾后绕道走开,这种行为是( C )。 A.强化 B.惩罚 C.逃避条件作用 D.消退 15.先行组织者教学技术的提出者是美国著名心理学家( C )。 A.斯金纳 B.布鲁纳 C.奥苏伯尔 D.桑代克 二、多项选择题(下列各题所给选项中有两个或两个以上符合题意的正确答案,不答、少答或多答均不得分) 1.学习的定义说明( ABD )。 A.学习是行为或行为潜能的变化 B.学习引起的变化是持久的 C.学习引起的变化是短暂的 D.学习是由反复经验引起的

教育心理学家的基本理论

教育心理学家的基本理论 1、行为学派(刺激——反应联结学习理论) 2、认知学派(认知结构学习理论) 3、掌握学习和指导学习理论 4、人本主义的学习理论 5、精神分析学派 一、行为学派(刺激——反应联结学习理论 1、桑代克 A:学习理论(三条基本学习规律)(P136) ①准备律 ②练习律——应用律、失用律 ③效果律 B:迁移 ①迁移一词的提出(P209) ②共同要素论(P215) C:1903年著《教育心理学》是教育学心理学成为独立学科的开始 D:1913年,将《教育心理学》扩展《教学心理学大纲》,共分为人的本性、学习心理、个别差异及原因。(P8) 2、巴甫洛夫——经典条件反射学习理论 A:消退(P140) B:恢复 C:类化(P140)——一朝被蛇咬,十年怕井绳 D:分化(P140) E:高级条件反射——刺激强化(P141) 3、斯金纳——操作条件反射学习理论 A:有机体行为分类(P142) ①应答性行为——经典条件反射 ②操作性行为——操作条件反射 B:操作条件反射主要规律(P142) ①假如一个操作发生后,接着给予强化刺激,那么这一类反应今后发生的概率就会增加。 ②由于行为效果的强化是使行为频率增加的根本原因,所以通过对有机体的有选择的强化,就可以使行为朝着所需要的方向发展。 C:程序教学(P157) ①小步子逻辑序列 ②要求学生作出积极反应 ③及时反馈 ④学生自定步调 ⑤低的错误率 4、班杜拉——社会学习理论(P143) A:观察式学习(模仿)(P143) “上行下效”、“耳濡目染”(P144)B:替代性强化(P143、149) “杀鸡儆猴”(P149)C:自我强化(P149)D:符号强化(P144) 二、认知学派(认知结构学习理论) 1、布鲁纳——发现学习理论(P158)1)、主动认知——认为学习是一个主动认知的过程。 2)、语言学习——语言学习是儿童心理发展的关键。 3)、学习过程——重视学习的过程。4)、学习结构——强调形成学习结构。5)、直觉思维——强调直觉思维的重要性。6)、内部激励——强调内部动机的重要性。7)、早期教育——强调基础学科的早期学习。 8)、信息提取——强调信息提取(记忆问题不是贮存,而是提取) 9)、发现学习——提倡发现学习。 ——以早期教育为起点,以开发智力为核心,以学科知识结构为基础,以发现学习为手段,以直觉思维为必备要素,以内部激励为动力的旨在培养科学精英的教学思想。

教育心理学章节习题 学习的基本理论

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选选项前的字母填在题后的括号内。 1.首先打出行为主义心理学旗帜的是()。 A.巴甫洛夫 B.斯金纳 C.桑代克 D.华生 2.以下心理学家不属于认知心理学派的是()。 A.苛勒 B.斯金纳 C.布鲁纳 D.奥苏伯尔 3.布鲁纳认为,学生掌握学科的基本结构的最好方法是()。 A.建构法 B.发现法 C.顿悟法 D.接受法 4.程序性教学实际上是()理论在实践中的运用。 A.学习的操作性条件作用 B.观察学习

