文档库 最新最全的文档下载
当前位置:文档库 › 最新中考专题复习:数学思想方法

最新中考专题复习:数学思想方法

最新中考专题复习:数学思想方法
最新中考专题复习:数学思想方法

2017暑假培训:数学思想方法

一、数学思想

考点一:整体思想

1.(2014内江)已知11

3

2

a b

+=,则

25

43

6

a

ab b

ab a b

-+

--

的值等于

2.(2014凉山州))先化简,再求值:

2

35

2

362

a

a

a a a

-??

÷+-

?

--

??

,其中2310

a a

+-=;

3.(2013乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.

4.(2015?巴中)如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.(平移凑整)

5、(2007佳木斯)如图,将△ABC绕点C旋转60°得到△C

B

A'

',已知AC=6,BC=4,则线段AB 扫过的图形的面积为(旋转凑整)( )

A、

3

2

π B、

3

10

π C、6π D、

3

8

π。

6.(2004?贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是(割补凑整)______.

7.(2016春?鄂城区期中)如图,已知Rt△ABC中,∠ABC=90°,△ABC的周长为17cm,斜边上中线BD长为

7

2

则该三角形的面积为______.

8.(2015?绵阳)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2=______.考点二:转化思想

9.(2015凉山州)已知实数n

m,满足22

3650,3650

m m n n

+-=+-=, 求

n

m

m

n

+的值。

10:已知:如图,平行四边形ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,AB∶BC=6∶

A B

C

D

E

F

5,平行四边形ABCD的周长为110,面积为600。求:cos∠EDF的值。

11.(2012?鄂州)在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是.

考点三:分类讨论思想

12.(2012?黔东南州)我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?

13. (2015黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积

为.

14(2013绵阳)已知整数k<5,若△ABC的边长均满足关于x的方程2380

-+=,则△ABC

x k x

的周长是。

考点四:数形结合思想

15(2011绵阳)12.若x1,x2(x1<x2)是方程(x-a)(x-b)= 1(a<b)的两个根,则实数x1,x2,a,b的大小关系为().

A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2

16. (2012?内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为.

考点五:方程思想

17.如图:在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE

与AD交于点F。

①试说明:AF=FC;

②如果AB=3,BC=4,求AF的长

考点六:函数思想

18.(2008绵阳)青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?

考点七.类比思想:

19.(2006绵阳)在正方形ABCD中,点P是CD上一动点,连结P A,分别过点B、D作BE⊥P A、DF⊥P A,垂足为E、F,如图①.

(1)请探究BE、DF、EF这三条线段长度具有怎样的数量关系.若点P在DC的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD的延长线上呢(如图③)?请分别直接写出结论;

(2)请在(1)中的三个结论中选择一个加以证明.

考点八.数学建模思想:

20、(1)湖北居民阶梯电价为:第一档为月均用电量在130度以内,维持现行价格0.53元/千瓦时;第二档为月均用电量131~220度,超出130度的部分提价标准为0.05元/千瓦时;第三档,对于月均用电量超出220度的部分,提价标准为:0.30元/千瓦时。

10月份的电费缴款情况如下表:

计算日期电量

2012-07-10 66

2012-08-10 239

2012-09-10 315

2012-10-10 115

提出问题

问题1解析小明家8月份电费的详情。

基本部分:239千瓦时?0.53元/千瓦时=126.67元

调价部分:

130-220千瓦时之间调价部分:(220-130)?0.05 =4.5元

超过220千瓦时的调价部分:(239-220)?0.30 =5.7元

合计调价部分电费:4.5元+5.7元=10.2元

合计电费121.1:126.67元+10.2元=136.87元

问题2 根据上述资料对阶梯式累进电价建构数学模型并画出图像。

阶梯式累进电价的数学模型可用分段函数表示:设电量为x 千瓦时,金额为y 元,则金额对于电量的函数)(x f y =。

???

??<-?+?+?≤<-?+?≤≤==)220( )220(83.09058.013053.0)220130( )50(58.013053.0)1300(

53.0)(x x x x x x x f y

??

