文档库 最新最全的文档下载
当前位置:文档库 › 甲型流感病毒广谱中和抗体研究进展

甲型流感病毒广谱中和抗体研究进展

甲型流感病毒广谱中和抗体研究进展
甲型流感病毒广谱中和抗体研究进展

抗独特型调节作用

抗独特型抗体的调节及其应用 摘要:抗独特型抗体是针对抗体可变区的抗原决定簇(独特型)产生的特异性抗体,其中Ab2是初始抗原在体内的“内影像”由于可模拟初始抗原并竞争性抑制Ab1与抗原的结合而广泛应用于疫苗研究、肿瘤免疫、移植耐受、自身免疫病、食品安全等方面,因此对近年采抗独特型抗体的应用进行综述。 关键词:抗体,抗独特型 前言:Jerne,N.K于1974年提出的免疫调节网络学说认为:外来抗原在机体内应答产生的抗体Ab1,同时可刺激产生抗Ab1的第二抗体(Ab2),并称之为抗独特型抗体。机体免疫系统内的各个细胞克隆,通过自我识别,相互刺激,或相互制约,构成一个动态的网络结构,来调节体内的正常免疫反应。如果该网络结构发生紊乱,则因侵害机体自身而将导致自身免疫性疾病如风湿性关节炎,系统性红斑狼疮和重症肌无力以及免疫抑制等疾病。机体内存在许多不同基因型并能产生抗体的B淋巴细胞克隆,由于遗传性的差异导致产生的抗体的多样性与不均一性,这种多样性固然与不同的外来抗原本身结构有关,但根据免疫网络学说,机体免疫系统是一个建立在识别自身抗原的基础上来识别外来的抗原的系统。如果外来抗原进入体内,首先能被具有细胞表面受体的免疫细胞克隆所识别,结合抗原后,被活化,分化和增殖,产生抗体以及产生效应细胞和记忆细胞,与此同时,机体内同时存在具有识别这种抗体的免疫细胞克隆,通过免疫细胞之间相互识别V区上的独特型决定簇引发调节机体的免疫反应。 “免疫网络学说”在承认细胞系选择学说的基础上,认为免疫应答并非仅由某个单一克隆细胞的激活而实现。独特型决定簇具有自身免疫原性,体内存在能识别自身独特型决定簇的淋巴细胞。机体接受外来抗原刺激时,能识别外来抗原的淋巴细胞克隆首先被激活,产生针对外来抗原的抗体Ab1,随后能识别某一个克隆独特型决定簇的第2个克隆被激活,产生抗独特型抗体Ab2,依次类推还可以有第3个Ab3,第4个Ab4……。这些克隆相互制约,相互连锁,形成一个闭合型、多层次级联网络。网络的主要作用是抑制抗体的产生,因为只有抑制才能保持机体的免疫自稳状态,使抗体维持在一定水平上。否则,抗体无休止地产生,反而会使机体患免疫病。免疫系统网络学说已经被实验所证明,有力地促进和指导了基础免疫学的研究和发展。独特型(Id)即位于抗体分子可变区的抗原决定簇,是位于抗体可变区内高变区的遗传标志。本质上,Id的差异是由抗体轻链可变区(V l)和抗体重链可变区(V b)内高变区氨基酸序列不同所致。这种氨基酸序列的差异也是抗体特异性的分子基础,不同特异性的抗体分子其独特型也不同。独特型由若干表位组成,称为独特位,它可刺激机体产生相应的抗体,即抗独特型抗体AId。许多实验表明,用抗Id抗体代替抗原免疫动物所产生的免疫应答,能够增强动物对原虫、病毒和细菌感染的抵抗力,作为免疫制剂或免疫调节剂来弥补现有疫苗的不足,或者作为免疫治疗剂治疗肿瘤、自身免疫性疾病,有的用于免疫诊断试剂来建立新的血清学方法。 在疫苗研究中的应用抗独特型抗体Ab2作为抗原的模拟物,可代替病原体,刺激机体产生与抗原特异性抗体具有同等免疫效应的抗体,诱导抗病原体的特异性免疫应答,由此制成的疫苗称为抗独特型疫苗,又称内影像疫苗。迄今为止,抗独特型疫苗主要应用于肿瘤免疫方面。如应用于结肠癌病人,可减缓病情发展、肿瘤的转移并延长病人存活。但与传统疫苗相比,Ab2的免疫原性较弱,因此抗独特型疫苗可与佐剂联用以提高免疫原性,根据不同肿瘤的特性可选择恰当的佐剂。在对结肠癌的研究中发现,抗独特型抗体疫苗与聚核苷酸CPG联用比与完全福氏佐剂CFA联用更能提高抗肿瘤的免疫应答;白细胞介素_6(IL_6)与抗独特型抗体的融合蛋白质可有效地提高体内抗恶性卵巢癌的体液免疫应答,因为IL_6是促进B细胞成熟,增强B细胞功能的细胞因子,也是浆细胞的必需生长因子。近年来,随着对单链可变