C.认知学习 D.认知同化 5.加涅的信息加工系统中的第二级是()。 A.感受器 B.感受登记 C.短时记忆 D.长时记忆 6.苛勒在研究黑猩猩的学习时采用的实验是()。 A.迷箱实验 B.迷津实验 C.叠箱实验 D.“三座山”实验 7.建构主义的理论流派中,在皮亚杰的思想之上发展起来的是()。A.社会建构主义 B.激进建构主义 C.信息加工建构主义 D.社会主义建构主义 8.建构主义强调,知识的特点具有()。 A.主观性 B.客观性 C.普遍适应性

D.永恒性 9.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为的和实质性的联系属于()。 A.机械学习 B.意义学习 C.接受学习 D.发现学习 10.在发现教学中,教师的角色是学生学习的()。 A.促进者和引导者 B.领导者和参谋 C.管理者 D.示范者 11.孩子哭闹着要买玩具,母亲对其不予理睬,这是()。 A.正强化 B.负强化 C.惩罚 D.消退 12.以下心理学家及其理论匹配不正确的一项是()。 A.奥苏伯尔——认知发现说 B.苛勒——完形一顿悟说 C.托尔曼——认知目的说 D.加涅——信息加工理论

山香2016年教育心理学第三章 学习的基本理论

第三章学习的基本理论 第一节学习概述 一、学习的含义 (一)广义的学习 1、广义学习的含义:人和动物在生活过程中,凭借经验而产生的行为/行为潜能的相对持久的变化。 2、产生广义学习的三个特征: (1)学习必须使个体产生行为或行为潜能的变化。 (2)这种变化是相对持久的。有些主体的变化,如疲劳,创伤等引起的变化是暂时的,经过一段时间或一旦条件改变就会自行消失,这种变化不能称作学习。 (3)这种变化是由反复经验而引起的。 (二)狭义的学习 1、狭义学习的含义:指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会、个体的经验的过程。 2、人类学习与动物学习的本质区别: (1)人的学习是掌握人类社会历史经验、科学文化知识,获得个体行为经验的过程。 (2)人的学习是在社会生活实践中,与他人的交往时,以语言的中介进行的。 (3 3 (1)学生学习的含义:在教师的指导下,有目的、有计划、有组织、有系统地进行的,是在较短的时间内接受前人所积累和科学文化知识,并以此来充实自己的过程。 (2)学生学习内容:①知识、技能和学习策略的掌握,②问题解决能力、创造性的发展,③道德品质和健康心理的培养。 (3)学生学习的特点:①以系统地掌握人类的间接经验为主;②在教师的指导下进行,有较强的计划性、目的性、组织性;③具有一定程度的被动性;④要促进学生全面发展:学生不但要学习知识技能,还要发展智能,培养行为习惯、道德品质和健康的心理。 二、学习的分类 (一)从学习的主体来说,学习可以分为:动物学习、人类学习和机器学习。 (二)按学习的意识水平,[美]心理学家阿瑟.雷伯将学习分为:内隐学习和外显学习。 (三)加涅的学习结果分类:认为学习结果就是各种习得的才能、本领。获得以下五种才能:言语信息、智慧技能、认知策略、态度、动作技能。 1、言语信息的学习:帮助学生解决“是什么”的问题。掌握以言语信息传递的内容,学习结果是以言语信息表现出来的。 2、智慧技能的学习:解决“怎么做”的问题,用以对外界的符号、信息进行处理加工。辨别技能是最基本的智慧技能,按不同的学习水平及其所包含的心理运算的复杂程度,依次为:辨别、概念、规则、高级规则 3、认知策略的学习:学习者用以支配自己的注意、学习、记忆和思维的有内在组织的才能,这种才能使得学习过程的执行控制成为可能。智慧技能指向外部环境,而认知策略指向学习者内部。 4、态度的学习:态度是通过学习获得的内部状态,这种状态影响着个人对某种事物、人物及事件所采取的行动。加涅提出三类态度:(1)儿童对家庭和其他社会关系的认识;(2)对某种活动所伴随的积极的喜爱情感;(3)有关个人品德的某些方面,如热爱国家等。 5、运动技能的学习:运动技能又称为动作技能,也是能力的一个组成部分。

