文档库 最新最全的文档下载
当前位置:文档库 › 第八章 抗裂度、裂缝宽度和变形验算

第八章 抗裂度、裂缝宽度和变形验算

第八章 抗裂度、裂缝宽度和变形验算
第八章 抗裂度、裂缝宽度和变形验算

一、填空题

1、混凝土构件抗裂度、裂缝宽度及变形验算属于正常使用极限状态的设计要求,验算时材料强度采用标准值,荷载采用标准值、准永久值。

2、钢筋混凝土受弯构件的开裂弯矩计算是以Ⅰa的应力状态为计算依据的。

3、钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度增加而增大,随纵筋配筋率增大而减小。

4、构件的平均裂缝宽度为平均裂缝间距范围内钢筋伸长与相应水平处混凝土伸长之差。

5、对普通钢筋混凝土结构,在其他条件不变的情况下,钢筋直径细而密,可使裂缝宽度减小;混凝土保护层愈厚,裂缝宽度愈宽;纵筋配筋率愈高,裂缝宽度愈小;采用变形钢筋将会使裂缝宽度减小。

6、钢筋混凝土梁截面的抗弯刚度随弯矩增大而减小。

7、长期荷载作用下的钢筋混凝土梁,其扰度随时间的增长而增大,刚度随时间的增长而降低。

8、增大截面高度是提高钢筋混凝土受弯构件抗弯刚度的有效措施之一。

9、钢筋混凝土受弯构件的挠度计算采用的最小刚度是指在同号弯矩范围内,假定其刚度为常数,并按最大弯矩截面处的最小刚度进行计算。

二、判断题

1、一般钢筋混凝土结构在正常使用荷载作用下,构件常带裂缝工作。(√)

2、受弯构件的裂缝会一直发展,直至构件破坏。(×)

3、不管是受拉构件还是受弯构件,在裂缝出现前后,裂缝处的钢筋应力均会发生突变。(√)

4、钢筋混凝土梁抗裂弯矩的大小主要与受拉钢筋配筋率的大小有关。(×)

5、裂缝宽度是指构件外表面上混凝土的裂缝宽度。(×)

6、钢筋混凝土构件变形和裂缝验算中荷载、材料强度都取设计值。(×)

7、在钢筋混凝土结构中,提高构件抗裂度的有效办法是增加受拉钢筋的用量。(×)

8、在其他条件不变的情况下,采用直径较小的钢筋可使构件的裂缝开展宽度减小。(√)

9、当截面尺寸和所受的弯矩一定时,增加受拉钢筋数量,可以减小裂缝开展的宽度。(√)

10、凡是增大混凝土徐变和收缩的因素都将会使构件的刚度降低,挠度增大。(√)

三、选择题

1、钢筋混凝土构件的裂缝宽度是指(B)。

A.受拉钢筋重心水平处构件底面上混凝土的裂缝宽度

B.受拉钢筋重心水平处构件侧表面上混凝土的裂缝宽度

C.构件底面上混凝土的裂缝宽度

D.构件侧表面上混凝土的裂缝宽度

2、减少混凝土构件的裂缝宽度,首先应考虑的措施是(A)。

A.采用细直径的钢筋或变形钢筋B.增加钢筋的面积

C.增加截面尺寸D.提高混凝土强度等级

3、验算受弯构件裂缝宽度和挠度的目的是(B)。

A.使构件能带裂缝工作B.使构件满足正常极限状态的要求C.使构件满足承载力极限状态的要求D.使构件能在弹性阶段工作

4、一般情况下,钢筋混凝土受弯构件是(C)。

A.不带裂缝工作B.带裂缝工作

C.带裂缝工作,但裂缝宽度应受到限制D.带裂缝工作,且裂缝宽度不受限制

5、混凝土构件的平均裂缝间距与下列因素无关的是(A)。

A.混凝土强度等级B.混凝土保护层厚度

C.纵向受拉钢筋直径D.纵向钢筋配筋率

6、提高受弯构件截面刚度最有效的措施是(D)。

A.提高混凝土强度等级B.增加钢筋的面积

C.加大截面宽度D.增加截面高度

7、下列关于受弯构件裂缝发展的说法正确的是(C)。

A.受弯构件的裂缝会一直发展,直至构件破坏

B.钢筋混凝土受弯构件两条裂缝之间的平均裂缝间距为1.0倍的粘结应力传递长度C.裂缝的开展是由于混凝土的回缩、钢筋的伸长导致混凝土于钢筋之间产生相对滑移的结果

D.裂缝的出现不是随机的

8、验算钢筋混凝土构件的裂缝宽度时所采用的荷载为(B)。

A.荷载平均值B.荷载标准值

C.荷载设计值D.荷载代表值

四、简答题

1、构件裂缝宽度及变形验算属于何种极限状态?为什么要进行这种验算?