禽流感病毒中和实验整理

禽流感病毒中和实验及其他方法 (一)实验材料 1、中和反应实验材料 (1)病毒: )的滴定。 一般为鸡胚尿囊病毒液,进行中和实验前,需要进行病毒滴度(TCID 50 (2)血清样品 包括待检血清和阳性以及阴性对照血清。人血清实验前需要56℃ 30分钟灭活,动物血清需RDE处理。-20℃储存,避免多次反复冻融。 (3)MDCK细胞和细胞培养试剂 1)MDCK细胞(狗肾上皮细胞) 2)MDCK细胞培养液:DMEM+5%牛血清+抗生素,过滤除菌 500毫升 DMEM(修饰的Eagles培养基) 5.5毫升 100×抗生素(100单位/毫升青霉素+100微克/毫升链霉素) 5.5毫升 100×L-Glutamine(2毫摩尔) 25.5毫升 56℃、30分钟加热灭活的牛血清 3)胰酶 / EDTA (4)其它

1)平底96孔微量培养板 2)病毒稀释液:DMEM+1%牛血清白蛋白+抗生素,即配即用。 429毫升 DMEM 66毫升 7.5%牛血清白蛋白(BSA) 5毫升 100×抗生素 3)TPCK-胰酶(使用浓度为2微克/毫升) 4)固定液:80%的丙酮,即配即用,4℃保存 400毫升丙酮 100毫升 PBS,PH 7.2 2、ELISA实验材料 (1)抗体1:鼠抗流感病毒甲型核蛋白克隆抗体 (2)抗体2:辣根过氧化物酶标记的羊抗鼠IgG (3)洗涤液:PBS+0.05%TWEEN-20 4升 PBS,PH 7.2 2毫升 TWEEN-20 (4)封闭液:PBS+1%牛血清白蛋白+0.05%TWEEN-20 867毫升PBS,PH 7.2 132毫升牛血清白蛋白 1毫升TWEEN-20

单克隆抗体药物研究新进展

单克隆抗体药物研究新进展 单克隆抗体药物,俗称“生物导弹”,是一种具备疾病治疗靶向性治疗的药物,该种药物针对一些对应疾病的治疗具备极强的治疗针对性,往往可以取得较为有效的治疗效果,其整体所占市场份额也比较大。该领域的药品已经慢慢成为一种治疗疾病的主流药物,随着相关研究人员的不断研究推进,其整体呈现一种不断拓宽化的发展。本文从单克隆抗体药物整体的市场情况、靶点及技术三个方面进行全面的研究探索。 标签:治疗性抗体;上市抗体药物;靶点;技术综述 抗体药物的第一次应用是于十九世纪,采用血清疗法针对患者进行相关治疗,在这个阶段人们对抗体药物的认知停留在使用有效的阶段;随着医疗实力的不断发展,直到1975年杂交瘤技术之后,才逐步实现了抗体的更为全面的认知及大规模量产的过程。现阶段随着社会的不断发展,疾病种类也越来越多,治疗起来也越来越麻烦,在这样一种大的背景下,单克隆抗体药物的全面研究和使用,有效的帮助患者进行疾病的靶向治疗和恢复。 一、抗体药物的市场情况 抗体药无是一种具备靶向性,能实现与靶抗原特异性结合来实现对疾病针对性治疗的药物,该种药物在进行使用的过程中,对患者的病症能做到针对性的治疗,具备治疗过程中的安全性治疗及快速准确性治疗。该种药物常常作用与一些恶性肿瘤及免疫性疾病的治疗。因为这些疾病都具备一定的治疗难度,故此药物的出现,可以有效的实现对症治疗,帮助患者进行相关疾病的缓解,因为这样的一种原因,导致在进行相关应用的过程中,该种药物得到了巨大的发展[1]。现阶段,单克隆抗体药物已经成为一种在市场上占据巨大份额的药物,其具备巨大的经济效益,同时帮助患者进行各种疾病的治疗和恢复,其整体已经成为针对疾病进行治疗的有效思路及理论。针对该种药物的扩展,主要是针对一些靶向性进行全面的研究,研究出新的靶点,制造出更多针对更多病症的单克隆抗体药物。 二、靶点研究进展 单克隆抗体药物具备一对一的治疗针对性,其靶点的把控是针对疾病治疗的重要点。世界范围之内,针对新靶点的研究如火如荼。针对热点靶点的研究,主要通过分析世界范围内患者的病症及发病几率进行全面的分类研究,研究出一些有效且具备普遍性的靶点,全面促进单克隆抗体药物的研究和发展。其现阶段世界主要研究靶点分以下几类。 (一)PD-1、PD-L1 PD-1是一种存在于T细胞表面的免疫抑制跨膜蛋白,主要针对癌症进行相关治疗,其主要作用有两点:1.针对慢性感染炎症进行相关限制;2.针对癌症中