教育心理学专题练习第三章学习的基本理论

第三章学习的基本理论 一、单选题 1.被誉为现代教育心理学奠基人的是()。 A桑代克 B.巴甫洛夫 C.斯金纳 D.布鲁纳 2.下列不属于学习引起的变化的是()。 A. 幼儿会喊爸爸、妈妈 B.青春期嗓音变化 C.骑车 D.会使用电脑 3学习对某种信号作出一般性和弥散性的反应是()学习。 A.刺激——反应 B.连锁 C.辨别 D.信号 4.属于巴甫洛夫的经典性条件反射的学习类型是( )学习。 A.刺激——反应 B.信号 C.概念 D.连锁 5.属于操作性条件反射的学习类型是( )学习。 A.信号 B.规则 C.解决问题 D.刺激——反应 6联合两个或两个以上的刺激——反应动作,以形成一系列动作联结的学习类型是()学习。 A. 连锁 B.概念 C.辨别 D. 刺激——反应 7.各类动作技能的形成都离不开()学习。 A.信号 B.规则 C.连锁 D.刺激——反应 8.对一系列类似的刺激分别作出适当的反应的学习是()学习。 A.连锁 B.概念 C.辨别 D.规则 9.()学习是指认识一类事物的共同属性,并对其抽象特征作出反应。 A.解决问题 B.概念 C.辨别 D.规则 10.把鲸鱼、象、狗等概括为“哺乳动物”,这属于()学习。 A.解决问题 B.概念 C.辨别 D.规则 11.理解“功=力×距离”这一公式,这是()学习。 A.信号 B.概念 C.辨别 D.原理 12.掌握教育学基本原理后,用之于解决教育中的实际问题,这是()学习。 A.解决问题 B.规则 C.概念 D.刺激——反应 13.()是调节和控制自己的注意、学习、记忆、思维和问题解决过程的内部组织起来的能力。 A.智慧技能 B.认知策略 C.动作技能 D.态度 14.()是使用符合与环境相互作用的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 15.()表现为学会陈述观点的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 16.()是对外的平稳而精确的操作能力。 A.智慧技能 B.认知策略 C.言语信息 D.动作技能 17.()表现为个体对人、对物或某些事件的意向。 A.智慧技能 B.认知策略 C.言语信息 D.态度 18.在试误学习的过程中,学习者对环境刺激作出反应后能获得满意的结果时,其联结就会增强,这是()。 A.效果律 B.练习律 C.准备律 D.强化律 19.在试误学习的过程中,刺激与反应的联结,如果练习运用,联结的力量逐渐增大,如果不运用,则逐渐减小,这是( ).。

