文档库 最新最全的文档下载
当前位置:文档库 › 电缆的阻抗原理与计算(摘录)

电缆的阻抗原理与计算(摘录)

电缆的阻抗原理与计算(摘录)
电缆的阻抗原理与计算(摘录)

电缆的阻抗原理与计算(摘录)

术语

音频:人耳可以听到的低频信号。范围在20-20kHz。

视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。

射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。

电缆的阻抗

本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。

什么是电缆的阻抗,什么时候用到它?

首先要知道的是某个导体在射频频率下的工作特性和低频

下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。

传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。

电缆阻抗是如何定义的?

电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆

欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:

Z = E / I

无论是直流或者是交流的情况下,这个关系都保持成立。

特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义:

Z0 = E / I

电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式:

其中

R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆

G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆

j=只是个符号,指明本项有一个+90'的相位角(虚数)

π=3.1416

L=单位长度电缆的电感量

c=单位长度电缆的电容量

注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。

对于电缆一般所使用的绝缘材料来说,和2πfc相比,G微不足道可以忽略。在低频情况,和R相比2πfL微不足道可以忽略,所以在低频时,可以使用下面的等式:

注:原文这里是Zo = sqrt ( R / (j * 2 * pi * f * L))

应该是有个笔误。阻抗不应该是反比于感抗.实际上低频时应该是电阻和容抗占主导地位。

如果电容不跟随频率变化,则Z0和频率的平方根成反比关系,在接近直流的状态下有一个-45'的相位角,当频率增加相位角逐渐减少到0'。当频率上升时,聚氯乙烯和橡胶材料会稍微降低电容,但聚乙烯,聚丙烯,特氟纶(聚四氟乙烯)的变化不大。

当频率提高到一定程度(f足够大),公式中包含f的两项变的很大,这时候R和G可能可以被忽略。等式成为

简化成

高频下的电缆性质

在高频下您不能把电缆视作一条简单的电缆。在此时它是波导。特性阻抗是为电磁波而设立的电阻系数。故此阻抗负责描述高频下电缆的状态。高频通常用100kHz以上的频率传输(当然能否高频传输取决于电缆)。

如果您在电缆一端输入合适频率的正弦交流信号,信号以电波的形式传播过电缆。

如果电缆的长度和该交流信号频率的波长相比是个很大的数字的话(注:即电缆长度是波长的很多倍),在传送过程中可以测量AC的电压和电流比,这个比值叫做这条电缆的特性阻抗。

实际上电缆的特性阻抗由电缆的几何形状和绝缘部分决定的。电缆的长度不影响电缆的特性阻抗。

注:就是说使用多数绝缘材料电容不会起变化。而电感量L 的定义公式为

L = μ(N^2/I)S

μ= 介质磁导率

N = 线圈匝数

I = 线圈长度

S = 线圈横截面积

可以看出,电感量只和材质及几何形状有关,和频率无关。所以在f足够高的情况下,特性阻抗和频率没有关系了。频率再高,特性阻抗都等于电感量除以电容量的平方根。(实际上特性阻抗等于感抗容抗乘积的平方根,由于在乘积中约除了有关频率部分,所以有些资料中说特性阻抗和频率无关,实际上应该是在足够高频的情况下,特性阻抗和频率无关)

同轴电缆的模型是怎么样的?

同轴电缆可以表示为分布的串联电感和分布的并联电容,一种不对称的过滤装置排列起来,特定的电缆有唯一的值。如果给定某个频率,而且这个频率合适,这套过滤装置可以最大化地传递信号;如果频率再提高的话,这套装置会削弱信号。

注:这段信息很有意思,考虑一下,特性阻抗没有变化,而信号却减弱了!为什么会这样?唯一的合理解释,就是在电缆的接收端电压和电流都减弱了,而且是按照相同的比例减弱的。下面画出一张传输线分布参数的草图,这个理论是无线电工业的工程工具之一,在这个理论中线长可以变动,可以使用复数源,和复数的终端阻抗。实际上阻抗这个词代表有实部和虚部

如何用同轴电缆本身的性质计算特性阻抗?