禽流感的研究进展

禽流感的研究进展 谭飞虎,刁小龙,朱玉娟,张尚弟,张连团,祁越,刘卫军,吴頔 甘肃农业大学生命科学技术学院,甘肃兰州(730070) E-mail:tanfeihu521@https://www.wendangku.net/doc/f72289854.html, 摘要:禽流感(Avian Influenza,AI),1878年首次发现与意大利,目前在美洲、非洲、亚洲、欧洲一些国家广泛发生。禽流感(AI)是由是由A型禽流感病毒(av ian in fluenza virus,AIV) 引起的禽类烈性传染病,主要在禽类中传播。AI不仅给世界养禽业造成了巨大的经济损失,而且对人类健康和生命安全构成了严重威胁。它可通过多种途径传播,且临床症状多样。本文主要从AIV的结构特征,致病机理,防治措施等方面论述了AIV 的研究进展 关键词:禽流感,结构特征,致病机理 引言 禽流感(Avian Influenza,AI)又名真性鸡瘟、欧洲鸡瘟,1878年首次发现于意大利。禽流感是由正粘病毒科甲型流感病毒属的A型流感病毒引起的禽类感染和疾病综合症。禽流感病毒(Avian Influenza Virus,AIV)亚型众多,变异频繁,根据病毒的血凝素(Hemagglutinin, HA)和神经氨酸酶(Neuraminidase,NA)的差异,将A型流感病毒分为不同的血清型,目前已发现16种HA亚型和9种NA亚型。其分子机制涉及点突变引起的抗原漂移(Antiyentil drife)和不同亚型毒株同源性产生新亚型所引起的抗原转变(Antiyentic shift)。该病在临床上所表现的症状变化从亚临床感染,重轻度的呼吸系统疾病,产蛋下降到严重的致死性疾病,其严重程度取于病毒的毒株以及被感染禽的种类,日龄和有无并发症等因素。禽流感病毒仅有H5和H7了两个血清型可引起高致病力禽流感(High Pathogentic Avian Influenza,HPAIV),以突然死亡和高死率为特征,在火鸡和鸡种引起的危害最为严重,常可导致感染鸡群的全军覆没,造成严重的经济损失,所以被国际兽医局列为A类烈性传染病。 1 流感病毒的分类 由于禽流感造成的损失巨大,引起国际社会的广泛关注,并对其分类进行了更为详尽的研究。根据国际病毒分类学(ICTV)第六次分类报告(1995年)规定,正粘病毒科分 3个病毒属:A,B型病毒属(Influenza Virus),A,B,C型流感病毒属(Influenza Virus C),类托高土病毒属(Thogotoline Virus),各属的代表中分别为A型流感病毒,C型流感病毒,托高土病毒,但是习惯上仍将A,B,C型流感病毒都归属亚流感病毒属的3个型[1]。这3个型的流感病毒没有共同的抗原,在内部核蛋白和基质蛋白的抗原性上有很大差异,在致病性和基因结构上也有所不同,其中的A型流感病毒感染的范围最大,危害最大,它可以感染人,猪,马,海洋哺乳动物,禽类等,是人和畜禽呼吸道疾病的重要病原。而B,C型流感病毒却只能感染人,所以禽流感可感染人类,引起以呼吸系统症状为主的急性传染病,部分患者可发展为全身多脏器功能衰竭而死亡。2005年1月新英格兰医学杂志上确认了第一例在人与人之间传播的禽流感病例,由于猪既有人类病毒的受体,又具有禽类病素的受体,所以猪可以同时感染两种病毒,并发生重配进而感染人类,这是禽流感病毒传染的最可能途径[ 2 ]。 -1-

单克隆抗体及其应用的研究进展

2009年第1期畜牧兽医科技信息国兽医科学,2007,37(1):29-32 [9]李余动,等.胶体金免疫层析法快速检测氯霉素残留[J].中国食品卫生杂志,2005,17(5):416-419 [10]张明,等.免疫胶体金法检测磺胺甲恶唑残留的研究[J].中国兽药 杂志,2006,40(4):17-24 [11]邓省亮,等.胶体金免疫层析法快速检测黄曲霉毒素B1的研究 [J].食品科学,2007,28(2):232-236 [12]Sun Xiulan,et al.Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J].International Journal of Food Microbiology ,2005,99(2):185-194 [13]赖卫华,等.应用胶体金试纸条快速检测赭曲霉毒素A 的研究[J]. 食品科学,2005,26(5):204-207 [14]Timo Klewitz,et al.Immunochromatographic assay for determina tion of botulinum neurotoxin type D[J].Sensors and Actuators B:Chemical,2006,113(2):582-589 1975年德国学者Kohler 和英国学者M ilstein 发明了杂交瘤技术。他们成功地将骨髓瘤细胞和产生抗体的B 淋巴细胞融合为杂交瘤细胞,这种合成的杂交瘤细胞稳定、有致瘤性、能产生抗体,其分泌的抗体是由识别一种抗原决定簇的细胞克隆所产生的均一性抗体,故称之为单克隆抗体(简称单抗)。自从鼠源单抗之后,单抗历经了鼠源性抗体、嵌合抗体、 人源化抗体、人源性抗体4个发展阶段。近年来随着分子生物学和细胞生物学的发展,单克隆抗体的应用已日益普及,单抗理论几乎应用到生物学研究的每一个区域。单克隆抗体制备技术的发展也就显得尤为重要。1 单克隆抗体的研究进展 1.1鼠源性单抗自单克隆抗体制备技术问世以来,制备单抗的一般程序基本相同,从超免疫的供体中即抗原免疫的小鼠,获取脾细胞,再与骨髓瘤细胞融合,最后对单个细胞进行克隆,培养出能分泌单抗的克隆细胞。目前生产的单抗大多是鼠源性的,但其在临床应用方面还存在着很大的弊端,主要是鼠源单抗与NK 等免疫细胞表面Fc 段受体亲和力弱,产生的抗体依赖性细胞介导的细胞毒作用(ADCC)作用较弱,而且它与人补体成分结合能力低,对肿瘤细胞的杀伤能力较弱,并且鼠源性抗体在人血循环中的半衰期短,它发挥AD-CC 作用的时间较短; 其次鼠单克隆抗体还具有免疫原性,使宿主易引起过敏反应。这样一方面降低了单抗的效价,另一方面又会给病人带来严重的后果。因此鼠源性单克隆抗体还应进一步改善才能广泛应用于临床。 1.2嵌合抗体抗体的恒定区是抗体分子结构中免疫原性 最强的部位,而决定抗体特异性的是抗体的可变区。从杂交瘤细胞分离出功能性可变区基因,与人Ig 恒定区的基因连 接,再插入适当表达载体,转染宿主细胞,表达人-鼠嵌合抗体。也就是将鼠源性单抗在保留其抗原结合活性的基础上,尽可能的去除鼠源化部分或代之以人源化片断,减少了鼠源性抗体的免疫原性,从而尽可能的减少单抗的异源性,同时保留了亲本抗体特异性结合抗原的能力。但是这种抗体仍保留了30%的鼠源性,可诱发人抗小鼠反应(HAM A)。 1.3人源化抗体由于嵌合抗体异源性仍然很大,因此需要对鼠源抗体进行人源化改造,进一步人源化的方法很多,主要是重构抗体和表面重塑技术。重构抗体就是互补决定区(complementarity determining region,CDR)移植,将鼠抗体的CDR 移植到人抗体的相应部位,这样人源化程度可达90%以上,目前该方法是人源化单抗最常用、最基本的方法。而表面重塑技术,即将鼠抗体框架区表面氨基酸的残基(surface amino acid residues,SAR)进行人源化改造。该方法是仅替换与人抗体SAR 差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选用与人抗体表面残基相似的氨基酸替换。 1.4人源性抗体虽然人源化抗体解决了鼠抗体的免疫原 性等问题,但生产人源化抗体仍有很大的困难;人源化过程需大量繁复、昂贵的电脑模拟,需取代不同的氨基酸以恢复选择性和亲和力,工作量非常大,并且它总还含有少量鼠源性成分。完全的人源性抗体才是用于治疗的理想抗体,目前它主要通过3种途径来研制:噬菌体抗体库技术、核糖体展示技术和转基因小鼠制备人源性抗体。1.4.1 噬菌体抗体库技术 噬菌体抗体库技术是迄今发展 最成熟、 应用最广泛的抗体库技术。其基本原理是将蛋白分子或肽段的基因克隆到丝状噬菌体的基因组DNA 中,与噬菌体的外壳蛋白形成融合蛋白,从而使该异源分子呈现于噬菌体表面。通过这种方式,形成了一个收藏上亿个以体外方式制得的不同抗体的基因数据库,使从任何真实的抗原中迅速分离高度相似的同族抗体成为可能。分离得到的抗体可用于 单克隆抗体及其应用的研究进展 孔 维1,杨文辉2 (1.东北农业大学动物医学院,哈尔滨150001;2.哈尔滨北方森林动物园,哈尔滨150300) 000000000000000000000000000000000000000000000000000000000000作者简介:孔维(1979~),湖南平江人,硕士研究生 专论与综述 9