裂缝宽度验算

15 裂缝宽度验算:B墙8*15 15.1 基本资料 15.1.1 工程名称:一泵房地下室外墙 15.1.2 矩形截面受弯构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 15.1.3 纵筋根数、直径:第 1 种:10Φ20 受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) = 20mm 带肋钢筋的相对粘结特性系数υ = 1 15.1.4 受拉纵筋面积 As = 3142mm 钢筋弹性模量 Es = 200000N/mm 15.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 40mm 纵向受拉钢筋合力点至截面近边的距离 as =50mm ho = 450mm 15.1.6 混凝土抗拉强度标准值 ftk = 2.2N/mm 15.1.7 按荷载效应的标准组合计算的弯距值 Mk = 226kN·m 15.1.8 设计时执行的规范: 《混凝土结构设计规范》(GB 50010-2002),以下简称混凝土规范 15.2 最大裂缝宽度验算 15.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4) 对矩形截面的受弯构件:Ate = 0.5 * b * h = 0.5*1000*500 = 250000mm ρte = As / Ate = 3142/250000 = 0.01257 15.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力σsk,按下列公式计算:受弯:σsk = Mk / (0.87 * ho * As) (混凝土规范 8.1.3-3) σsk = 226000000/(0.87*450*3142) = 184N/mm 15.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.2/(0.01257*184) = 0.479 15.2.4 最大裂缝宽度ωmax,按混凝土规范式 8.1.2-1 计算: ωmax =αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es = 2.1*0.479*184*(1.9*40+0.08*20/0.0126)/200000 = 0.188mm<0.2mm 9 裂缝宽度验算:A墙4.9*11.9 9.1 基本资料 9.1.1 工程名称:一泵房地下室外墙 9.1.2 矩形截面受弯构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 9.1.3 纵筋根数、直径:第 1 种:8Φ20 受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) = 20mm 带肋钢筋的相对粘结特性系数υ = 1 9.1.4 受拉纵筋面积 As = 2513mm 钢筋弹性模量 Es = 200000N/mm 9.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 40mm 纵向受拉钢筋合力点至截面近边的距离 as =50mm ho = 450mm 9.1.6 混凝土抗拉强度标准值 ftk = 2.2N/mm 9.1.7 按荷载效应的标准组合计算的弯距值 Mk = 188.86kN·m 9.1.8 设计时执行的规范:

钢筋混凝土构件的变形和裂缝宽度验算

8钢筋混凝土构件的变形和裂缝宽度验算 一、选择题 1.进行变形和裂缝宽度验算时() A.荷载用设计值,材料强度用标准值 B.荷载和标准值,材料强度设计值 C.荷载和材料强度均用设计值 D.荷载和材料强度用标准值 2.钢筋混凝土受弯构件的刚度随受荷时间的延续而() A.增大 B.不变 C.减小 D.与具体情况有关 3.提高受弯构件的刚度(减小挠度)最有效的措施是() A.提高混凝土强度等级 B.增加受拉钢筋截面面积 C.加大截面的有效高度 D.加大截面宽度 4.为防止钢筋混凝土构件裂缝开展宽度过大,可() A.使用高强度钢筋 B.使用大直径钢筋 C.增大钢筋用量 D.减少钢筋用量 5.一般情况下,钢筋混凝土受弯构件是() A.不带裂缝工作的 B.带裂缝工作的 C.带裂缝工作的,但裂缝宽度应受到限制 D.带裂缝工作的,裂缝宽度不受到限制 6.为减小混凝土构件的裂缝宽度,当配筋率为一定时,宜采用() A.大直径钢筋 B.变形钢筋 C.光面钢筋 D.小直径变形钢筋 7.当其它条件相同的情况下,钢筋的保护层厚度与平均裂缝宽度的关系是( ) A.保护层愈厚,裂缝宽度愈大 B.保护层愈厚,裂缝宽度愈小 C.保护层厚度与裂缝宽度无关 D.保护层厚度与裂缝宽度关系不确定 8.计算钢筋混凝土构件的挠度时需将裂缝截面钢筋应变值乘以不均匀系数 ,这是因为()。 A.钢筋强度尚未充分发挥 B.混凝土不是弹性材料 C.两裂缝见混凝土还承受一定拉力 D.钢筋应力与应力不成正比

9.下列表达()为错误。 A.验算的裂缝宽度是指钢筋水平处构件侧表面的裂缝宽度 B.受拉钢筋混凝土应变不均匀系数ψ愈大,表明混凝土参加工作程度愈小 C.钢筋混凝土梁采用高等级混凝土时,承受力提高有限,对裂缝宽度和刚度的影响也很有限 D.钢筋混凝土等截面受弯构件,其截面刚度不随荷载变化,但沿构件长度变化 二、判断题 1.一般来说,裂缝间距越小,其裂缝开展宽度越大。 2.在正常使用情况下,钢筋混凝土梁的受拉钢筋应力越大,裂缝开展宽度也越大。 3.在其它条件不变的情况下,采用直径较小的钢筋可使构件的裂缝开展宽度减小。 4.裂缝间纵向受拉钢筋的应变不均匀系数ψ接近与1时,说明受拉混凝土将完全脱离工作。 5.在钢筋混凝土结构中,提高构件抗裂度的有效办法是增加受拉钢筋用量。 6.无论是受拉构件还是受弯构件,在裂缝出现前后,裂缝处的钢筋应力会发生突变。 7.钢筋混凝土梁抗裂弯矩的大小主要与受拉钢筋配筋率的大小有关。 8.当梁的受压区配有受压钢筋时,可以减小梁在长期荷载作用下的挠度。 9.超过正常使用极限状态所产生的后果较之超过承载力极限状态的后果要严重的多。 三、填空题 1.钢筋混凝土受弯构件的裂缝宽度和挠度是以的应力状态为计算依据的。 2.受弯构件的挠度,在长期荷载作用下将会时间而。着主要是由于影响造成的。 3.裂缝间受拉钢筋应变不均匀系数ψ越大,受弯构件的抗弯刚度越,而混凝土参与受拉工作的程度越。 4.钢筋混凝土梁截面抗弯刚度随弯矩增大而。 5.弹性匀质材料的M-φ关系,当梁的材料和截面尺寸确定后,截面弯抗刚度EI 是,钢筋混凝土梁,开裂后梁的M-φ关系是,其刚度不是,而是随弯矩而变化的值。M小B ,M大B 。 6.减小裂缝宽度最有效的措施是。 7.变形和裂缝宽度控制属于极限状态。应在构件的得到保证的前提下,再验算构件的变形或裂缝宽度。验算时荷载采用,材料强度采用。 8.平均裂缝宽度位置取。