???<-≤<+≤≤=)220( 5.6163.0)220130( 39.958.0)1300( 53.0x x x x x x

如图1。

其实是数学教育,要培养学生“用数学的眼光去认识自己所生活的环境与社会”, 学会“数学地思考”。更为关注是否向学生提供了具有现实背景的数学,包括学生生活中的数学。所以,我们教师在今后的数学教学中,要使学生“领悟”出数学知识源于生活,又服务于生活,引导学生能用数学眼光去观察生活实际,从而培养学生解决实际问题的能力。使学生感到生活中处处有数学,数学就在我们的身边。

20、(2)某大学的校门是一抛物线形水泥建筑物(如图1),大门的地面宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,求校门的高。(精确到0.1米,水泥建筑物厚度忽略不计)

二、 数学方法 考点1、换元法;

21.解方程 ()()

222282311112x x x x x x +-+=-+

考点2、配方法

22.已知:01732

=-+-x x y ,求y x +的最小值为 .

x 220 y

o 图1 )(x f

考点3、参数法

23.若 346

x y z

== ,则x y z x y z +--+ =________.

考点4、特殊值法

24. 已知 1

A a+b

B a-b

C a 2+b

D a+b 2

考点5、待定系数法

25. 已知y=y 1 +y 2, ,y 1 与x+1成 正比例,y 2与x 成反比例,且当x=1时,y=0;当x=4时,y=9,求y 与x 的函数关系式。

考点6.面积法. 26.(2013绵阳)如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,

且DH 与AC 交于G ,则GH =( ) A .

28

25

cm B .

2120

cm C .

2815

cm D .

2521

cm

考点7. 构造法。

27.

x 的值为_________。 考点8.消元法(代入消元法;加减消元法)

28.解方程组:567x y y z z x +=??

+=??+=?

考点9.图像法: 29.(2016?兰州)点P 1(﹣1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=﹣x 2+2x+c 的图象上,则y 1,y 2,y 3的大小关系是( )

A .y 3>y 2>y 1

B .y 3>y 1=y 2

C .y 1>y 2>y 3

D .y 1=y 2>y 3 考点10.估算法:

30.(2011凉山州)已知a b 、为有理数,m n 、

分别表示5的整数部分和小数部分,且

21amn bn +=,则2a b +=

H

G

O D C

B

A

26题图

数学思想方法(参考答案)

一、数学思想

考点一:整体思想

1.

1 2 -

2.1 3

3.-2,-3

4.2

5.B

6.2.5

8.62

考点二:转化思想

9.2或

22 5 -

10.3 5

11.4

考点三:分类讨论思想

12.设总人数是x,

当x≤35时,选择两个宾馆是一样的;

当35<x≤45时,选择甲宾馆比较便宜;

当x>45时,甲宾馆的收费是:y甲=35×120+0.9×120×(x-35),即y甲=108x+420;y乙=45×120+0.8×120(x-45)=96x+1080,

当y甲=y乙时,108x+420=96x+1080,解得:x=55;

当y甲>y乙时,即108x+420>96x+1080,解得:x>55;

当y甲<y乙时,即108x+420<96x+1080,解得:x<55;

总之,当x≤35或x=55时,选择两个宾馆是一样的;

当35<x<55时,选择甲宾馆比较便宜;

当x>55时,选乙宾馆比较便宜.

13.66或126

14.6或12或10

考点四:数形结合思想 15.C 16.(,0).

类型五: 方程思想

17、解:

类型六:函数思想 18.(2008)设每天的房价为60 + 5x 元,则有x 个房间空闲,已住宿了30-x 个房间.

于是度假村的利润 y =(30-x )(60 + 5x )-20(30-x ),其中0≤x ≤30. ∴ y =(30-x )· 5 ·(8 + x )= 5(240 + 22x -x 2)=-5(x -11)2 + 1805.

因此,当x = 11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大.

类型七.类比思想:

19.(2006)(1)图①的结论是EF = BE -DF ,图②的结论是EF = DF -BE ,图③的结论是EF = BE + DF .

(2)对于图①.

∵ DF ⊥AP , ∴ ∠DAF + ∠ADF = 90?. ∵ ∠DAF + ∠BAE = 90?, ∴ ∠ADF = ∠BAE .

∵ BE ⊥AP , ∴ ∠AEB = ∠AFD = 90?. 在正方形ABCD 中,AB = AD , ∴ △ABE ≌△DAF , ∴ BE = AF ,AE = DF .

∵ AF = AE + EF , ∴ EF = BE -DF .

