文档库 最新最全的文档下载
当前位置:文档库 › 软钢和硬钢的屈服强度在原理和试验上有何不同

软钢和硬钢的屈服强度在原理和试验上有何不同

软钢和硬钢的屈服强度在原理和试验上有何不同

软钢和硬钢的屈服强度在原理和试验上有何不同?

问:软钢和硬钢的屈服强度在原理和试验上有何不同?

答:软钢应力——应变曲线中屈服阶段明显,故以下屈服点数值表示屈服强度;而硬钢拉伸曲线中并无明显的屈服阶段,故以残余变形为0.2%时对应的应力——应变曲线上数值表示其屈服强度数值,称为条件屈服点。

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

抗拉强度与硬度对照表

第2章金属材料的硬度试验 2.1 硬度试验的简介 2.1.1、硬度试验的概述 金属的硬度可以认为是金属材料表面在接触应力作用下抵抗塑性变形的一种能力。硬度测量能够给出金属材料软硬的数量概念。由于在金属表面以下不同深度的材料承受的应力和所发生的变形程度不同,因而硬度值可以综合的反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。硬度值越高,表明金属抵抗塑性变形的能力越大,材料所产生的塑性变形就越困难。另外,硬度与其它机械性能(如强度指标σ 及塑性指标Ψ和 b δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件 或工具的使用性能以及寿命具有决定性的意义。

硬度的试验方法有很多,在机械工业中广泛采用压入法来测定硬度,压入法又可以分为布氏硬度、洛氏硬度、维氏硬度等。 压入法硬度试验的主要特征是: 1. 试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。 2. 金属的硬度与强度指标之间存在如下近似的关系:σ =K·HB , b 式中:σ ---材料的抗拉强度值; b HB---布氏硬度值; K---系数; 退火状态的碳钢 K=0.34~0.36 合金调质钢 K=0.33~0.35 有色金属合金 K=0.33~0.53 3. 硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常情况下,当硬度值越高,这些性能也就越好。在机械零件设计图纸上对性能的技术要求,往往只是标注硬度值,其原因就在于此。 4. 硬度测定后由于仅在金属表面局部体积内产生很小的压痕,并不损坏零件,因而适合于成品检验。 5. 设备简单,操作迅速方便。 实验目的:主要是了解硬度测定的基本原理及应用范围;布氏、洛氏硬度试验机的主要结构和操作方法。 实验设备:HB-3000型布氏硬度试验机和H-100型洛氏硬度试验机以及相关的读数放大镜等仪器。 试样:Ф20×10毫米的45钢的淬火和调质状态,Ф20×10毫米的硬铝。

35CrMo与40Cr的抗拉屈服极限

35CrMo抗拉强度和35CrMo屈服强度 35CrMo抗拉强度和35CrMo屈服强度知识: 材料名称:合金结构钢 牌号:35CrMo 标准:GB/T 3077-1988 ●35CrMo特性及适用范围: 有很高的静力强度、冲击韧性及较高的疲劳极限,淬透性较40Cr高,高温下有高的蠕变强度与持久强度,长期工作温度可达500℃;冷变形时塑性中等,焊接性差。用作在高负荷下工作的重要结构件,如车辆和发动机的传动件;汽轮发电机的转子、主轴、重载荷的传动轴,大断面零件 ●35CrMo化学成份: 碳 C :0.32~0.40 硅 Si:0.17~0.37 锰 Mn:0.40~0.70 硫 S :允许残余含量≤0.035 磷 P :允许残余含量≤0.035 铬 Cr:0.80~1.10 镍 Ni:允许残余含量≤0.030 铜 Cu:允许残余含量≤0.030 钼 Mo:0.15~0.25 ●35CrMo力学性能: 抗拉强度σb (MPa):≥985(100) 屈服强度σs (MPa):≥835(85) 伸长率δ5 (%):≥12 断面收缩率ψ (%):≥45 冲击功 Akv (J):≥63 冲击韧性值αkv (J/cm2):≥78(8) 硬度:≤229HB 试样尺寸:试样毛坯尺寸为25mm ●35CrMo热处理规范及金相组织: 热处理规范:淬火850℃,油冷;回火550℃,水冷、油冷。 ●35CrMo交货状态:以热处理(正火、退火或高温回火)或不热处理状态交货,交货状态应在合同中注明。