【结构设计】各种桩基验算荷载取值全归纳

各种桩基验算荷载取值全归纳 问题一: 工程桩桩身强度验算,需满足: 1.35*Ra<ψc*fc*Aps+0.9fy*As(式一) 试桩桩身强度验算,需满足: 2*(Ra+空孔摩擦力)<ψc*fc*Aps+0.9fy*As(式二) 其中试桩时可否取fck? 问题二: 抗拔桩后期工程桩验收的静载做不做,如何做?按2倍Ra拉桩身就拉裂了,怎么办? 1、问题的疑惑主要是由总安全度法与多系数设计法的混杂所致,抗力的设计值或特征值是多系数体系的内容,是标准值乘以分项系数的结果,总安全度法只有极限承载力,规范公式给出的是既不能叫总安全度法又不是真正意义上的多系数法,严格来讲不伦不类,然而,设计中在规范的框架下,需要做顺从规范的事情。 2、式一是多系数体系的概念,1.35是特征值与设计值的换算系数,揭示内容是桩身受压承载力的安全系数>2(由土支撑阻力确定的单桩承载力特征值的安全系数),即土体支撑阻力先于桩身破坏;式二应为总安全度设计体系的概念,但却写为伪多系数概念,公式左边对应的是桩的极限承载力(标准值),公式右边对应的是桩身受压承载力设计值,两侧不合拍,如改用总安全度表达式应为F<(ψ

c*fck*Aps+0.9fyk*As)/K(式三),其中K为试桩桩身未坏的安全系数。从这里可以发现,当安全系数是材料分项系数的加权值时,式二与式三是一样的。假如忽略钢筋贡献,那么式二给出的安全度为1.4,当为抗拔桩时,安全度为1.1,因此如果运用式二来进行工程试桩的桩身强度验算,对于抗压工程试桩,材料强度如取标准值,需考虑安全系数(可取1.05~1.1)用式三计算,对于抗拔工程试桩,材料强度可取设计值。类似的抗拔桩数量确定时如果按照规范公式进行设计,总安全系数是个变值,大致位于1~2之间,特殊情况会非常接近1,造成储备不足,而采用总安全度法 [【F<(G+n*Ru)/K】,安全系数会为恒定值。 3.抗拔桩静载试验按规范还是要做的。抗拔桩一般有三类:锚桩、抗浮工程桩、抗浮工程试桩。抗拔桩设计重点在于配筋设计,其配筋设计又往往与裂缝控制有关。配筋计算针对的是承载力极限状态,裂缝验算针对的是正常使用极限状态,抗浮工程桩处于正常使用极限状态,而锚桩和抗浮试桩所处的是承载力极限状态(兼做工程桩时,才变为抗压桩和抗浮工程桩)。 配筋验算取用拔力分别为: 锚桩→承担的拉力极限值Nu 抗浮工程桩→承载力特征值1.35*Ra 抗浮工程试桩→承载力极限值Ru; 裂缝验算取用的拔力分别为: 锚桩→承担的拉力极限值Nu

裂缝宽度验算及减小裂缝宽度的主要措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施 对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。 《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定: (8-20) 式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式; w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。 表8-1 混凝土结构的使用环境类别 表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)

《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值: 一般环境0.20mm 有气态、液态或固态侵蚀物质环境0.10mm 这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。 从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。 但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。 8.2.6 小结 两本规范的裂缝宽度计算公式相差较大(见表8-3)。从理论基础上看,《混凝土结构设计规范》(GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)公式则纯粹是建立在试验统计分析基础上的。但二者所反映的裂缝宽

钢筋混凝土构件的变形和裂缝宽度验算

第八章混凝土构件变形和裂缝宽度验算 一、填空题: 1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的适用性、耐久性。 2、规范规定,根据使用要求,把构件在荷载标准值作用下产生的裂缝和变形控制在允许范围内。 3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的拉应力超过混凝土的抗拉强度,就将在该截面上产生垂直于拉应力方向的裂缝。 4、平均裂缝间距就是指裂缝出齐后的裂缝宽度的平均值。 5、平均裂缝间距的大小主要取决于钢筋和混凝土之间的粘结强度。 6、影响平均裂缝间距的因素有纵筋配筋率、纵筋直径、纵筋表面形状、混凝土保护层厚度。 7、钢筋混凝土受弯构件的截面抗弯刚度是一个变量,它随着荷载值和 加荷时间而变化。 8、钢筋应变不均匀系数的物理意义是反映裂缝之间受拉混凝土与纵向受拉钢筋应变的影响程度。 9、变形验算时一般取同号弯矩区段内弯矩最大截面抗弯刚度作为该区段的抗弯刚度。 10、规范用用长期效应组合挠度增大系数来考虑荷载长期效应对刚度的影响。 二、判断题: 1、混凝土结构构件只要满足了承载力极限状态的要求即可。(×) 2、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。() 3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。() 4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。() 6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。() 7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。() 8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规范允许的范围之内。() 9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、规范控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。() 11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。()

抗拔桩裂缝选筋(理正)

抗拔桩设计 ㈠人工挖孔桩: 1.布抗压桩,确定 D 《地基》8.5.6-5 d 《地基》8.5.11 砼标号(C25) 2.验算土体提供的抗拔力是否大于所需拔力是Y《桩基》5.4.6-2 否N 《桩基》5.4.6-2 li可取6d,不超过岩层面,岩层可取到10d。抗拔系数可取0.7 Y:3.裂缝选筋(理正-梁-裂缝计算,具体操作见反面) 《桩基》3.5.3、《砼》7.1.2 4.验算钢筋最小净距及配筋率是否满足规范。 《桩基》4.1.1 满足抗压桩配筋率,线性插值:(1.24-0.45d)/1.7 N: 加桩自重 调整扩大头、计算截面高度 改桩截面增大D、d,从而增加侧摩阻力 一片区域的各个桩,如果受力面积相同,归并为一个桩,选最大N进行设计。 桩进入持力层深度:《桩基》3.3.3-5