IL-17中和抗体

市面上唯一的人的IL-17中和抗体—R&D systems公司 白细胞介素家17族(Interleukin 17 family,IL-17家族),是与白细胞介素17(Interleukin 17,IL-17)具有较高同源性、在脊椎动物进化中高度保守的一组蛋白质,目前共有六个成员,IL-17A (原IL-17)、B、C、D、E和F[1]。其中,IL-17B、C、D、E、F的编码基因,是在人类基因组大规模测序过程中,通过同源性分析、EST序列拼接得到的。 白细胞介素17E(Interleukin 17E,IL-17E),又称作IL-25,是由活化的记忆T细胞产生的一种前炎细胞因子,可诱导多种趋化因子和细胞因子的表达,在炎症和造血过程中发挥重要作用。 优宁维代理的R&Dsystems公司的人的IL-17中和抗体(MAB13352)是市面上唯一的人的IL-12中和抗体,其ND50值在0.1-0.6ug/ml的范围。 Cell Il-6 Secretion Induced by IL-17F and Neutralization by Human IL-17F Antibody.Recombinant Human IL-17F induces IL-6 secretion in the NIH-3T3 mouse embryonic fibroblast cell line in the presence of in a dose-dependent manner (orange line), as measured by the Mouse IL-6 Quantikine kit (Catalog # M6000B). Under these conditions, IL-6 secretion elicited by IL-17F is neutralized (green line) by increasing concentrations of Mouse Anti-Human IL-17F Monoclonal Antibody (Catalog # MAB13352). The ND50 is typically 0.1-0.6 ug/mL.

抗体药物的研究现状和发展趋势

一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗内毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体内反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以