40Cr的屈服强度、化学成分、力学性能 【40cr化学成分】 根据标准GB/T 3077-1999: 【40cr力学性能】 试样毛坯尺寸(mm):25 热处理: 第一次淬火加热温度(℃):850;冷却剂:油 第二次淬火加热温度(℃):- 回火加热温度(℃):520;冷却剂:水、油 抗拉强度(σb/MPa):≥980 屈服点(σs/MPa):≥785 断后伸长率(δ5/%):≥9 断面收缩率(ψ/%):≥45 冲击吸收功(Aku2/J):≥47 布氏硬度(HBS100/3000)(退火或高温回火状态):≤207 【40cr参考对应钢号】 我国GB的标准钢号是40Cr、德国DIN标准材料编号1.17035/1.7045、德国DIN标准钢号41Cr4/42Gr4、英国EN标准钢号18、英国BS标准钢号41Cr4、法国AFNOR标准钢号42C4、法国NF标准钢号38Cr4/41Cr4、意大利UNI标准钢号41Cr4、比利时NBN标准钢号42Cr4、瑞典SS标准钢号2245、美国AISI/SAE/ASTM 标准钢号5140、日本JIS标准钢号SCr440(H)/SCr440、美国AISI/SAE/ASTM标准钢号5140、国际标准化组织ISO标准钢号41Cr4。 【40cr临界点温度】 (近似值) Acm=780℃ 【40cr正火规范】

抗拉强度与屈服强度区别

钢筋抗拉强度标准值和屈服强度的标准值有什么区别 普通钢筋的抗拉强度设计值?y是普通钢筋强度标准值(屈服强度标准值)除以材料分项系数γs。钢筋的强度标准值应具有不小于95%的保证率。钢筋屈服强度特征值是在无限多次检验中,与某一规定概率所对应的分位值。屈服强度的标准值?yk相当于钢筋标准中的屈服强度特征值ReL。 如表4.2.3-1中抗拉强度设计值?y及抗压强度设计值?ˊy是由表4.2.2-1中屈服强度标准值?yk除以材料分项系数γs所得: HPB300的270(N/mm2),是300÷1.10=272.7=270(N/mm2); HRB335的300(N/mm2),是335÷1.10=304.5=300(N/mm2); HRB400的360(N/mm2),是400÷1.10=363.6=360(N/mm2); HRB500的435(N/mm2),是500÷1.15=434.7=435(N/mm2)。 设计是根据钢产品标准的修改,不再限制钢筋材料的化学成分和制作工艺,而按性能确定钢筋的牌号和强度级别,并以相应的符号表达。普通钢筋采用屈服强度标志。增列了钢筋极限强度(即钢筋拉断前相于最大拉力下的强度)的标准值?stk,相当于钢筋标准中的抗拉强度特征值Rm。 钢筋的强度设计值为其强度标准值除以材料分项系数γs的数值。延性较好的热轧钢筋γs取1.10。但对新列入的高强度500MPa级钢筋适当提高安全储备,取为1.15。 向左转|向右转 向左转|向右转

参考资料:《混凝土结构设计规范》GB50010-2010和《钢筋混凝土用钢第1部 分热轧光圆钢筋》GB1499.1-2008和《钢筋混凝土用钢第2部分热轧带肋钢筋》 GB1499.2-2007 钢筋抗拉强度、抗拉强度标准值、设计值区别,帮解释下 以HRB335为例,抗拉强度为455,标准值为355,设计值为300,为什么抗拉强度标准值和抗拉强度怎么不一样,还有,为什么屈服强度等于抗拉强度标准值? 答:钢筋在受到外力作用下会产生变形,变形过程分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。在屈服阶段之前,如果卸去外力,还可以恢复到以前状态(物理变化),标准值说的就是下屈服值(例:HRB335钢筋屈服点为335Mpa。抗拉强度为最大力强度,即为455Mpa.)一般设计时都采用屈服强度为设计值,所以设计值远远小于抗拉强度,就是考虑到钢筋在收到外力作用下的变形,(即:在达到屈服强度还可以回复原来状态)。