电缆的长度和它的特性阻抗无关。特性阻抗是由导体的大小和间隔,还有就是导体之间的绝缘体的种类决定的。通常的同轴电缆在常规的频率下使用,特性阻抗由内导体和外(屏蔽)导体的尺寸决定的,当然内导体和外导体之间的绝缘体也起着决定作用。

下列方程可以用来计算同轴电缆的特性阻抗:(摘自Reference Data for Radio Engineers book published by Howard W. Sams & Co. 1975, page 24-21)

其中:

lg = 以10为底的对数

d = 中心导体的直径

D = 电缆屏蔽层的内径

e = 介电常数(空气为1 )

简单地说,同轴电缆的特性阻抗就是一个商的平方根(这个商是单位长度的电感除以单位长度的电容)同轴电缆的特性阻抗典型值在20-150欧姆之间。电缆的长度无论如何都无法影响特性阻抗。

如果同轴电缆使用的传输频率过高,则波会以我们不期望的方式传播,(就是说会产生非预期的电场和磁场图)电缆这时不能正常工作是由多方面原因造成的。

如何计算平衡传输线(对称传输线)的特性阻抗?

特性阻抗是由导体的大小和导体间的间隔,以及导体之间使用的绝缘体决定的。平衡传输线或双绞线的阻抗Z0,由线距和线径比决定,前面提到的绝缘体种类一样起决定作用。现实中的Z0在高频下相当接近纯电阻,但并不完全相等。

下列公式可以用来计算接近地面的平衡传输线的特性阻抗(摘自Reference Data for Radio Engineers book published by Howard W. Sams & Co. 1975, page 24-22)

其中

lg = 以10为底的对数

d = 传输线线径

D = 线对之间的距离

e = 介电常数(空气为1)

h = 线对和地面之间的距离

这个公式不只是适用于非屏蔽平衡传输线,当D比d大,而h 比d更大的时候(带屏蔽的平行传输线也适用)。如果双绞线离地面非常远(h接近无穷大)则地面的影响可以忽略不计,线缆的阻抗可以由一个简化的公式近似:(原文作者本人推演上面的公式得出的)

注:将对数中真数部分少做改动对结果影响不大,因为结果是真数的指数,可以这个简化接受。但原来的公式有个开方,这个相当于结果1/2!

对双绞线来说,典型的特性阻抗在75欧姆到1000欧姆之间,可以满足各种应用的需要。典型旧式电话线对,架在电线杆间的空中,其特性阻抗大约是600欧姆左右。现在使用的电话和电讯电缆典型的特性阻抗为100或120欧姆。

我可以使用哪种电路模型来描述长线的同轴电缆?

如果您知道一定长度的电缆的电感量和电容量的话,可以使用下面的电路模型描述长线同轴电缆:

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

电力电缆主要电气参数计算及计算实例

电力电缆主要电气参数计算及计算实例 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.设计电压 及附件的设计必须满足额定电压、雷电冲击电压、操作冲击电压和系统最高电压的要求。其定义如下: 额定电压 额定电压是电缆及附件设计和电性试验用的基准电压,用U0/U表示。 U0——电缆及附件设计的导体和绝缘屏蔽之间的额定工频电压有效值,单位为kV; U——电缆及附件设计的各相导体间的额定工频电 压有效值,单位为kV。 雷电冲击电压 UP——电缆及附件设计所需承受的雷电冲击电压的峰值,既基本绝缘水平BIL,单位为kV。 操作冲击电压 US——电缆及附件设计所需承受的操作冲击电压的峰值,单位为kV。 系统最高电压 Um——是在正常运行条件下任何时候和电网上任何点最高相间电压的有效值。它不包括由于故障条件和大负荷的突然切断而造成的电压暂时的变化,单位为kV。 定额电压参数见下表(点击放大)