理正-梁-裂缝选筋 截面类型:默认矩形,圆形截面代换 L=0.886d 裂缝宽度:0.2 《桩基》3.5.3、《砼》7.1.2 准永久组合弯矩:0 不填0则程序按收弯计算裂缝,计算结果会小很多 准永久组合拉力:取satwe结果,不是验算土体提供的抗拔力 受拉钢筋面积:先按1000N/150估算(抗拔时,三级钢的360只能发挥40%,即150)

㈡预应力混凝土管桩: 江苏规范需要验算管桩连接处强度 1.布抗压桩:单桩承载力、桩数 2.计算土体提供的抗拔力特征值《桩基》5.4.6-2 3.计算单桩最大抗拔承载力特征值《桩基》5.8.8-1 荷载效应标准组合下混凝土不产生拉应力,应符合下式要求: σck<σpc 》 Ap·σck<Ap·σpc 》Fk<Ap·σpc= Ap·σ’pc/1.3 σck—荷载效应标准组合下正截面法向应力,标准值 σpc—扣除全部应力损失后,桩身混凝土的预应力,标准值 σ’pc—混凝土预应力设计值,A型:4N/mm2, AB型:6N/mm2, B型:8N/mm2, C型:10N/mm2, 4.取第2、3步二者较小值,计算总的抗拔力是否大于所需拔力。 是 否:加自重 加桩数 调整桩的类型 5.计算填芯长度。(根据地方规定)广东《预应力混凝土管桩规程》5.3.2 填芯混凝土长度:La 》Qt/(fn·Upn) 管桩内孔连接钢筋截面面积:As 》Qt/fy Qt—荷载基本组合单桩竖向拔力设计值。(取第3步值x1.3) fn—填芯混凝土与管桩内壁粘结强度设计值。C30取0.3—0.5N/mm2 Upn—管桩内孔圆周长。 6.计算插筋面积。

地下室的抗浮验算要点

地下室的抗浮验算要点 摘要:本文结合理论、规范和工程实例,分析在地下水作用下高层结构中地下室所受浮力的成因和一般规律,提出了抗浮验算的基本内容和基本原则,以及具体的验算方法,可供广大工程技术人员参考。 关键词:高层结构地下室抗浮验算 内容: 随着我国工程建设的发展,高层建筑越来越多,高层结构中一般都有地下室甚至多层地下室,为地下水位较高时,所受的浮力很大,而我国现行的国家地基规范中,并无相关的抗浮验算要求,因此,实际工程中,很多地下室未进行抗浮验算,给结构留下重大的隐患。一九九八年,武汉遭受特大洪水侵袭,我市的多个地下室发生不同程度的损坏。笔者结合多年的工作经验,对如何进行抗浮验算提出自己的看法,供大家参考。 一、地下水的类型和渗透性 1、上层滞水:是指埋藏在地表浅处,局部隔水透镜体的上部,且具有自由水面的地下水。它的分布范围有限,其来源主要是由大气降水补给。因此,它的动态变化,与气候、隔水透镜体厚度及分布范围等因素有关。 上层滞水地带只有在融雪后或大量降水时才能聚集较多的水,因而只能被作为季节性的或临时性的水源。 2、潜水:埋藏在地表以下第一稳定隔水层以上的具有自由水面的地下水称为潜水。潜水一般埋藏在第四纪松软沉积层及基岩的风化层中。 潜水直接受雨水渗透或河流渗入土中而得到补给,同时也直接由于蒸发或流入河流而排泄,它的分布区与补给区是一致的。因此,潜水水位变化,直接受气候条件变化的影响。 3、承压水:承压水是指充满于两个稳定隔水层之间的含水层中的地下水。它承受一定的静水压力。在地面打井至承压水层时,水便在井中上升甚至喷出地表,形成所谓上升泉水。由于承压水的上面存在隔水顶板的作用,它的埋藏区与地表补给区不一致。因此,承压水的动态变化,受局部气候因素影响不明显。 土透水性的强弱一般由土的渗透系数反映。一般认为,在工程中渗透系数≤10-5cm/sec 时,土具有不透水性,密实的粘性土一般能满足上述要求。具体工程中,应以勘察报告为准。 二、地下水产生浮力的条件 存在于土中的液态水可分为结合水和自由水两类,结合水与土粒表面牢固地粘结在一起,不能自由移动,不能传递压力,因此,它不含对土粒产生浮力。自由水在土粒影响范围以外,能传递静力压力,有溶解能力。其中的重力水可以自由运动,对土粒有浮力作用