抗拉强度_延伸率_屈服强度

问题:什么是抗拉强度,延伸率,屈服强度? 球铁管是一种即有高强度和高弹性的输水管道,球铁管优秀的力学性能是它在种类繁多的输水管材中立于不败之地的保证,因而我们有必要对描述球铁管的各种力学性能做一番介绍: 1. 延伸率 延伸率主要衡量球墨铸铁塑性性能-即发生永久变形而不至于断裂的性能。 δ= (L-L 0)/L 0*100% δ---伸长率 L 0----试样原长度 L----试样受拉伸断裂后的长度 2. 强度 强度是金属材料在外力作用下抵抗永久变形和断裂的能力。工程上常用来表示金属材料强度的指标有屈服强度和抗拉强度。 a. 屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。 δS =Fs/A O Fs----试样产生屈服现象时所承受的最大外力(N ) A O ----试样原来的截面积(mm 2) δS ---屈服强度(Mpa) b. 抗拉强度是指金属材料在拉断前所能承受的最大应力,用δb =F O /A O F O ----试样在断裂前的最大外力(N ) A O ----试样原来的截面积(mm 2) δb ---抗拉强度(Mpa ) Table:三种不同材料之间的机械性能对比 对于球墨铸铁管而言,其试样实际就是取自插口处试样加工过后的试棒;对球墨铸铁管件而言,其试样通常是取自与管件同批的铁水铸出的Y 型试块加工成的试棒。 管材和管件的抗拉强度实验,就是用试棒拉断前的最大持续力除以试棒面积计算得出的抗拉强度。把试棒断裂的两部分拼在一起测量伸长的标距,用伸长标距与初始标距之比求得伸长率。 不同的管材之间因为力学性能实验方法有别,所以某些管材宣传他们的力学性能甚至优于铸铁管是毫无根据的。 退火球墨铸铁 铸态球墨铸铁管 灰口铁管 屈服强度 ≥300MPa 未定义 未定义 抗拉强度 ≥420MPa ≤300MPa ≥200 MPa 延伸率 ≥10% ≥3% ≤3% 断裂形式 塑性变形 突然断裂 突然断裂

钢材抗拉强度与硬度的对照表.docx

根据德国标准DIN50150, 以下是常用范围的钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。 抗拉强度维氏硬度布氏硬度洛氏硬度Rm HV HB HRC N/mm 2 25080-27085-28590-30595-320100-335105-350110105-370115109-380120114-400125119-415130124-430135128-450140133-465145138-480150143-490155147-510160152-530165156-545170162-560175166-575180171-595185176-610190181-625195185-640200190-660205195-675210199-690215204-705220209-720225214-740230219-755235223-770240228 785245233

800250238 820255242 835260247 850265252 865270257 880275261 900280266 915285271 930290276 950295280 965300285 995310295 1030320304 1060330314 1095340323 1125350333 1115360342 1190370352 1220380361 1255390371 1290400380 1320410390 1350420399 1385430409 1420440418 1455450428 1485460437 1520470447 1555480(456) 1595490(466) 1630500(475) 1665510(485) 1700520(494) 1740530(504) 1775540(513) 1810550(523) 1845560(532) 1880570(542) 1920580(551) 1955590(561)

钢筋的屈服强度和抗拉强度

钢筋的屈服强度和抗拉强度 HPB235钢筋,屈服点强度为235MPa,(延伸率为17%); HRB335钢筋,屈服点强度为335MPa,(延伸率为16%); HRB400钢筋,屈服点强度为400MPa,(延伸率为15%)。 根据规定,直径28-40的钢筋,断后延伸率可降低1%,40以上的钢筋可降低2%。 以上要求是交货检验的最小保证值 实验钢筋的拉伸试验 简单的说就是钢筋伸长段与钢筋原长的比。 ①钢筋强度的计算 试件的屈服强度按下式计算: 式中ps——屈服点荷载,n; a0——试件横截面积,cm2。 试件的抗拉强度按下式计算: 式中p0——屈服点荷载,n; a0——试件横截面积,cm2。 ②伸长率的测定 a. 将已拉断试件的两段在断裂处对齐,尽量使其轴线位于一条

直线上。如拉断处由于各种原因形成缝隙,则此缝隙应计入试件拉断后的标距部分长度内。 b. 如拉断处到邻近标距端点的距离大于(1/3)l0时,可用卡尺直接量出已被拉的标距长度l1(mm)。 c. 如拉断处到邻近的标距端点的距离小于或等于(1/3)l0时,可按移位法计算。 d. 伸长率按下式计算(精确至1%): 式中δ——伸长率,%,精确至1%; l0——原标距长度,mm; l1——试件拉断后直接量出或按移位法确定的标距部分的长度,mm(测量精确 mm)。 e. 如试件在标距端点上或标距外断裂,则试验结果无效,应重作试验。 将测试、计算所得到的结果δ10、δ5(δ10、δ5分别表示l0=10a和l0=5a时的断后伸长率),对照国家规范对钢筋性能的技术要求,如达到标准要求则合格,如未达到,可取双倍试验重做,如仍未达到标准者,则钢筋的伸长率不合格。 联系电话: 企业网址:山东金业机械有限公司