抗体药物地研究现状和发展趋势

抗体药物的研究现状和发展趋势 一、研究现状 1.抗体研究发展历程 抗体作为药物用于人类疾病的治疗拥有很长历史。但整个抗体药物的发展却并非一帆风顺,而是在曲折中前进。第一代抗体药物源于动物多价抗血清,主要用于一些细菌感染性疾病的早期被动免疫治疗。虽然具有一定的疗效,但异源性蛋白引起的较强的人体免疫反应限制了这类药物的应用,因而逐渐被抗生素类药物所代替。第二代抗体药物是利用杂交瘤技术制备的单克隆抗体及其衍生物。单克隆抗体由于具有良好的均一性和高度的特异性,因而在实验研究和疾病诊断中得到了广泛应用。 单抗最早被用于疾病治疗是在1982年,美国斯坦福医学中心Levy等人利用制备的抗独特型单抗治疗B细胞淋巴瘤,治疗后患者病情缓解,瘤体消失,这使人们对抗体药物产生了极大的期望。1986年,美国FDA批准了世界上第一个单抗治疗性药物——抗CD3单抗OKT3进入市场,用于器官移植时的抗排斥反应。此时抗体药物的研制和应用达到了顶点。随着使用单抗进行治疗的病例数的增加,鼠单抗用于人体的毒副作用也越来越明显。同时一些抗肿瘤单抗未显示出理想效果。人们的热情开始下降。到20世纪90年代初,抗毒素单抗用于治疗脓毒败血症失败使得抗体药物的研究进入低谷。由于大多数单抗均为鼠源性,在人体反复应用会引起人抗鼠抗体(HAMA)反应,从而降低疗效,甚至可引起过敏反应。因此,一方面在给药途径上改进,如使用片段抗体、交联同位素、局部用药等使鼠源性抗体用量减少,也增强了疗效;另一方面,积极发展基因工程抗体和人源抗体。 近年来,随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA 重组技术开始用于抗体的改造,人们可以根据需要对以往的鼠抗体进行相应的改造以消除抗体应用不利性状或增加新的生物学功能,还可用新的技术重新制备各种形式的重组抗体。抗体药物的研发进入了第三代,即基因工程抗体时代。与第二代单抗相比,基因工程抗体具有如下优点:①通过基因工程技术的改造,可以降低甚至消除人体对抗体的排斥反应;②基因工程抗体的分子量较小,可以部分

流感病毒药物作用机制最新进展

流感病毒作用机理及抗流感药物研究进展 S1130556 田玉伟 摘要:流感病毒是人类健康的一大威胁。应对流感病毒的主要方式是疫苗和药物治疗。对可能大规模爆发的流感疫情来讲, 药物治疗是最好的控制流感病毒传播的手段。本文主要从流感病毒致病机理及抗流感病毒药物研究最新进展方面进行阐述。 关键词:流感病毒;抗病毒作用机制;抗流感病毒药物; The mechanism of influenza virus and the development of anti-influenza virus agent Abstract : Influenza is a major threat to millions of people worldwide. Vaccines and antiviral agents are two main options available to reduce the impact of the influenza virus, while anti-influenza agents are the most effective means to prevent the transmission of the highly contagious virus and to treat the epidemics of disease. In this article, recent progress in the research of the action mechanisms and structure-activity relationships of these anti-influenza virus agents were reviewed. Keywords: influenza virus ;anti-viral mechanism;anti-influenza virus agent; 1 流感病毒生物学结构 流行性感冒病毒[1-3](influenza virus)简称流感病毒,属正粘病毒科(orthomyxoviridae),呈球状或丝状,是一种有包膜和分节段的单链、负链RNA病毒。它可分为甲、乙、丙3型。甲型流感病毒常以流行形式出现,特点是传染性强,发病率高,传播快,可引起爆发流行乃至世界大流行,并可在动物中引起流行和造成大量动物死亡。乙型流感病毒,常引起流感局部爆发,不引起大流行。丙型流感病毒主要以散在形式出现。 流感病毒的基因由8个单链RNA片段组成,分别为NA、HA、NP、M、NS、PB1、PB2和PA基因。它们编码10种蛋白:膜蛋白血凝素(Hemagglutinin HA),神经氨酸酶(Neuraminidase NA),基质蛋白(Matrix protein1 M1,核蛋白(Nucleoprotein NP),3种RNA依赖多聚糖(RNA-dependent RNApolymerase PB1、PB2和PA)离子通道蛋白(Ion channel protein M2)和非结构蛋白(Non-structural protein NS1和NS2)。

人源化单克隆抗体的研究进展

论人源化单克隆抗体的研究进展 *** (生物工程一班生命科学学院 ***大学哈尔滨 150080) 摘要:自从单克隆抗体问世至今已广泛应用与临床治疗,然而鼠源性单克隆抗体在临床治疗中会产生人抗鼠抗体反应,从而使鼠源性单克隆抗体的应用受到极大限制。随着基因工程技术和抗体工程技术的迅速发展,人源性单克隆抗体开始快速发展而逐渐代替鼠源性单克隆抗体。本文将就人源化单克隆抗体的构建以及其在临床治疗方面的应用进行综述。 关键词:单克隆抗体人源化临床治疗 Theory humanized monoclonal antibody research progress *** (The 1st class of Bioengineering , College of Life Science, *** University, Harbin, 150080) Abstract: Since the advent of monoclonal antibody has been widely applied in clinical treatment, but the mouse source sex monoclonal antibodies in clinical treatment will produce people resistance to mouse antibody response, so that the rat source sex monoclonal antibody application are highly limited. Along with the genetic engineering technology and the rapid development of antibody engineering technology, humanized sex monoclonal antibody began to rapid development and gradually replaces the rat source sex monoclonal antibody. This paper will review humanized monoclonal antibody construction and the application of clinical treatment in this article. Keywords: monoclonal antibody humanized clinical treatment 1975年。Kohler和Milstein将小鼠骨髓瘤细胞和经免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞机能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术[1],此后单抗药物开始迅速发展并广泛应用于临床。1982年,Philip Karr 将第一株抗独特型单抗(anti- ld) 应用于B细胞淋巴瘤的临床治疗并取得成功[2],使得治疗性抗体的研究很快成为生物医药的热点,许多以单克隆抗体为研究对象的公司相继成立。然而,鼠源性单克隆抗体应用于人类有较强的免疫原性,能诱发人抗鼠抗体( Human ant-i mouse antibody, HAMA) 反应,引起强烈的免疫排斥反应[3],而且鼠源性单克隆抗体不能有效地激活人体的生物效应功能,因此限制了其临床应用。这使研究学者意识到研制鼠源性单克隆抗体人源化或完全的人源性抗体才有可能减少或避免HAMA反应并提高疗效。然而反复实验证明, 杂交瘤技术不能提供稳定分泌人抗体的细胞株。直到80年代末期,随着分子生物学研究的深入,在抗体基因工程研究领域相继出现了一