桩基抗压抗拔验算,防水板和地下室外墙计算详细步骤

某地块保障性住房项目桩基础计算书 Ⅰ、基础设计信息: 1、本工程±0.00相当于绝对标高10.000m,底板面标高为-4.900m。 2、本工程场地内多处存在强风化夹中风化、微风化岩层,采用旋挖灌注桩,桩径选用 800,桩身砼等级C30. 3、本工程桩端持力层选用强风化砂岩为持力层(层序号6-2), 局部强风化砂岩厚度不满足13米时,直接以中-微风化为持力层(层序号6-3,6-4),中风化抗压强度f rk=5000 kP a,桩端进入持力层≥2米。 4、桩长选用≥13m. 5、选取桩孔各土层信息 根据地质报告中ZK121孔,6-2层层面绝对标高-14.02m;桩长17米,入强风化岩层7米 土层编号层底高程(m)分层厚度桩极限侧阻力标准值 (KPa) 桩侧土摩阻力标准值<1> -3.88 2.8 / / <3-1> 0.68 3.2 12 38.4 <4-1> -1.32 2 50 100 <6-1> -4.62 3.3 80 264 <6-2> -14.02 9.4 140 1316 根据地质报告中ZK116孔,6-3层层面绝对标高-6.55m;桩长13米,入微风化岩层 土层编号层底高程(m)分层厚度桩极限侧阻力标准值 (KPa) 桩侧土摩阻力标准值<3-1> 0.45 5 12 60 <4-1> -1.05 1.5 50 75 <4-3> -3.05 2 75 150 <6-2> -5.05 2 140 280 <6-3> -6.55 1.5 / / 根据地质报告中ZK123孔,6-2层层面绝对标高-10.27m;桩长13米 土层编号层底高程(m)分层厚度桩极限侧阻力标准值 (KPa) 桩侧土摩阻力标准值<2> 5.23 1 20 20 <3-1> 2.53 2.7 12 32.4 <4-1> 0.03 2.5 50 125 <4-2> -1.77 1.8 25 45 <6-1> -3.77 2 80 160 <6-2> -10.27 6.5 140 910 根据地质报告中ZK129孔,6-2-1层层面绝对标高-15.65m;桩长13米 土层编号层底高程(m)分层厚度桩极限侧阻力标准值 (KPa) 桩侧土摩阻力标准值<2> 5.35 0.5 20 10 <3-1> -0.65 6 12 72 <4-1> -1.55 0.9 50 45 <4-2> -2.95 1.4 25 35 <6-1> -5.35 2.4 80 192 <6-2-1> -15.65 10.3 / / Ⅱ、详细计算结果如下:

抗拔桩承载力计算书

单桩承载力计算书 、设计资料 1. 单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度I = 13.00m 桩顶标高81.00m 2?土层性能 3.勘探孔 天然地面标高96.00m 地下水位标高92.00m 注:标高均指绝对标高。 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u」q sik|i + q pk A p =1.57 x(60 X2.50 + 38 X4.00 + 65 X6.50) + 0 X0.20

=1138kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = :Fq sik U i l i =0.75 X60 X1.57 X2.50 + 0.72 X38 X1.57 X4.00 + 0.55 X65 X1.57 X6.50 =714kN 四、基桩抗拔力特征值 R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 、设计资料 1. 基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2E s = 2.0 X105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土: C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:-iim = 0.3000 mm 2. 设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 、计算结果 1. 计算主筋截面面积 根据《混凝土结构设计规范》式( 6.2.22 ) N' W f y A s + f py A py 因为不考虑预应力,所以式中f py及A py均为0 N' 750.000 X103 A s = ' = = 2083.33 mm 2 f y 360 2. 主筋配置 根据《建筑桩基技术规范》第 4.1.1条第1款 取最小配筋率-min = 0.597%

裂缝宽度验算和减小裂缝宽度的主要措施方案

825裂缝宽度验算及减小裂缝宽度的主要措施 对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。 混凝土结构设计规范》GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定: ■■'i ■- I I (8- 20) 式中W max――按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽 度,按式; W lim ――裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。 表8-1混凝土结构的使用环境类别

表8-2混凝土结构构件的最大裂缝宽度限值W lim (mm) 公路钢筋混凝土和预应力混凝土桥涵设计规范》JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值: 一般环境0.20mm 有气态、液态或固态侵蚀物质环境0.10mm 这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。 从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发 现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及

变形钢筋是最为经济的措施。因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。 但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。 8.2.6小结 两本规范的裂缝宽度计算公式相差较大(见表8-3 )。从理论基础上看, 《昆凝土结构设计规范》GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;〈公路钢筋混凝土与预应力混凝土桥涵设计规范》JTJ023)公式则纯粹是建立在试验统计分析基础上的。但二者所反映的裂缝宽度的主要影响因素大体上仍然是一致的,即钢筋直径、形式、配筋率和钢筋的工作应力等。 需要再次强调的是,本节上述裂缝宽度验算方法只是针对于荷载作用下的竖向弯曲裂缝而言的。实际工程中大量存在的非荷载裂缝及荷载作用下其他形式的裂缝,目前还没有可靠的计算方法来控制,这些裂缝往往是通过构造措施

抗拔灌注桩验算

抗拔桩验算 一、桩径D=800桩,桩编号:23 读取SATWE柱底恒载值N g=3771KN; 桩受荷载面积:A=8.425x6.5=55M2; 本工程±0.000相当于绝对标高H=3.310 根据地质勘察报告现状地面标高约-1.500,地下水位取现状地面 下0.500m,即-2.000m 基底标高H1=-9.200; 地下水浮力F0=(9.200-2.0)x10x55=3960KN; 单桩抗拔承载力Rta=3960x1.05-3771=387KN 桩顶拉力N=3960x1.27-3771=1258KN; 桩抗拔纵筋验算:As=1258x1000/360=3495mm2; 选配16Ф18(HRB400)As=4080 mm2 抗拔桩裂缝宽度验算 1 裂缝宽度验算:CT-1a 1.1 基本资料 1.1.1 工程名称:工程一 1.1.2 圆形截面轴心受拉构件,构件受力特征系数αcr= 2.7,截面尺寸D=800mm 1.1.3 纵筋根数、直径:第 1 种:16Φ18, 受拉区纵向钢筋的等效直径 d eq=∑(n i·d i2) / ∑(n i·υ·d i) = 18mm, 带肋钢筋的相对粘结特性系数υ = 1 1.1.4 受拉纵筋面积 A s= 4072mm2,钢筋弹性模量 E s= 200000N/mm2 1.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c s= 35mm, 纵向受拉钢筋合力点至截面近边的距离 a s= 44mm,h0= 756mm 1.1.6 混凝土轴心抗拉强度标准值 f tk= 2.2N/mm2 1.1.7 按荷载准永久组合计算的轴向力值 N q= 500kN 1.1.8 设计时执行的规范:《混凝土结构设计规范》(GB 50010-2010),以下简称混凝土规范1.2 最大裂缝宽度验算 1.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算: ρte= A s / A te(混凝土规范式 7.1.2-4) 对矩形截面的轴心受拉构件:A te= b·h = 800*800 = 640000mm2 ρte= A s / A te= 4072/640000 = 0.00636 在最大裂缝宽度计算中,当ρte< 0.01 时,取ρte= 0.01 1.2.2 在荷载准永久组合下受拉区纵向钢筋的应力σsq,按下列公式计算: 轴心受拉:σsq= N q / A s(混凝土规范式 7.1.4-1) σsq= 500000/4072 = 123N/mm2 1.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 7.1.2-2 计算: ψ = 1.1 - 0.65f tk / (ρte·σsq) = 1.1-0.65*2.2/(0.01*123) = -0.067 当ψ < 0.2 时,取ψ = 0.2 1.2.4 最大裂缝宽度ωmax,按混凝土规范式 7.1.2-1 计算: ωmax=αcr·ψ·σsq·(1.9c s + 0.08d eq/ ρte ) / E s = 2.7*0.2*123*(1.9*35+0.08*18/0.01)/200000 = 0.070mm ≤ωlim= 0.2mm,满足要求。