关于抗拉强度和屈服强度的区别

抗拉强度与屈服强度的区别及实例 首先自我介绍一下,本人现在某检测机构任职,我任职的这家机构主要是对金属材料进行理化检验,有CMA认证(中国计量认证)、CNAS 认证(国家认可委认证),属国家级实验室。检测结果全球100多个国家互认。本人任金属物理检测室副主任,物理检测技术组组长。应当算得上是专业人士。 什么是的屈服强度和抗拉强度。 要说这两个概念,先从材料是如何被破坏的说起。任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。 屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。 抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同

样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。抗拉强度是材料单位面积上所能承受外力作用的极限。超过这个极限,材料将被解离性破坏。 那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。 弹性材料在受到恒定持续增大的外力作用下,直到断裂。究竟发生了怎样的变化呢?首先,材料在外力作用下,发生弹性形变,遵循胡克定律。什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。当外力继续增大,到一定的数值之后,材料会进入塑性形变期。材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的!弄清楚这两个强度怎么来的了,所以说,屈服强度高的材料,能承受的破坏力就

抗拉强度和屈服强度.

抗拉强度和屈服强度 抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /(b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这

强度与硬度对照表

抗拉强度与硬度对照表 抗拉强度N/mm2 维氏硬 度 布氏硬度洛氏硬度 抗拉强度 N/mm2 维氏硬 度 布氏硬度洛氏硬度 Rm HV HB HRC Rm HV HB HRC 2508076122038036138.8 2708580.7125539037139.8 2859085.2129040038040.8 3059590.2132041039041.8 32010095135042039942.7 33510599.8138543040943.6 350110105142044041844.5 370115109145545042845.3 380120114148546043746.1 400125119152047044746.9 41513012415557480-45647 4301351281595490-46648.4 4501401331630500-47549.1 4651451381665510-48549.8 4801501431700520-49450.5 4901551471740530-50451.1 5101601521775540-51351.7 5301651561810550-52352.3 5451701621845560-53253 5601751661880570-54253.6 5751801711920580-55154.1 5951851761955590-56154.7 6101901811995600-57055.2 6251951852030610-58055.7

6402001902070620-58956.3 6602051952105630-59956.8 6752101992145640-60857.3 6902152042180650-61857.8 70522020966058.3 72022521467058.8 74023021968059.2 75523522369059.7 77024022820.370060.1 78524523321.372061 80025023822.274061.8 82025524223.176062.5 83502602472478063.3 85026525224.880064 86527025725.682064.7 88027526126.484065.3 90028026627.186065.9 91528527127.888066.4 93029027628.590067 95029528029.292067.5 96530028529.894068 99531029531 103032030432.2 106033031433.3 109534032334.4 112535033335.5 111536034236.6 119037035237.7

什么是屈服强度和抗拉强度(知识参考)

什么是屈服强度和抗拉强度 要说这两个概念,先从材料是如何被破坏的说起。任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。 所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。抗拉强度是材料单位面积上所能承受外力作用的极限。超过这个极限,材料将被解离性破坏。 那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。 弹性材料在受到恒定持续增大的外力作用下,直到断裂。究竟发生了怎样的变化呢? 首先,材料在外力作用下,发生弹性形变,遵循胡克定律。什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。当外力继续增大,到一定的数值之后,材料会进入塑性形变期。材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的! 弄清楚这两个强度怎么来的了,所以说,屈服强度高的材料,能承受的破坏力就大,这是正确的。

屈服和抗拉强度的区别

屈服和抗拉强度的区别 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp 时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n 一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很

屈服强度与抗拉强度

屈服强度与抗拉强度的定义屈服强度又称为屈服极限,常用符号δs,是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 抗拉强度的定义及符号表示: 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横

截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。万能材料试验机当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定。

弹性模量屈服强度和抗拉强度

弹性模量屈服强度和抗 拉强度 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

弹性模量、屈服强度和抗拉强度 (1)弹性模量 钢材受力初期,应力与应变成比例地增长,应力与应变之比为常数,称为弹性模量,即 E=б/ε。这个阶段的最大应力(P点对应值)称为比例极限бp。 弹性模量反映了材料受力时抵抗弹性变形的能力,即材料的刚度,它是钢材在静荷载作用下计算结构变形的一个重要指标。 (2)弹性极限 应力超过比例极限后,应力-应变曲线略有弯曲,应力与应变不再成正比例关系,但卸去外力时,试件变形能立即消失,此阶段产生的变形是弹性变形。不产生残留塑性变形的最大应力(e 点对应值)称为弹性极限бe。事实上,бp与бe相当接近。 (3)屈服强度和条件屈服强度 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度,用бs表示。 有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(б0.2)。高碳钢拉伸时的应力-应变曲线如图2-4所示。 图2-4高碳钢拉伸б-ε曲线 (4)极限强度 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度бb。

抗拉强度和屈服强度的区别

关于抗拉强度和屈服强度的区别

————————————————————————————————作者: ————————————————————————————————日期: ?