教育心理学-第三章 学习的基本理论 - 副本

《教育心理学》学习的基本理论 一、不定项选择题 1.下列属于学习的现象是()。 A.吃了酸的食物流唾液B.了解低碳生活并付诸行动C.蜘蛛织网D.儿童模仿电影中人物的行为2.一名学生能够运用三角形的面积公式解决一个他从来没有见到过的三角形的面积,这表明他已经具备了()。 A.言语信息B.动作技能C.智慧技能D.认知策略E.态度 3.某位学生近一段及时完成作业,老师告诉他放学后不必再留在教室里完成作业了,此后该生继续按时完成作业,这时该生受到了()。 A.正强化B.负强化c.正惩罚D.负惩罚 4.奥苏贝尔提倡的一种学习类型是()。 A.有意义-发现学习B.有意义-接受学习C.机械-接收学习D.机械-发现学习 5.引导学生分辨勇敢和鲁莽、谦让和退缩属于刺激()。 A.获得B.消退C.分化D.泛化 6.“孟母三迁”终使孟子成才,能够有效解释该现象的理论是()。 A.认知学习理论B.社会学习理论C.人本主义理论D.建构主义理论 7.学生学习“功=力×距离”,这种学习属于()。 A.辨别学习B.符号学习C.概念学习D.规则或原理学习 8.()指教材被分成若干小步子,学生可自定学习步调,让学生对所学内容进行积极反应,并给予及时强化和反馈使错误率最低。 A.程序教学B.组织教学C.个别化教学D.指导教学 9.()强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。 A.布鲁纳B.班杜拉C.桑代克D.巴甫洛夫 10.布鲁纳认为任何知识结构都可以用适合形式呈现,以下不属于他提出的呈现方式的一项是()。A.动作表象B.图像表象C.符号表象D.情感表象 11.最初主张S-R联结存在意识中介的心理学家或心理学流派是()。 A.格式塔学派B.布鲁纳C.斯金纳D.托尔曼 12.人和动物一旦学会对某一特定的条件刺激作出条件反应以后,其他与该条件刺激相类似的刺激也能诱发其条件反应,称为()。 A.刺激分化B.消退C.刺激泛化D.获得 13.操作性条件作用论的提出者是()。 A.桑代克B.苛勒C.斯金纳D.巴甫洛夫 14.布鲁纳的学习论是()。 A.完形顿悟说B.有意义接受学习论C.认知结构学习论D.建构主义 15.观察者看到榜样受到强化而如同自己也受到强化一样,这称为()。 A.外部强化B.自我强化C.直接强化D.替代强化 16.“一朝被蛇咬,十年怕井绳”,这种现象是指()。

教育心理学考试重点第三章学习的基本理论+实战演练

教育心理学考试重点提示:第三章学习的基本理论 重点提示 统观近几年全国各省的教师资格认证教育心理学考试,本章的考查重点是: (1)学习的定义。 (2)学习的主要理论: 尝试一错误学习的基本规律。 经典性条件反射的基本规律。 布鲁纳的认识一结构学习论。 当今建构主义学习理论的基本观点。 考纲链接 1.学习的实质与特征: (1)学习的概念。广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的变化。狭义的学习指人类的学习,是在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 (2)人类学习与动物学习的区别。首先,人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识;其次,人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的;此外,人的学习是一种有目的的、自觉的、积极主动的过程。 2.学生的学习:是在教师的指导下,有目的、有计划、有组织、有系统地进行,在较短时间内接受前人所积累的科学文化知识,并以此来充实自己的过程。 3.学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 4.加涅关于学习层次和学习结果的分类: (1)加涅关于学习层次分类:信号学习、刺激-反应学习、连锁学习、语言联结学习、辨别学习、概念学习、规则或原理学习、解决问题学习。 8.认知学习理论: (1)完形-顿悟说:由苛勒提出,主要观点:学习是通过顿悟实现的;学习的实质在于构造完形。 (2)认知-结构学习论:由布鲁纳提出。他主张学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 10.建构主义学习理论。基本观点: (1)知识观。知识并不是问题的最终答案;知识并不能精确地概括世界的法则;知识不可能以实体的形式存在于具

《教育心理学》分章强化题三:第三章学习的基本理论

《教育心理学》分章强化题三:第三章学习的基本理论 一、选择题 1.下列现象可以归入到学习中的现象有()。 A.事故后体会到交通法规的重要性 B.疲劳时记忆力下降 C.乳儿抓住碰到的东西 D.青春期少年的嗓音变化 2.新生渐渐知道铃声代表上课,这属于()。 A.信号学习 B.辨别学习 C.概念学习 D.言语联结学习 3.各种动作技能的学习,都离不开()。 A.连锁学习 B.言语联结学习 C.解决问题的学习 D.信号学习 4.使用符号与环境相互作用的能力属于()。 A.认知策略 B.言语信息 C.动作技能 D.智慧技能 5.在试误学习过程中,当刺激与反应之间的联结不准备实现时,实现则感到烦恼,这符合()。