第九章 变形和裂缝宽度验算

第十章混凝土构件变形和裂缝宽度验算 一、填空题: 1.验算钢筋混凝土构件抗裂度、裂缝宽度和变形时,荷载采用值,混凝土强度用强度。 2.其他条件相同时,配筋率愈高,平均裂缝间距愈,平均裂缝宽度愈。其他条件相同时,混凝土保护层愈厚,平均裂缝宽度愈。 3、平均裂缝间距的大小主要取决于。 4、钢筋应变不均匀系数的物理意义是。 5、变形验算时一般取同号弯矩区段内截面抗弯刚度作为该区段的抗弯刚度。 6、规范用来考虑荷载长期效应对刚度的影响。 二、判断题: 1.裂缝的开展是由于混凝土的回缩,钢筋的伸长,导致混凝土与钢筋之间产生相对滑移的结果()。 2.当计算最大裂缝宽度超过允许值不大时,可以通过增加保护层厚度的方法来解决。() 3.配筋率较低的受弯构件,正截面强度低,裂缝宽度易满足() 4.受弯构件考虑长期荷载作用时的刚度时,将荷载乘以刚度降低系数θ,且1 θ()θ为挠度增 < 大系数,大于1 5、实际工程中一般采用限制最大跨高比来验算构件的挠度。() 6、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 7.裂缝宽度计算中的 σ是按阶段Ⅱ末即Ⅱa应力状态建立的()是按阶段Ⅱ应力状态建立的 s 8、混凝土构件满足正常使用极限状态的要求是为了保证安全性的要求。() 9、规范控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、有效配筋率 ρ是所有纵向受拉钢筋对构件截面的配筋率。() te 11、当纵向受拉钢筋的面积相等时,选择较细直径的变形钢筋可减小裂缝宽度。() 12、减小裂缝宽度的首选措施是增加受拉钢筋的配筋率。() 13、 ρ相同时,钢筋直径小者平均裂缝间距大些。(×) te 三、选择题: 1.下面的关于受弯构件截面弯曲刚度的说明错误的是()。 A.截面弯曲刚度随着荷载增大而减小; B.截面弯曲刚度随着时间的增加而减小; C.截面弯曲刚度随着变形的增加而减小; D.截面弯曲刚度不变; 2.钢筋混凝土构件变形和裂缝验算中关于荷载、材料强度取值说法正确的是()。 A.荷载、材料强度都取设计值;

抗拔桩承载力计算书

单桩承载力计算书 一、设计资料 1.单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度l = 13.00m 桩顶标高81.00m 2.土层性能 天然地面标高96.00m 地下水位标高92.00m 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u∑q sik l i + q pk A p = 1.57 × (60 × 2.50 + 38 × 4.00 + 65 × 6.50) + 0 × 0.20 = 1138kN 单桩竖向承载力特征值R a = Q uk / 2 = 569kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = ∑λi q sik u i l i = 0.75 × 60 × 1.57 × 2.50 + 0.72 × 38 × 1.57 × 4.00 + 0.55 × 65 × 1.57 ×6.50 = 714kN 四、基桩抗拔力特征值

R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 一、设计资料 1.基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2 E s = 2.0×105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土:C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:ωlim = 0.3000 mm 2.设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 二、计算结果 1.计算主筋截面面积 根据《混凝土结构设计规范》式(6.2.22) N' ≤ f y A s + f py A py 因为不考虑预应力,所以式中f py 及A py 均为0 A s = N'f y = 750.000×103 360 = 2083.33 mm 2 2.主筋配置 根据《建筑桩基技术规范》第4.1.1条第1款 取最小配筋率 ρmin = 0.597% 验算配筋率时,取 ρ = A s A = 2083.33 196349.54 = 1.061% 根据《混凝土结构设计规范》第9.3.1条第1款 取最大配筋率 ρmax = 5.000% 因为 ρmin ≤ ρ ≤ ρmax 所以,主筋配筋率满足要求 实配主筋:1220,A s = 3769.91 mm 2 3.箍筋配置 按构造配置箍筋 实配箍筋:8@300, A sv s = 0.1676 mm 2 /mm 4.计算ρte A ts = A s = 3769.91 mm 2