中和试验

中和试验 中和试验是病毒或毒素与相应的抗体结合后,失去对易感动物的致病力的试验方法。 所属分类:免疫学 概述 动物受到病毒感染后,体内产生特异性中和抗体,并与相应的病毒粒子呈现特异性结合,因而阻止病毒对敏感细胞的吸附,或抑制其侵入,使病毒失去感染能力。 中和试验(Neutralization Test)是以测定病毒的感染力为基础,以比较病毒受免疫血清中和后的残存感染力为依据,来判定免疫血清中和病毒的能力。 两种试验方法介绍 中和试验常用的有两种方法:一种是固定病毒量与等量系列倍比稀释的血清混合,另一种是固定血清用量与等量系列对数稀释(即十倍递次稀释)的病毒混合。 (一) 定血清-稀释病毒法(病毒中和试验) 1.病毒毒价的测定毒价单位:衡量病毒毒价(毒力)的单位过去多用最小致死量(MLD),即经规定的途 径,以不同的剂量接种试验动物,在一定时间内能致全组试验动物死亡的最小剂量。但由于剂量的递增与死亡率递增不呈线性关系,在越接近100%死亡时,对剂量的递增越不敏感。而一般在死亡率越接近50%时,对剂量的变化越敏感,故现多改用半数致死量(LD50)作为毒价测定单位,即经规定的途径,以不同的剂量接种试验动物,在一定时间内能致半数试验动物死亡的剂量。用鸡胚测定时,毒价单位为鸡胚半数致死量(ELD50)或鸡胚半数感染量(EID50)。用细胞培养测定时,用组织细胞半数感染量(TCID50)。在测定疫苗的免疫性能时,则用半数免疫量(IMD50)或半数保护量(PD50)。 (1) LD50的测定(以流行性乙型脑炎病毒为例)。 测定方法:将接种病毒,并已发病濒死的小鼠,无菌法取脑组织,称重、加稀释液充分研磨,配制成10-1悬液,3 000r/min离心20分钟,取上清液,以10倍递次稀释成10、10、10……10,每个稀释度分别接种5只小鼠,每只脑内注射0.03ml,逐日观察记录各组的死亡数。

抗体药物制备技术研究进展

1 绪论 以细胞工程技术和基因工程技术为主体的抗体工程药物近年来取得了突破性进展,并成功应用于临床。一方面,随着功能基因组学与蛋白质组学的研究进展,将发现与确定越来越多新的与疾病相关的分子靶点,而与这一发展相适应的、具有高度特异性、针对疾病相关分子靶点的抗体药物将被陆续研制成功;另一方面,抗体药物用于癌症、心脑血管疾病、病毒感染以及类风湿性关节炎等疾病的治疗,受到了广泛关注。 2抗体药物发展的历史 200多年前,人们将白喉杆菌培养物上清液中分离到的可溶性毒素注入马体,发现得到的抗血清可以治疗白喉,这是第一个用抗体治疗疾病的例子。1891年,法国人Babes等用采自经狂犬病疫苗免疫的人或犬的全血治疗被疯狼严重咬伤的患者,这是抗狂犬病最早应用的例子[1]。1975年Kohler及Milstein建立了B淋巴细胞杂交瘤技术。该技术使人们通过细胞工程可以在体外定向地制备各种单克隆抗体(monoclonal anti-body,Mab),这是产生抗体的重大技术革命。1984年诞生了第一个基因工程抗体—人—鼠嵌合抗体。然而真正以基因工程操作的方式制备抗体却始于1989年底,英国剑桥的W inter小组与Scrips研究所的Lerner小组的创造性工作,他们利用PCR 技术克隆人的全部抗体基因,并重组于原核表达载体中,用标记抗原就可筛选到相应抗体,当时称为组合抗体库技术。20世纪90年代后,这一技术不断发展,陆续出现人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体等)、多价小分子抗体(双链抗体、三链抗体、微型抗体等)、融合蛋白抗体(免疫抗体、免疫黏连素等)及特殊类型抗体(双特异抗体、抗原化抗体、细胞内抗体等)[2]。近年来,发展的噬菌体抗体库技术及核糖体展示抗体库技术,更易于筛选高亲和力抗体和利用在体外进行的方法对抗体性状进行改造[3]。 3抗体药物的结构与功能特点 3.1抗体分子的结构 早在20世纪50年代末期,把电镜的观察结果结合Poler利Nisonoff的研究结果,导致了经典的免疫球蛋白单体的Y型结构模式[4]。现已得知,抗体分子单体的基

单克隆抗体的制备及其应用研究进展

单克隆抗体的制备及其应用研究进展 燕珊珊 摘要:单克隆抗体技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。此外,抗体还可能执行除目前所具有之外的更多功能。本文将就单克隆抗体的制备及其应用研究进展进行论述。 关键词:单克隆抗体;基因工程;小鼠骨髓瘤细胞;细胞杂交瘤技术;噬菌体;临床应用 抗体是机体免疫系统的重要效应分子,从第一代多克隆抗体(polyclonalantibody,PcAb)到第二代单克隆抗体的成功制备,人们投入了大量的临床应用研究,对医学和生物学的发展发挥了巨大的作用。 单克隆抗体(monoclonal antibodies,mAbs)技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。目前,制备mAbs 的方法中比较成熟的主要有以下几种:1. 抗原特异性的B 淋巴细胞杂交瘤技术;2. 人-鼠嵌合抗体制备技术; 3.噬菌体展示技术获得的抗原特异性人源性抗体;4. 转基因小鼠制备的人mAbs;5.核糖体展示技术。