330kV操作冲击电压的峰值为950kV;500kV操作冲击电压的峰值为1175kV。 2.导体电阻 导体直流电阻 单位长度电缆的导直流电阻用下式计算: 式中: R'——单位长度电缆导体在θ℃温度下的直流电阻; A——导体截面积,如导体右n根相同直径d的导线扭合而成,A=nπd2/4; ρ20——导体在温度为20℃时的电阻率,对于标准软铜ρ20=Ω˙mm2/m:对于标准硬铝:ρ20=Ω˙mm2/m; 1 α——导体电阻的温度系数(1/℃);对于标准软铜:=℃-1;对于标准硬铝:=℃-1; k1——单根导线加工过程引起金属电阻率的增加所引入的系数。一般为(线径越小,系数越大);具体可见《电线电缆手册》表3-2-2; k2——用多根导线绞合而成的线芯,使单根导线长度增加所引入的系数。对于实心线芯,=1;对于固定敷设电缆紧压多根导线绞合线芯结构,=(200mm2以下)~(240mm2以上) k3——紧压线芯因紧压过程使导线发硬、电阻率增加所引入的系数(约);

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

电缆线损计算

电缆线损计算 35平方铜芯单相直流电缆,长度为100M,电流70A,铺设方式是裸线水中铺设,为什么我用两种方法算的线损结果差好多啊谁能告诉我比较精确的计算方法啊~~谢谢了~~ 方法1:线损=电流×电路总线长×线缆电压因子=70×100×(mv)= 方法2:△P=IR,,R用电阻率计算出来 (参考: 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线

温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ ) 环境温度25度,算得结果

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.wendangku.net/doc/f72488647.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

电缆隧道接地电阻计算书

接地电阻计算书 一、垂直接地体接地电阻计算: 1.单根接地体接地电阻计算: 计算公式:() (1) 式中:R v ——垂直接地极的接地电阻(Ω); ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); d ——接地极的直径(0.03m)。 数值代入公式计算得:R v=529.88(Ω) 2.间距为s的多根垂直接地极并联后的接地电阻计算: 计算公式: (2) 式中:R N——n根垂直接地极的并联接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m); ι——垂直接地极的长度(1.5m); s ——接地极的间距(5m); n ——接地极的总根数(920); d ——接地极的直径(0.03m); 数值代入公式计算得:R N=97.82(Ω) 二、水平接地体接地电阻计算: 计算公式:() 式中:R h——水平接地极的接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m);

L ——水平接地极的总长度(4600m); h ——水平接地极的埋设深度(0.2m); d ——水平接地极的等效直径(0.02m); A——水平接地极的形状系数(1)。 数值代入公式计算得:R h=0.81(Ω) 三、综合接地电阻计算: 计算公式: (3) 式中:——综合接地电阻(Ω); R N——垂直接地极的并联接地电阻(Ω); R h——水平接地极的接地电阻(Ω); R Nh——垂直接地极和水平接地极之间的互阻(Ω),可根据公式(4)计算; (4) 式中:ρ ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); ——水平接地极的总长度(4600m); 数值代入公式计算得: R Nh=0.60(Ω) Rz=0.81(Ω) 石墨基柔性接地体的接地电阻可用降阻效果系数带入进行计算:最终接地电阻为: =0.7×0.81=0.567(Ω)。

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

电力电缆常用计算公式

?电线电缆载流量计算 交流电阻计算 绝缘介质损耗计算 电线电缆金属套和屏蔽的损耗计算 铠装损耗计算 热阻计算 载流量计算 ?电线电缆允许短路电流计算 ?电线电缆短时过负荷电缆载流量计算?电力电缆相序阻抗计算 ?电线电缆导体和金属屏蔽热稳定计算

电线电缆载流量计算 一、交流电阻计算 1. 集肤和邻近效应对应的Ks 和Kp 系数的经验值: 导体不干澡浸渍: 0.1=s k 0.1=p k 导体干燥浸渍: 0.1=s k 8.0=p k 2. 工作温度下导体直流电阻: )]20(1[200-+?='θαR R 0R —20oC 时导体直流电阻 OHM/M 20α—20oC 时导体电阻温度系数 3. 集肤效应系数: 1.一般情况: s S R f X κπ72108-?' = 4 4 8.0192s s s X X Y += 2. 穿钢管时: s S R f X κπ72108-?' = 5.18.01924 4 ?+=s s s X X Y f —电源频率Hz 4. 邻近效应系数: a. 二芯或二根单芯电缆邻近效应因数: p p R f X κπ72108-?' = 一般情况: 9.2)(8.01922 4 4?+=s d X X Y c p p