抗拔桩设计

某工程抗拔桩设计 杨意德 (福州市建筑设计院350001) 〔提要〕本文介绍某工程抗拔桩设计,并对抗拔桩设计的若干问题作了探讨。 〔关键词〕抗拔桩,抗拔承载能力 The Design of Uplift Piles for a Basement Abstract: In this paper, the design of uplift piles is introduced and several issues about design of uplift pile are commented Key words : uplift pile , uplift bearing capacity 1工程概况 某工程位于福州湖东路东段,北临五四河、南朝湖东路,建筑面积65000m2,室内±0.00相当于罗零标高7.50m,室外地面标高为-0.15m。主楼分南、北两楼,南楼地下一层、地上二十九层,北楼地下二层、地上三十三层,南、北两楼地下室与四周大面积二层纯地下车库连成一体。主楼基础采用Φ800冲孔灌注桩加桩底压桨。北楼裙房地下室和室外二层地下车库部分由于没有足够的荷载重量,抗浮稳定不满足要求,需要设置抗拔桩。经分析采用Φ600和Φ700两种桩径冲孔灌注桩作为抗拔桩,能解决地下室抗浮问题。 2地质概况和地下室抗浮设防水位确定 根据钻探,场地土层自上而下分布详表1。 表1 场地土层分布 地下水按埋藏条件可分为上层滞水和承压水两种。上层滞水主要埋藏于杂填土中,受大气降水和地表水补给,并与五四河有水力联系。勘探期间场地平均标高约6.0m(罗零,下同),钻孔混合水稳定水位为4.25-5.18m,近几年地下水最高水位 5.7m。下部承压水埋藏于⑹、⑻、⑾等层。承压水虽和上层滞水有水力联系,但由于含水层埋藏深度超过20m,不直接影响地下室的上浮稳定。 地下室抗浮设防水位应是建筑物设计使用年限内可能产生的最高地下水位。由于福州地区缺少长期地下水观测资料,要准确确定抗浮设防水位还比较困难,目前只能根据近期地下水调查资料和周围地下水补给、排泄条件预测可能出现的最高水位。本场地近年地下水高水位为 5.7m,由于现行城市排水设计标准低于抗浮设防标准,暴雨时虽因室外地面(标高7.35m)高于湖东路面和五四河岸约 1.4m,地面雨水可经湖东路和五四河排泄,地面不会积水,但周围的湖东路面和五四河岸(标高 5.95m),可能短时间积水、抬高地下水位,影响地下室上浮稳定。经分析选择6.30m作为地下室抗浮设防水位。 3桩的抗拔承载力验算 桩的抗拔极限承载力标准值一般按经验公式⑴计算并应满足⑵式要求(2)。 ∑ = i i ski k l u q Uλ------------------------ (1) p s k G U N+ ≤γ/-------------------------⑵ 式中符号物理意义详规范(2) q sik 为桩的极限侧阻力标准值,由于经验数值的局限性,为了比较可靠地确定它的数值,在3根不同直径

砼构件裂缝计算的有关规定

关于混凝土构件裂缝计算的有关规定本节中主要针对常用的灌注桩、承台、底板、侧壁(包括水池侧壁)、钢筋砼梁板的裂缝计算的相关规定进行汇总,并给出常规情况下的计算参数。 设计依据如下:1.《混凝土结构设计规范》GB50010-2010、2.《建筑地基基础设计规范》GB50007-2011、3.《建筑桩基技术规范》JGJ94-2008、4.《地下工程防水技术规范》GB50108-2008、5.《建筑地基基础设计规范》DBJ15-31-2003、6.《高层建筑混凝土结构技术规程》DBJ15-92-2013等。 1、灌注桩 各本规范中对灌注桩的裂缝计算相关规定如下: 1.1.《混凝土结构设计规范》第3.4.5条规定了各结构构件的裂缝控制等级及宽度限值;第7.1.2条对钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件的裂缝计算作了详细的规定。其中,需要特别注意的是Cs(最外层纵向受拉钢筋外边缘至受拉去底边的距离)的取值:当Cs<20时,取Cs=20;当Cs>65时,取Cs=65;7.1.2条文说明中提到:较大的混凝土保护层厚度对防止钢筋锈蚀是有利的,因此对混凝土保护层厚度较大的构件,当在外观的要求上允许时,可根据实践经验,对本规范表3.4.5中所规定的裂缝宽度允许值作适当放大。 1.2.《建筑地基基础设计规范》第8.5.3条第5款对各环境下的灌注桩的混凝土强度等级进行了规定,第11款对灌注桩的混凝土保

护层厚度作出要求; 1.3. 《建筑桩基技术规范》第4.1.2条对灌注桩的桩身混凝土强度等级及主筋的混凝土保护层厚度皆有明确规定。 1.4.《地下工程防水技术规范》第4.1.7条对防水混凝土结构迎水面的钢筋保护层厚度及裂缝宽度作出了相应要求。 1.5.广东省《建筑地基基础设计规范》第5. 2.4条对抗拔桩的裂缝宽度作了明确规定;第10. 3.2条对桩身主筋的混凝土保护层厚度有相应要求。 1.6. 广东省《高层建筑混凝土结构技术规程》第13.3.19条第4款对受长期水平荷载的桩或抗拔桩的裂缝宽度;第13.4.2条对桩身主筋的主筋保护层厚度有明确规定。 1.7.以上各本规范对灌注桩的混凝土强度等级、主筋保护层厚度及裂缝宽度皆作出了规定。实际工程设计中,当地下水对桩身钢筋不具腐蚀性或微腐蚀性时,一般对受长期水平荷载的桩或抗拔桩的主筋保护层厚度取50mm,裂缝宽度限值取0.3mm;计算裂缝宽度时若取保护层厚度为30mm,则裂缝宽度限值须按0.2mm进行控制。但存在争议的地方是:《混规》第7.1.2条注明:最外层纵向受拉钢筋外边缘至受拉区底边的距离大于65mm时,取65mm;《广东省高规》第13.3.19条第4款注明:计算裂缝宽度时,钢筋保护层厚度大于30mm时取30mm;补充《混凝土结构耐久性设计规范》GB_T50476第3.5.4条指出:在荷载作用下配筋混凝土构件的表面裂缝最大宽度计算值不应超过表3.5.4中的限值,对裂缝宽度无特殊外观要求的,