通过这些方法,我们利用相应抗原靶向构建治疗性抗体,从而达到预防、治疗疾病的目的,促进生物制药学的发展。以下主要是对抗体制备技术的发展及其应用研究进展进行综述。 1 鼠源性抗体 1975 年,Kohler 和Milstein[1] 将小鼠骨髓瘤细胞和经绵阳红细胞免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞既能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术。由免疫B细胞-浆细胞、瘤细胞融合形成的杂交瘤细胞系可分泌单一、特异性、纯化的抗体,且能在选择培养基中生长、无限增值、分裂,同时在选择培养基作用下,利用代谢缺陷补救机理筛选出同时具有两种细胞特征的细胞克隆。这种经过反复克隆而挑选出来的融合细胞所产生的抗体称为单克隆抗体(McAb)。它在分子结构、氨基酸序列以及特异性等方面都是一致的。淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等。至今,科学家们已经建立众多鼠源性mAbs 来诊断和治疗多种人类疾病。然而作为在人体内的应用,鼠源单抗尚存在一些问题。鼠源性抗体作为异种蛋白应用于人体可引起免疫反应,产生人抗鼠抗体(human anti-mouse antibody,HAMA)[2],很大程度上限制了mAbs 的临床应用。此外,鼠源性mAbs 不能与人类抗体FcRn 结合[3]。为了克服以上这些问题,近年,随着分子生物学的发展,人们已有可能通过抗体工程技术制备人-鼠嵌合抗体、人源化抗体或全人抗体。

中和抗体和抗体的区别

中和抗体和抗体的区别 病毒感染后诱导机体产生抗体,产生的抗体包括中和抗体和非中和抗体。中和抗体和非中和抗体的区别在于由不同的抗原所诱生。中和抗体由病毒表面抗原诱生。而非中和抗体由病毒内部抗原或表面非中和抗原所诱生。 一种抗原如病毒进入到人体后会产生不只一种抗体,但只有一种抗体能中和掉病毒,使病毒失去活性从而被细胞吞噬掉,而其它的抗体没有这种作用,就是一般的抗体了。也就是说中和抗体是保护性抗体。 主要区别是,性质不同、性能不同、应用不同,具体如下: 一、性质不同 1、中和抗体 中和抗体是由适应性免疫应答细胞分泌的一种可溶性蛋白。 2、抗体 抗体是一类能与抗原特异性结合的免疫球蛋白。 二、性能不同 1、中和抗体 病原微生物入侵细胞时需要依赖病原体自身表达的特定分子与细胞上的受体结合,才能感染细胞,并进一步扩增。中和抗体是B淋巴细胞产生的某些抗体,能够与病原微生物表面的抗原结合,从而阻止该病原微生物黏附靶细胞受体,防止侵入细胞。 2、抗体 是一种由浆细胞(效应B细胞)分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。抗体能识别特定外来物的一个独特特征,该外来目标被称为抗原。 三、应用不同 1、中和抗体 由于中和抗体是在病毒进入细胞之前破坏病毒的,所以,如果在接触HIV病毒之

前体内就有抗体的话,就能够预防HIV感染。现有的疫苗如麻疹疫苗、脊髓灰质炎疫苗、乙肝疫苗、甲肝疫苗,都是使接种者产生中和抗体以抵御病毒的。2、抗体 抗体在医疗实践中应用甚为广泛。如用于疾病的预防、诊断和治疗方面都有一定的作用。临床上用丙种球蛋白预防病毒性肝炎、麻疹、风疹等,国际上用抗Rh免疫球蛋白预防因Rh血型不合引起的溶血症。诊断上如类风湿因子用于类风湿性关节炎,抗核抗体(ANA)、抗DNA抗体用于系统性红斑狼疮,抗精子抗体用于原发性不孕症的诊断等,治疗上如毒素中毒用抗毒治疗以及免疫缺陷性疾病的治疗等。