穿钢管时: 5.19.2)(8.01922 4 4??+=s d X X Y c p p p dc:导体直径 mm s :各导体轴心间距 mm b. 三芯或三根单芯电缆邻近效应因数: p p R f X κπ72108-?' = (1) 圆形导体电缆 一般情况: ]27 .08.019218.1)(312.0[)(8.0192442 24 4 +++?+=p p c c p p p X X s d s d X X Y dc:导体直径 mm s :各导体轴心间距 mm 穿钢管时: 5.1]27 .08.019218.1)(312.0[)(8.0192442 24 4 ?+++?+=p p c c p p p X X s d s d X X Y dc:导体直径 mm s :各导体轴心间距 mm (2) 成型导体电缆 一般情况: ]}27 .08.019218.1)(312.0[)(8.0192{3244 2 24 4++++?++=p p x X x X p p p X X t d d t d d X X Y 穿钢管时: 5.1]}27 .08.019218.1)(312.0[)(8.0192{3244 2 24 4?++++?++=p p x X x X p p p X X t d d t d d X X Y

并串联电阻计算公式

串、并联电路中的等效电阻 串、并联电路中的等效电阻 学习目标要求: 1.知道串、并联电路中电流、电压特点。 2.理解串、并联电路的等效电阻。 3.会计算简单串、并联电路中的电流、电压和电阻。 4.理解欧姆定律在串、并联电路中的应用。 5.会运用串、并联电路知识分析解决简单的串、并联电路问题。 中考常考内容: 1.串、并联电路的特点。 2.串联电路的分压作用,并联电路的分流作用。 3.串、并联电路的计算。 知识要点: 1.串联电路的特点 (1)串联电路电流的特点:由于在串联电路中,电流只有 一条路径,因此,各处的电流均相等,即;因此,在对串联电路的分析和计算中,抓住通过各段导体的电流相等这个条件,在不同导体间架起一座桥梁,是解题的一条捷径。

(2)由于各处的电流都相等,根据公式,可以得到 ,在串联电路中,电阻大的导体,它两端的电压也大,电压的分配与导体的电阻成正比,因此,导体串联具有分压作用。串联电路的总电压等于各串联导体两端电压之和,即 。 (3)导体串联,相当于增加了导体的长度,因此,串联导体的总电阻大于任何一个串联导体的电阻,总电阻等于各串联导 体电阻之和,即。如果用个阻值均为的 导体串联,则总电阻。 2.并联电路的特点 (1)并联电路电压的特点:由于在并联电路中,各支路两端分别相接且又分别接入电路中相同的两点之间,所以各支路两 端的电压都相等,即。因此,在电路的分析和计算中,抓住各并联导体两端的电压相同这个条件,在不同导体间架起一座桥梁,是解题的一条捷径。 (2)由于各支路两端的电压都相等,根据公式,可得 到,在并联电路中,电阻大的导体,通过它的电流小,电流的分配与导体的电阻成反比,因此,导体并联具有分流作用。并联电路的总电流等于各支路的电流之和,即 。

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

阻抗计算公式、polarsi9000(教程)

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义。 传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线 层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

PCB阻抗计算参数说明

阻抗计算: 1.介电常数E r E r(介电常数)就目前而言通常情况下选用的材料为 F R-4,该种材料的E r 特性为随着加载频率的不同而变化,一般情况下E r的分水岭默认为1 G H Z(高频)。目前材料厂商能够承诺的指标<5.4(1M H z),根据我们实际加工的经验,在使用频率为1G H Z以下的其E r认为4.2左右。1.5—2.0G H Z的使用频率其仍有下降的空间。故设计时如有阻抗的要求则须考虑该产品的当时的使用频率。 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。 ●7628----4.5(全部为1G H z状态下) ●2116----4.2 ●1080----3.6 2. 介质层厚度H H(介质层厚度)该因素对阻抗控制的影响最大故设计中如对阻抗的宽容度很小的话,则该部分的设计应力求准确,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),一般情况下常用的半固化片为: ●1080 厚度0.075MM、 ●7628 厚度0.175MM、 ●2116厚度 0.105MM。 3.线宽W 对于W1、W2的说明:

5.铜箔厚度 外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1 OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um,大致相当于铜厚1 OZ、1.5 OZ、2 OZ。注意:在用阻抗计算软件进行阻抗控制时,外层的铜厚没有0.5 OZ的值。 走线厚度T与该层的铜厚有对应关系,具体如下: 铜箔厚度单位转换: Oz 本来是重量的单位Oz(盎司ang si )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

阻抗计算

关于电缆的正序阻抗和负序阻抗的计算 对于电缆当提到正序阻抗和负序阻抗时,一般是指电力电缆产品,像控制电缆和计算机电缆不提此参数。 当电力系统在对称状态下短路时,正序阻抗和负序阻抗是相等的,其计算公式是: Z1(正序阻抗)=Z2(负序阻抗)=R+jX 上述公式中:R为导体在工作温度下的交流电阻值; X为电抗值。 不同的产品和不同的产品结构(或敷设方式),其正序和负序阻抗是不同的。根据不同的产品计算如下: 导体在工作温度下的交流电阻值R的计算: R=R'(1+ Ys + Yp ) R'=R20(1+α20(t-20)) R20为导体在20度时直流电阻(Ω/m) α20电阻的温度系数:对铜α20=0.00393 对铝α20=0.00403 Yp为邻近效应系数取决与线芯与线芯之间的距离,对于0.6/1 kV及以下的电缆,Yp近似为0。 X为电抗值计算 (工频情况下) X=ωL=2πfL=314L(Ω/m)(L单位为H) L为回路的电感 三芯电缆时:电感计算公式如下: L=2×10×ln(a÷0.39D)(mH/km) a是电缆线芯与线芯的中心距离(mm),D为电缆导体的直径(mm)。 举例:YJV22 0.6/1 kV 3*50 在对称状态下短路时,正序阻抗和负序阻抗为: R'=R20(1+α20(t-20)) =0.000387(1+0.00393(90-20) (90是电缆的工作温度) =0.000493(Ω/m) R=R'(1+ Ys + Yp )

=0.000493(1+0.0136+0) (导体Ys 在截面70到300范围中取0.02) =0.0005(Ω/m) L=2×ln(a÷0.39D) =2×ln(10÷0.39×8) (a取导体直径加二倍的绝缘厚度,D为导体直径) =2×1.16 =2.32(mH/km)) X=314L =314×2.32×10 =0.00007(Ω/m) 那么: Z1(正序阻抗)=Z2(负序阻抗)=R+jX=0.0005+0.00007j(Ω/m) 其他型号和规格可以参照上述计算。 如有问题请电话联系 吴长顺 2005/04/02

线圈电阻计算方法

计算电阻公式为: S L R *ρ= 其中,ρ为铜的电阻率,值为:mm *24.17Ωμ(m *01724.0Ωμ),L 为导线长度,S 为导线的横截面积。 1. 导线长度的求法:方法有两种。 第一种,估算: K D D n L ++≈2*21π 式中 n 为圈数,D 1、D 2分别为内外径,K 为不足一圈的长度 其中,误差有:2 21D D E +≤π 由我们的线圈n=32,D 1=4.8mm ,D 2=24.4mm ,K=0。 算得L=1467mm ,E=45.8,则L 应该大于1421.1mm ,而小于1512.8mm 第二种,精确计算: 设螺线的方程为θπ *2d r =,式中,d 代表相邻螺线间的距离,在本文中,指代间距(d )和一半线宽(b ,8mil )之和(4mil+4mil=8mil=0.203mm ) 则[] d D d D K In d L M M N N N M π?π?θθθθπ??==+++++=,)1(1422 式中,D N 是外径,D M 是开始时的内径。d 也可表示为(D N -D M )/2n 带入算得:[]0)1(1122.0250 4922+++++=θθθθIn L ,