类型八.数学建模思想:

20.解:以大门所在平面与地面的交线为x 轴,以大门的对称轴为y 轴,建立直角坐标系(如图2),则A(-4,0)、B (4,0)、C (3,4)、D (-3,4).

设函数解析式为y=a(x+4)(x-4). ∵C(3,4)在抛物线上,

∴4=a(3+4)(3-4), ∴ 4

7

a =-

∴4

(4)(4)7

y x x =-+-

∵门高即为函数的顶点的纵坐标,如图顶点(0,y), ∴当x=0时,y ≈9.1(米) 二、 数学方法 1、换元法;

21.12311

,,325

x x x =-=-=-

2、配方法 22. -2

3、参数法

23. 1 5

4、特殊值法

24.解:∵1< b<0, 0

∴最大的是a-b ,故选B

5、待定系数法

25.

4

22 y x

x

=-+

6.面积法.

26.D

A.28

25cm B.21

20

cm C.28

15

cm D.

25

21

cm

7. 构造法。

27.解析:通过观察不难发现,题设条件中有明显的几何意义。

分别视为x、2和

(8-x)、4为直角边的直角三角形的斜边,进而构造如图所示的几何图形。AC⊥AB,BD⊥AB,且AC=2,

BD=4,AB=8。

AB上找一点P,使得

PC+PD最短,由“两点之间线段最短”的性质知,当点P、C、D共线时,PC+PD最短,即原式取最小值。

此时,易知△APC~△BPD

21

42 PA AC

PB BD

===,

从而PA=1

3

AB=

8

3

故原式取最小值时,x=8

3

8.消元法(代入消元法;加减消元法)

28.

3

2

4 x

y

z

=?

?

=?

?=?

9.图像法:

29.D

A.y3>y2>y1 B.y3>y1=y2 C.y1>y2>y3 D.y1=y2>y3 10.估算法:

30.5 2

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

数学的转化思想

中考数学专题复习之三:数学的转化思想 【中考题特点】: 转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】: 例1:已知:n m ,满足13,132 2 =-=-n n m m , 求 n m m n +的值。 例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4 1 =0中至少有一个方程有实数根,求m 的取值范围。 例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。 A B C D E F

例4:已知方程组 kx 2-x -y+ 2 1=0 y=k(2x -1) (x 、y 为未知数) 有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1 x 1y y 2 121=++,求实数k 的值。 例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【练习】: 1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求 b a 的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。 A B C D E F P

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

中考数学专题复习专题三大数学思想方法第一节分类讨论思想训练

专题三 5大数学思想方法 第一节 分类讨论思想 类型一 由概念内涵分类 (2018·山东潍坊中考)如图1,抛物线y 1=ax 2 -12x +c 与x 轴交于点A 和点B(1,0),与y 轴交于 点C(0,3 4),抛物线y 1的顶点为G ,GM⊥x 轴于点M.将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的 抛物线y 2. (1)求抛物线y 2的表达式; (2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由; (3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R.若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的表达式. 【分析】(1)应用待定系数法求表达式; (2)设出点T 坐标,表示出△TAC 三边,进行分类讨论; (3)设出点P 坐标,表示出Q ,R 坐标及PQ ,QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可. 【自主解答】

此类题型与概念的条件有关,如等腰三角形有两条边相等(没有明确哪两条边相等)、直角三角形有一个角是直角(没有明确哪个角是直角)等,解决这类问题的关键是对概念内涵的理解,而且在分类讨论后还要判断是否符合概念本身的要求(如能否组成三角形). 1.(2018·安徽中考改编)若一个数的绝对值是8,则这个数是( ) A .-8 B .8 C .±8 D .-18 类型二 由公式条件分类 (2018·浙江嘉兴中考)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学中的“转化思想”