A.练习律 B.准备律 C.效果律 D.联结律 6.家长对考试成绩好的孩子给予物质奖励是()。 A.正强化 B.负强化 C.消退 D.惩罚 7.一个学生上课讲话,老师要他写“我上课讲话,真丑”1000遍,这属于()。 A.正强化 B.负强化 C.惩罚 D.替代强化 8.认为学习是个体利用本身的智慧与理解力对情境及情境与自身关系的顿悟的学说为()。 A.认知-结构学习论 B.有意义接受学习论 C.完形-顿悟说 D.建构主义学习论 9.有意义接受学习论的提出者是()。 A.苛勒 B.布鲁纳 C.斯金纳 D.奥苏伯尔 10.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为和实质性的联系的学习是()。 A.接受学习 B.发现学习 C.机械学习 D.意义学习 11.认为知识并不是对现实的准确表征,它只是一种解释、一种假设的理论为(或认为学生的学习不仅是对新知识的理解,而且是对新知识的分析、检验和批判的力量是)()。

教育心理学第三章 学习的基本理论

第三章学习的基本理论 1)什么是学习?人类学习和动物学习有什么本质的区别? 广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的相对持久的变化。 定义说明:1、学习表现为行为或行为潜能的变化。2、学习所引起的行为或行为潜能的变化是相对持久的。3、学习是由反复经验而引起的。 狭义的学习指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 人类学习vs. 动物学习有本质的区别: 1. 人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识。 2. 人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的。 3. 人类的学习是一种有目的、自觉的、积极主动的过程。 2)学生的学习的内容和特点什么?(人类学习和学生学习有什么区别) 含义:学生的学习是人类学习中的一种特殊形式,它是在老师的指导下,有目的、有计划、有组织、有系统的进行的,是在较短的时间内接受前人所积累的文化科学知识,并以此来充实自己的过程。 学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 人类学习和学生学习之间是一般与特殊的关系,学生的学习既与人类的学习有共同之处,但又有其特点:①以间接经验的掌握为主线;②具有较强的计划性、目的性和组织性;③具有一定程度的被动性。 3)加涅按照学习结果的不同把学习分成那些类型? 1、言语信息, 2、智慧技能, 3、认知策略, 4、态度, 5、运动技能。 4)简述奥苏贝尔对学习的分类 根据两个维度对认知领域的学习分类:一个是学习进行的方式,分为接受学习和发现学习;另一个维度是学习材料与学习者原有知识的关系,可分为机械学习和有意义学习。这两个维度互不依赖,彼此独立。并且每一个维度都存在许多过渡形式。 5)我国心理学家对学习是怎样分类的? 分为知识的学习、技能的学习和行为规范的学习三类。 6)联结学习理论的基本观点有哪些?(行为主义) 联结学习理论认为:一切学习都是通过条件作用,在刺激(S)和反应(R)之间建立直接联结的过程。强化在刺激—反应之间的建立过程中起着重要作用。在刺激—反应联结之中,个体学到的是习惯,而习惯是反复练习和强化的结果。习惯一旦形成,只要原来的或类似的刺激情境出现,习得的习惯性反应就会自动出现。 7 桑代克是美国著名心理学家,他采用实证主义的取向,使教育心理学研究走向了科学化的道路,是科学教育心理学的开创者,是第一个系统论述教育心理学的心理学家,被称为“现代教育心理学之父”。是最早用动物实验来研究学习规律的心理学家。 (一)经典实验:猫开笼取食的实验。 (二)学习的联结说(又叫试误说):通过这类实验,桑代克提出学习不是建立观念之间的联结,而是建立刺激—反应(S—R)联结,即在一定的刺激情境与某种正确反应之间形成联结,其中不需要观念或思维的参与。这种刺激—反应联结主要是通过尝试错误、