L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 2.计算铜线截面积 在PCB工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz(盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz或者更厚的敷铜,则厚度倍增。计算时假设是1oz敷铜,设计时导线宽度为8mil(0.2032mm)所以横截面积为 S=0.2032*0.035=0.007112mm2 μ,大概3.55欧姆 由此算得:R=17.24*1466.6/0.007112=Ω 那么两个线圈串联电阻约为2*3.55=7.1欧姆

PCB阻抗计算参数说明

1.介电常数E r E r(介电常数)就目前而言通常情况下选用的材料为 F R-4,该种材料的E r 特性为随着加载频率的不同而变化,一般情况下E r的分水岭默认为1 G H Z(高频)。目前材料厂商能够承诺的指标<(1M H z),根据我们实际加工的经验,在使用频率为1G H Z以下的其E r认为4.2左右。—的使用频率其仍有下降的空间。故设计时如有阻抗的要求则须考虑该产品的当时的使用频率。 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。 (全部为1G H z状态下) 2. 介质层厚度H H(介质层厚度)该因素对阻抗控制的影响最大故设计中如对阻抗的宽容度很小的话,则该部分的设计应力求准确,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),一般情况下常用的半固化片为: 1080 厚度0.075MM、 7628 厚度0.175MM、 2116厚度 0.105MM。 3.线宽W 对于W1、W2的说明:

5.铜箔厚度 外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1 OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um,大致相当于铜厚1 OZ、1.5 OZ、2 OZ。注意:在用阻抗计算软件进行阻抗控制时,外层的铜厚没有0.5 OZ的值。 走线厚度T与该层的铜厚有对应关系,具体如下: 铜箔厚度单位转换: Oz 本来是重量的单位Oz(盎司ang si )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

电缆直流电阻计算

电缆直流电阻与长度的关系 您好!电线、电缆每1千米的直流电阻计算公式:每1千米的直流电阻=电阻系数×1000÷截面积(平方毫米)·欧/1000米电阻系数:其中当温度T=20℃时,铜的电阻系数为0.0175欧·平方毫米/米铝的电阻系数为0.0283欧·平方毫米/米其中当温度T=75℃时,铜的电阻系数为0.0217欧·平方毫米/米铝的电阻系数为0.0346欧·平方毫米/米注意不论是单根或是多根都是以总截面积为计。例如以1.5平方毫米铜芯线(环境温度为20℃)计算: 0.0175×1000÷1.5≈11.667(欧/1000米) 绝缘铜电线最大直流电阻计算方法 20度时铜导体直流电阻=17.241/实际截面积单位:欧/km t度时铜导体直流电阻=(17.241/实际截面积)*(1+0.00393*(t-20))* 1.012*1.007 若为铝芯,17.241换为28.264,0.00393换为0.004 03 求出的是单位长度电阻,有多长再乘即可注:20度时最大电阻可查GB3956-1997,有国标就尊重国标 直流电动机: 4.0.2 测量励磁绕组和电枢的绝缘电阻值,不应低于 0.5MΩ。 4.0.7 测量励磁回路连同所有连接设备的绝缘电阻值不应低于0.5MΩ。交流电动机: 1 额定电压为 1000V 以下,常温下绝缘电阻值不应低于 0.5MΩ;额定电压为 1000V及以上,折算至运行温度时的绝缘电阻值,定子绕组不应低于1MΩ/KV,转子

绕组不应低于0.5MΩ/KV。此外还应考虑温度对绝缘电阻值的影响。 直流电阻和20℃电阻率的单位及计算公式 1)定义或解释电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。 (2)单位国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。 (3)说明①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V 1OO W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性。下表是几种金属导体在20℃时的电阻率. 材料电阻率(Ω m) (1)银 1.6 × 10-8 (5)铂 1.0 × 10-7 (9)康铜 5.0 ×10-7 (2)铜 1.7 × 10-8 (6) 铁 1.0 × 10-7 (10)镍铬合金 1.0 × 10-6 (3)铝 2.9 × 10-8 (7)汞 9.6 × 10-7 (11)铁铬铝合金1.4 × 10-6 (4)钨 5.3 × 10-8 (8)锰铜 4.4 × 10-7 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘 体的电阻率极大.锗,硅,硒,氧化铜,硼等的电阻率比绝缘体小而比

相关文档