构件的裂缝宽度及变形计算

第5章构件的裂缝宽度及变形计算 5.1构件的裂缝宽度计算 裂缝的分类: ●荷载作用裂缝:由于荷载作用在结构上导致构件产生的裂缝。主要分为弯曲裂缝,斜裂缝和钢筋与混凝土的粘结撕裂裂缝; ●变形裂缝:除荷载因素以外,由于温度影响,混凝土的收缩影响,结构的支座沉降等因素导致的结构构件中产生的裂缝。 目前,国内外的裂缝宽度计算主要是针对荷载作用下弯曲裂缝宽度进行计算。 1.裂缝开展机理及主要模型 ①粘结滑移模型 1943年由Watstein和Parsens建立了粘结滑移理论,1962年,Hognestad推导出了相应的理论计算公式。如图所示,裂缝处钢筋和混凝土之间发生滑移,靠近裂缝处,钢筋通过粘结应力将受到的拉力的一部分传递给混凝土,使混凝土受拉。 粘结滑移模型

裂缝宽度取为两裂缝间钢筋的伸长量减去混凝土的伸长量。由于混凝土的伸长量很小,忽略不计,则: s t max s max s c E 2f w l σφ ετρ==? ② 无滑移模型 Base 等人与1966年建立了与上述不同的理论,即无滑移理论。该理伦假设在所允许的裂缝宽度范围内,钢筋相对混凝土没有粘结滑移,裂缝宽度在钢筋的表面处为0。 无滑移模型 给出的最大裂缝宽度计算公式为: s 2 max s 1 E h w K c h σ=?? 式中:c -保护层厚度; K -钢筋品种系数; h 1-受拉钢筋重心到截面中和轴之间的距离; h 2-最外边缘受拉纤维到截面中和轴之间的距离。 ③ 组合模型 Bianchini 等人1968年讨论了裂缝的开展机理,建立了粘结滑移—无滑移组合模型。

组合模型 Beeby 于1979年建立考虑多种因素影响的受弯构件裂缝宽度计算公式: cr m cr 312w c h x αεα= -??+ ? -?? cr α-钢筋表面到裂缝宽度计算点的距离; h -构件截面高度; m ε-相邻裂缝间钢筋的平均应变 x -截面的受压区高度; ④ 断裂力学方法 Bazant 和Oh 于1983年采用断裂力学的能量判据和强度判据对钢筋的裂缝间距和裂缝宽度进行了理论研究,建立了最大裂缝宽度计算公式: ( ) ()1 ,max 4.531 2s 3159 2.880.0002t w φ φεφφ =+++ 式中: 1φ-保护层厚度与中性轴至受拉面距离的比值; 2φ-钢筋周围平均有效混凝土面积与钢筋锚筋的比值; 3φ-中性轴到受拉面与中性轴到钢筋距离的比值。 ⑤ 数理统计方法

最大裂缝宽度允许值

最大裂缝宽度允许值 《混凝土结构设计规范》(GBJ 10-89) 钢筋混凝土和预应力混凝土结构构件的裂缝控制等级、混凝土拉应力限制 系数α ct 及最大裂缝宽度允许值,应根据结构构件的工作条件和钢筋种类按表3.3.4采用。对裂缝控制有特殊要求的构件,表规定的数值应适当减小;有可靠的工程经验时,对预应力混凝土构件的抗裂要求可适当放宽。 裂缝控制等级、混凝土拉应力限制系数及最大裂缝宽度允许值(mm)表3.3.4 钢筋种类钢筋混凝土结构预应力混凝土结构 结构构件工作条件Ⅰ级钢筋 Ⅱ级钢筋 Ⅲ级钢筋 冷拉Ⅱ级钢筋 冷拉Ⅲ级钢筋 冷拉Ⅳ级钢筋 碳素钢丝 刻痕钢丝 钢绞线 热处理钢筋 冷拔低碳钢丝 室 内 一般构件 三级 () 三级二级 αct=屋面梁、托梁 三级二级 αct= 二级 αct=

注:①属于露天或室内高湿度环境一栏的结构构件系指:直接受雨淋的构件;无围护结构的房屋中经常受雨淋的构件;经常受蒸汽或凝结水作用的室内构件(如浴室等);与土壤直接接触的构件; ②对处于年平均相对湿度小于60%地区、且可变荷载标准值与恒荷标准值之比大于的受弯构件,其最大裂缝宽度允许值可采用括弧内的数字; ③对承受二台及二台以上的相同吨位、且起重量不大于50t的中级工作制吊车的预应力混凝土等截面高度吊车梁,当采用冷拉Ⅱ、Ⅲ、Ⅳ级钢筋时,可根据使用要求,选用允许出现裂缝的预应力混凝土构件,其正截面的最大裂缝宽度允许值采用; ④采用冷拉Ⅱ、Ⅲ、Ⅳ级钢筋的承受重级工作制吊车的预应力混凝土吊车梁,当处于露天或室内高湿度环境,其裂缝控制等级不变,混凝土拉应力限制系数αct应取;

⑤烟囱、筒仓及处于液体压力下的结构构件,其裂缝控制要求应符合现行专门规范的有关规定; ⑥表中预应力结构构件的混凝土拉应力限制系数及最大裂缝宽度允许值仅适用于正截面的验算,斜截面的验算应符合本规范第五章的规定。

相关文档