教育学心理学主要理论及代表人物

昆体良古罗 马 1.《雄辩术原理》世上第一部研究系统的教学方法论著,被公认为是西方教育史上的伟大 教育家,是第一位教学理论家和教学法专家。 2. 最早提出分班教学的思想 杜威美国1.提出实用主义教育学,杜威出版《民主主义与教育》《经验与教育》,克伯屈出版《设计教学法》,提倡活动课。 思想:强调儿童的主体地位:①教育即生活,教育即生长②教育社会化③做中学④教育即经验的不断改造。以儿童为中心,反对教师中心论 2.现代教育代言人现代教育的主要特点是民主 3.教育无目的论“教育是一个社会过程。” 4.问题的解决杜威的五步模式①困惑②诊断③假设④推断⑤验证 5.问题解决步骤的五步模式⑴疑难⑵分析⑶假设⑷检验和评价⑸结论 桑代克 美 国 1.1903年出版西方第一本《教育心理学》,是教育心理学体系的创始,标志着教育心理学 称为一门独立的学科。 2.学习理论之联结派的学习理论——联结学习:尝试-错误说(小猫“迷箱”试验) 试误成功条件:练习律、准备律、效果律 3.教育心理学体系(现代教育心理学)和联结主义学习心理学创始人,被誉为教育心理学 之父 4. 学习迁移理论之联结主义的相同要素说(代表人物:桑代克、伍德沃斯) 桑代克:相同要素说,即学习上的迁移是相同联结的转移。 伍德沃斯:共同成分说,即两种学习活动含有共同成分,则发生迁移,学习也就更容易。 以刺激——反应联结理论为基础。只有当学习情景和迁移情景存在共同成分时,才能产生迁移。即材料相似性是决定迁移的条件 5.现代教育测验之父 6.智力水平越高,迁移越大。 7.问题解决理论之试误说,又称联结说——(猫“迷箱”实验) 问题的解决过程是刺激情境与适当反应之间的联结完成的,联结的建立是通过尝试错误完成的。 贾德美国1.学习迁移理论之机能心理学的经验泛化说—“水下击靶”实验 他认为一个人对他的经验进行了概括,就可以完成从一个情境到另一个情境的迁移。概括就等于迁移,原理、法则等概括化的理论知识对迁移作用很大。 沃尔夫德国 1.学习迁移理论之官能心理学的形式训练说 他把迁移的实质理解为新的官能经训练而发展,认为促进迁移的条件与学习内容无大关系而偏重于形式。 魏特海默 苛勒德国 1.学习理论之认知派学习理论——格式塔的顿悟学习理论(黑猩猩取香蕉实验):学习是 一个顿悟的过程,是突然察觉到解决问题的办法。主要代表人物:魏特海墨、科夫卡和克勒 2.学习迁移理论之格式塔学派的关系转换说(代表人物:苛勒)—“小鸡啄米实验” 强调“顿悟”是迁移的一个决定因素。强调个体的作用,愈能加以概括化,愈易产生迁移。 3.问题解决理论之顿悟说(苛勒)——黑猩猩取香蕉实验 4.格式塔心理学(完形心理学)创始人魏特海墨、科夫卡和克勒研究内容是意识体验, 论点“整体大于部分之和” 解决问题时从整体把握全部问题情境和认知结构的豁然改组,而不是一次次经验的积累。 反对元素分析认为每一个心理现象都是一个整体是一个格式塔是一个完形 学习的实质在于构造完型,刺激与反应之间的联系而需要意识作为中介 布鲁美国1.结构化教材和发现学习模式(明确结构,掌握课题,提供资料→建立假说,推测答案→验证→做出结论) 2.领导美国20C60y的结构主义课程改革,主张突出学科基本结构,让学生通过发现法学习,重视智力发展(动机原则、结构原则、程序原则、反馈原则) 3.学习理论之现代认知学习理论——认知发现理论 强调认知学习和认知发展,提倡发现学习。学习的核心内容是各门学科的基本知识结构。3教学方法:发现学习,新课标中也叫“探究学习”。即教师提出课题和一定的材料,引导学生自己进行分析、综合、抽象、概括等一系列活动,最后得到学习结果。 4.提出假设考验说,研究人工概念的形成(人需要利用已有的知识主动提出一些可能的假设,即猜想这个概念是什么)——人工概念是认为的、在程序上模拟的概念,这种方法最早是赫尔于1920年首创的。 5.强调非特殊成分的迁移,也叫普遍迁移。即学习了基本的普遍的概念或原理,可作为学