流感病毒的结构是什么

流感病毒的结构是什么? 流感病毒属正粘病毒科,系RNA病毒,病毒颗粒呈球形或细长形,直径为80~120nm,有一层脂质囊膜,膜上有糖蛋白纤突,是由血凝素(H)和神经氨酸酶(N)所构成,均具有抗原性。血凝素促使病毒吸附到细胞上,故其抗体能中和病毒,免疫学上起主要作用;神经氨酸酶作用点在于细胞释放病毒,故其抗体不能中和病毒,但能限制病毒释放,缩短感染过程。 流感病毒的核酸是8个片段的单股RNA,核蛋白质上有特异性,可用补体结合试验将其区分为甲、乙、丙三型。抗核蛋白质的抗体对病毒感染无保护作用。除核蛋白质外,核心内还有三个多聚酶蛋白(P1、P2、P3),其性质不明。核心外有膜蛋白(M1、M2)和脂质囊膜包围。 甲型流感病毒变异是常见的自然现象,主要是血凝素(H)和神经氨酸酶(N)的变异。血凝素有H1、H2、H3,而神经氨酸酶仅有N1、N2,有时只有一种抗原发生变异,有时两种抗原同时发生变异,例如1946~1957年的甲型流行株为(H1N1),1957~1968年的流行株为(H2N2)。1968年7月香港发生的一次流感流行是由甲(H3N2)毒株引起,自1972年以来历次流感流行均由甲型(H3N2)所致,与以往的流行株相比,抗原特性仅有细微变化,但均属(H3N2)株。自1976年以来旧株(H1N1)又起,称为“俄国株”(H1N1),在年轻人中(尤其是学生)引起流行。甲型流感病毒的变异,系由于两株不同毒株同时感染单个细胞,造成病毒基因重新组合,使血凝素或/与神经氨酸酶同时发生变化,导致新型的出现,称为抗原性转变(antigenic shift),例如在人群中流行株的血凝素基因与鸟型流感病毒基因重新组合;另一种称为抗原性漂流(antigenic drift),由于在免疫系统压力下流感病素通过变异与选择而成的流行株,主要的改变在血凝素上氨基酸的替代,1968年以来的HN 各流行株都是如此。 Webster RG等1993年报导:根据8株甲型流感病毒RNA片段的核苷酸序列种素分析,人类宿主的甲型流感病毒来自鸟类流感病毒基因库。作者对意大利猪群中循环的经典H1N1株、鸟型H1N1株和人类株进行种系分析发现基因重组是在欧洲猪群中鸟类与人类病毒间进行。作者认为欧洲猪可能作为人类与鸟类宿主的流感病毒基因重新组合的混合场所,因此提出下一次世界大流行可能从欧洲开始。 由于流感病毒抗原变异多,病毒株命名复杂,1971年世界卫生组织规定其命名顺序如下:型别、宿主名称(如为人则可不写)、地区、编号、分离病毒年份,括弧中注明抗原成分,例如甲/香港/1/68(H2N2)。

病毒中和抗体检测

病毒中和抗体检测 1.病毒TCID50检测 TCID50 是指组织培养物(细胞)半数致死剂量。它有几个性质我们必须明白:1)它表示的是计量,不是浓度; 2)它是一个单位;3)它的值等于1,实际上问它的值等于多少是一个没有意义的问题,就像问km的值等于多少一样,如果非要说出的的值等于多少,那我们只能说它的值在任何情况下都等于1。理解这三个性质对于理解TCID50非常重要,但是这三个性质经常被误解,所以导致对TCID50的理解出现偏差。 首先我们来看一下这个表示法的意思:病毒滴度为ml 。它表示的是每ml病毒溶液里含有个TCID50的病毒,这和氯化钠的浓度为L表示每L溶液中含有个mol的氯化钠是一样的道理。经常可以听到人说我的病毒的TCID50是。这个说法是不科学的,应该说我这个溶液里含有个TCID50的病毒或者说我这个溶液的病毒滴度是10xx TCID50/ml。也可以说病毒的TCID50效价是。 TCID50=10^。即:将病毒悬液作10^稀释后,接种细胞,可以使50%的细胞产生CPE。(将病毒悬液作10^稀释后,中含1个TCID50,作其他一些实验时(如中和试验),一般常用100TCID50/或者100TCID50/) 本方法的优缺点:①.优点:出现阳性结果时间较短,且较明显;②.缺点:有时候,在用枪头吸出细胞生长液时,容易出现污染; 使用本方法时的注意事项:①.稀释病毒时,每做一个病毒稀释度都需要换枪头,减少浓度误差; ②.96孔板,每孔接种的细胞量:一般在此种测定病毒滴度的方法下,要将细胞密度适当调低,至少要比正常传代时低一些,否则细胞生长速度过快,未到7天则细胞出现死亡,对观察CPE不利.一般情况下,小塑料瓶(8-9ml液体为正常用量),培养长慢单层后,消化细胞,加入6ml培养液,吹匀,吸出其中的2ml,到另外的瓶子,在该瓶中加入14-16ml即可,如果不放心,可以用显微镜看一下,细胞数过多则补加培养液,少则补加剩余4ml的细胞悬液; 维持液,即病毒培养液,配方为:①.MEM+2%小牛血清+3%谷氨酰胺+1%双抗+NaHCO3; ②. MEM+3%谷氨酰胺+1%双抗+NaHCO3;两种维持液的不同在于是否有FBS(小牛血清).我个人曾 经做过实验,在状态很好的细胞上接种病毒,分别使用两种不同的维持液,最终结果是一样的,没有什么不同,所以可以根据个人需要进行选择.另外,曾经请教过专门做中和实验的老师,他认为适当的FBS对细胞有保护作用,而且他说这是国外文献上的报道. 1)细胞准备 检查培养瓶中的单层细胞,以5ml胰酶-EDTA轻微冲洗 加入4-5ml 胰酶-EDTA以覆盖单层细胞 放平培养瓶,37℃ 5%CO2培养箱中孵育10-20min,直到细胞脱落 加入5-10ml培养液,洗下细胞后移到离心管中 以PBS洗细胞两次(12000rpm, 5min) 以D-MEM重悬细胞,并用血球计数板计数 以D-MEM将将细胞浓度调整到1×10^5/ml ×10^5/ml 在微量培养板的各孔中加入100μl细胞, 相当于×10^4细胞/孔 在37℃ 5%CO2培养箱中过夜培养(18-22h),用处于生长相刚达到完全融合的细胞进行病毒的滴定

相关文档
相关文档 最新文档