初中数学中的“转化思想” [摘要]:随着课程改革的深入展开,培养学生的能力越来越重要,数学学习更应重视数学思想方法的渗透和培养。本文从几方面论述了转化思想在数学学习中的重要作用:转化思想可以使学生经历探索的学习过程,改变学生的学习方式,转化思想能培养学生创新思维能力及逻辑思维能力,是一种很重要的思维方法;转化思想可以增强学生的数学应用意识,提高解决问题的能力,从而,大大加强学生学习数学的兴趣。 [关键词]:转化思想数学学习逻辑思维应用意识学习兴趣 [引言]:人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,每种数学思想都有它一定的应用范围,但笔者在数学实践中体会到,在学生的数学学习过程中,决不能忽视转化数学思想所起的重要作用,在教学中必须重视转化思想的渗透和培养。 转化是解数学题的一种重要的思维方法,转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现。就解题的本质而言,解题既意味着转化,既把生疏问题转化为熟习问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题;把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等,因此学生学会数学转化,有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 数学转化思想、方法无处不在,它是分析问题、解决问题有效途径,它包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。转化的目的是不断发现问题,分析问题和最终解决问题。在数学中,很多问题能化复杂为简单,化未知为已知,化部分为整体,化一般为特殊,……等等,下面就“转化思想”在初中数学的应用通过举例作个简单归纳。

数学思想方法心得体会

数学思想方法心得体会 数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。下面是小编帮大家整理的数学思想方法心得体会,希望大家喜欢。 随着素质教育的深入开展,数学思想方法作为数学素质教育的重要内容已引起教育界的普遍关注和高度重视。做为未来高中教师的初等教育系的学生肩负着基础教育的重任,所以更应具有创新意识和创新能力。那么,应当如何认识数学思想方法?数学思想方法与初等数学又有什么样的关系?在初等数学的教学中又如何体现和渗透数学思想方法? 数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过N多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有N步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是

呆看,简单的能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了N多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律 初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。 如数与初等数论中的相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。 1.知识系统的探究 初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂

常见的数学思想方法

x y 2= 常见的数学思想方法 一、中考考点: 1.方程(组)是解决应用题、实际问题和许多方面数学问题的重要基础知识。在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系,列出方程(组)来解决,这就是方程思想。 2. 数形结合思想是一种重要的数学思想方法。通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。 3. 所谓化归思想就是化未知为已知、化繁为简、化难为易.通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机。 二、基础练习: (一)整体思想 1.如果代数式 1322+-x x 的值为2, 那么代数式x x 322 -的值等于( )A .2 1 B .3 C .6 D .9 2.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( ) A .图(1)需要的材料多 B .图(2)需要的材料多 C .图(1)、图(2)需要的材料一样多 D .无法确定 (二)方程思想 的图象在第一象限内的交点, 3.如图,已知点A 是一次函数x y =的图象与反比例函数 点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2 B .2 2 C .2 D .22 (三)数形结合思想 4.如图,A 是硬币圆周上一点,硬币与数轴相切于原点OA (A 与O 点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A′重合,则点A′对应的实数是___________. 5.函数)0(≠= k x k y 的图象如图所示,那么函数k kx y -=的图象大致是( ) (四)化归思想 6.如图,当半径为30cm 的转动轮转过60°角时,传送带上的物体A 移动的距离为________cm .(计算结果不取近似值) 7.将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两面三刀周时,正方形的顶点A 所经过的路线的长是__________cm . 8.在图中,所有多边形的每条边的长都大于2,每个扇形的半径都是1.则第n 个多边形中,所有扇形的面积之和是__________. (五)数学建模思想 9.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角.在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长.(结果保留根号) (六)函数思想 10.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表: 煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生 产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关第式; (2)写出y 与x 的函数表达式(不要求写自变量的范围); (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大最大利润是多少 (七)统计思想 11.某地区有一条长100千米,宽千米的防护林.有关部门为统计该防护林的树木量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木树量如下(单位:棵):65100、63200、64600、64700、67400.那么根据以上数据估算这一防护林总共约有_________棵树. 12.甲袋中放着19只红球和6只黑球、乙袋则放着170只红球、67只黑球和13只白球,这些球

中考数学复习专题 转化思想(含答案)

转化思想 一. 选择题:(本题10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分;共40分) 1、用换元法解方程x x x x + =++222 1时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=0 2、如图,已知ABC ?外有一点,P 满足PC PB PA ==,则( ) A 、22 3 1∠= ∠ B 、21∠=∠ C 、221∠=∠ D 、2,1∠∠的大小无法确定 3、小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2 3.5 4.9h t t =-(t 的单位:s , h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A 、0.71s B 、 0.70s C 、0.63s D 、0.36s 4、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直 径的圆交AB 于D ,若AD=8cm ,则阴影部分的面积为 ( ) A 、64πcm 2 B 、64 cm 2 C 、32 cm 2 D 、48 πcm 2 5、已知实数x 满足0112 2 =+++ x x x x ,那么x x 1+的值为( ) A 、1或-2 B 、-1或2 C 、1 D 、-2 6、如图,在半圆的直径上作4个正三角形,如这半圆周长为1C ,这4个正三角形的周长和为2C ,则1C 和2C 的大小关系是( ) 第2题 第3题 第4题 第6题