教育心理学主要理论知识

第一章做合格教师 第一部分主要理论知识 1.合格教师心理素质 教师心理素质是教师在专业发展过程中,在心理过程和个性心理特征两方面所表现出来的本质特征。 教师的心理素质包括如下方面,即教师的智力素质、教师的情感素质、教师意志素质、教师的教育教学素质、教师的人格素质、教师的信念。 2、教师的智力素质 教师的智力是从事教育工作应具备的基本心理素质,是教师从事教育教学工作的心理基础。教师的智力素质表现在以下方面: (1)敏锐的观察力(2)良好的记忆力(3)丰富的想象力⑷多方位的立体思维能力 ⑸注意分配的能力 3、教师的情感素质特点 教育过程是师生情感交流的过程,教育工作最大的特点就是以情感人。 (1)成熟而稳定的情感(2)爱的情感:对教育事业的热爱、对学生的热爱、对所教学科的热爱 4、教师的意志特点 (1)实现教育目的的自觉性(2)克服困难的坚韧性(3)选择教育决策的果断性(4)解决矛盾的沉着自制性 4.教师的教育能力素质 因材施教的教育能力、获取信息的能力、独创能力、教育科研能力、心理教育能力、教育机智 5.教师的教学素质:包括教师的知识结构与教学能力。 6.教师的知识结构 教师的知识水平是其从事教学工作的前提条件。根据有关专家的研究,教师的知识结构可由三方面组成,分别为本体性知识、实践性知识和条件性知识。 7.本体性知识。 教师职业的本体性知识是教师所具有的特定的学科知识,如语文知识、数学

知识等,也即人们所熟知的科目知识。 林崇德等人的研究表明,教师的本体性知识与学生成绩之间几乎不存在统计上的关系。 由于学科不同,本体性知识的具体内容是不同的。仅仅从一般意义上说,教师的本体性知识应包括四个方面:教师应对学科的基础知识有广泛而准确的理解,熟练掌握相关的技能、技巧;教师要基本了解与所教学科相关的知识点、相关性质以及逻辑关系;教师需要了解该学科的发展历史和趋势,对于社会、人类发展的价值以及在人类生活实践中的多种表现形态;教师需要掌握每一门学科所提供的独特的认识世界的视角、域界、层次及思维的工具与方法等。 8.实践性知识 教师的实践性知识是教师在开展有目的的教育教学活动过程中解决具体问题的知识,是教师教育教学经验的积累和提炼,它主要来源于课堂教育教学情景之中和课堂内外的师生互动行为,带有明显的情景性、个体性,体现出教师个人的教育智慧和教学风格。研究表明,教龄对教师的实践性知识存在着显著影响,教师的实践性知识水平随着教龄的增加而逐步上升。 9.条件性知识 教师的条件性知识是指教师所具有的教育学与心理学知识。条件性知识是:个教师成功教学的重要保障,而这种知识是目前广大的一般教师所普遍缺乏的。教师的条件性知识分为三个方面,即学生身心发展的知识、教与学的知识和学生成绩评价的知识。 正如杜威指出的那样,科学家的学科知识与教师的学科知识是不一样的,教师必须把学科知识“心理学化”,以便学生能理解。 10.教师的教学能力 教师的教学能力是教师从事教学活动,完成教学任务的能力,是教师专业能力的重要方面。 ⑴教学认知能力⑵教学设计的能力 ⑶教学操作能力:①表达能力②课堂组织管理能力③运用现代教育技术的能力

相关文档
相关文档 最新文档