抗拉强度与屈服强度的区别及实例 首先自我介绍一下,本人现在某检测机构任职,我任职的这家机构主要是对金属材料进行理化检验,有CMA认证(中国计量认证)、CNAS 认证(国家认可委认证),属国家级实验室。检测结果全球100多个国家互认。本人任金属物理检测室副主任,物理检测技术组组长。应当算得上是专业人士。 什么是的屈服强度和抗拉强度。 要说这两个概念,先从材料是如何被破坏的说起。任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。 屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。 抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,

材料的屈服和抗拉强度的区别 (1)

1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp 时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有:结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有:温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n 一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过铅浴等温处理后拉拔,可以达到2000MPa以上。但是,传统的形变强化方法只能使强度提高,而塑性损失了很多。现在研制的一些新材料中,注意到当改变了显微组织和组织的分布时,变形中既能提高强度又能提高塑性。 5.抗拉强度 在材料不产生颈缩时抗拉强度代表断裂抗力。脆性材料用于产品设计时,其许用应力是以

抗拉强度_延伸率_屈服强度教学文案

抗拉强度_延伸率_屈 服强度

问题:什么是抗拉强度,延伸率,屈服强度? 球铁管是一种即有高强度和高弹性的输水管道,球铁管优秀的力学性能是它在种类繁多的输水管材中立于不败之地的保证,因而我们有必要对描述球铁管的各种力学性能做一番介绍: 1.延伸率 延伸率主要衡量球墨铸铁塑性性能-即发生永久变形而不至于断裂的性能。 δ= (L-L0)/L0*100% δ---伸长率 L ----试样原长度 L----试样受拉伸断裂后的长度 2.强度 强度是金属材料在外力作用下抵抗永久变形和断裂的能力。工程上常用来表示金属材料强度的指标有屈服强度和抗拉强度。 a.屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变 形的应力。 δS=Fs/A O Fs----试样产生屈服现象时所承受的最大外力(N) ----试样原来的截面积(mm2) A O δS---屈服强度(Mpa) b.抗拉强度是指金属材料在拉断前所能承受的最大应力,用δb=F O/A O F ----试样在断裂前的最大外力(N) O ----试样原来的截面积(mm2) A O δb---抗拉强度(Mpa)

Table:三种不同材料之间的机械性能对比 退火球墨铸铁铸态球墨铸铁管灰口铁管 屈服强度≥300MPa 未定义未定义 抗拉强度≥420MPa ≤300MPa ≥200 MPa 延伸率≥10% ≥3% ≤3% 对于球墨铸铁管而言,其试样实际就是取自插口处试样加工过后的试棒;对球墨铸铁管件而言,其试样通常是取自与管件同批的铁水铸出的Y型试块加工成的试棒。管材和管件的抗拉强度实验,就是用试棒拉断前的最大持续力除以试棒面积计算得出的抗拉强度。把试棒断裂的两部分拼在一起测量伸长的标距,用伸长标距与初始标距之比求得伸长率。 不同的管材之间因为力学性能实验方法有别,所以某些管材宣传他们的力学性能甚至优于铸铁管是毫无根据的。

材料的屈服和抗拉强度的区别

1.屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp 表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以 0.2%残留变形的应力作为屈服强度,符号为σ 0.2或σys。 2.影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是: (1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界xx强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有:

温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=

抗拉强度和屈服强度之间的区别

昆山海达精密仪器有限公司抗拉强度和屈服强度之间的区别 试验机在给材料做试验时都会遇到屈服强度和抗拉强度等试验机术语,有经验的操作员很容易就会明白其中的特点和他们之间的区别,下面是几点简单的介绍可以帮助用户更好的了解和关于试验机的抗拉强度和屈服强度。 试验机的抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b 点对应值)称为强度极限或抗拉强度。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为 N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。抗拉强度( Rm)指材料在拉断前承受最大应力值。 试验机的屈服强度: 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。 屈服强度的计算公式:σ=F/S,其中σ为屈服强度,单位为“帕”,对塑性材料来讲F为材料屈服时所受的最小的力,单位为“牛”,对脆性材料来讲F为材料发生塑性变形量为原长的0.2%时所受的力,单位还是:“牛”,S为受力材料的横截面积,单位为“平方米”。 昆山海达精密仪器有限公司第 1 页共 1 页

相关文档