A 、1C >2C B 、1 C <2C C 、1C =2C D 、不能确定 7.如图,点A 、D 、G 、M 在半圆O 上,四边形 ABOC 、DEOF 、HMNO 均为矩形,设BC=aEF=b ,NH=c ,则下列各式中正确的是 A 、a >b >c B 、a=b=c C 、c >a >b D 、b >c >a 8. 如图,梯形ABCD 中,AB//DC ,AB =a ,BD =b ,CD =c , 且a 、b 、c 使方程ax bx c 220-+=有两个相等实数根,则∠DBC 和∠A 的关系是( ) A. ∠=∠DBC A B. ∠≠∠DBC A C. ∠>∠DBC A D. ∠<∠DBC A 9. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周 上从点A 出发绕侧面一周,再回到点A 的最短的路线长是( ) (A) 36 (B) 2 3 3 (C) 33 (D) 3 10. 已知a 、b 、c 是?ABC 三边的长,b>a =c ,且方程 ax bx c 220-+=两根的差的绝对值等于2,则?ABC 中 最大角的度数是( ) A. 90? B. 120? C. 150? D. 60? 二、填空题:(本大题共4小题,每小题5分,共20分,) 11、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为__________ 12、某同学在电脑中打出如下排列的若干个圆(图中●表示实心圆, ○表示空心圆): ● ○●●○●●●○●●●●○●●●●●○●●●●●●○ 若将上面一组圆依此规律复制得到一系列圆,那么前2007个圆中有 个空心圆; 13、二次函数y=ax 2+bx+c (a ≠0)的部分对应值如下表,则不等式ax 2+bx+c>0的解集为 . H N O F C A D G M c a b E B 第7题 第8题 D C 1 2 A B 第9题 第11题

中考专题复习专题五 数学思想方法(一)

2019-2020年中考专题复习专题五数学思想方法(一) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (xx?吉林)若a-2b=3,则2a-4b-5= . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 故答案是:1. 点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值. 对应训练 1.(xx?福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3?(a-b)3的值是.1.1000 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (xx?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).

中学数学涉及的主要的数学思想方法

中学数学涉及的主要的数学思想方法 中学数学涉及的主要的数学思想 一、函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透5,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 二、数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。 三、分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 四、化归与转化思想 所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题。 中学数学常用解题方法 1、配方法

2018年中考数学方法技巧:专题五-转化思想训练(含答案)

2.[2016·扬州]已知M=a-1,N=a2-a(a为任意实数),则M、N的大小关系为() 方法技巧专题五转化思想训练 转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等. 一、选择题 1.[2015·山西]我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而 得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x 1 =0,x 2 =2.这种解法体现的数学思想是() A.转化思想B.函数思想 C.数形结合思想D.公理化思想 27 99 A.M<N B.M=N C.M>N D.不能确定 3.[2016·十堰]如图F5-1所示,小华从A点出发,沿直线前进10m后左转24°,再沿直线前进10m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是() A.140m B.150m C.160m D.240m 图F5-1 4.[2016·徐州]图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是() 图F5-2 A.1或9B.3或5 C.4或6D.3或6 二、填空题 5.[2017·烟台]运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x的取值范围是________. 图F5-3

2.A [解析] ∵N -M =a 2 - a -( a -1)=a 2-a +1=(a - )2+ >0,∴M <N .故选 A . 6.[2016·达州] 如图 F 5-4,P 是等边三角形 ABC 内一点,将线段 AP 绕点 A 顺时针旋转 60°得到线段 AQ ,连结 BQ .若 PA =6,PB =8,PC =10,则四边形 APBQ 的面积为________. 图 F 5-4 7.[2016·宿迁] 如图 F 5-5,在矩形 ABCD 中,AD =4,点 P 是直线 AD 上一动点,若满足△PBC 是等腰三角形的 点 P 有且只有 3 个,则 AB 的长为________. 图 F 5-5 三、解答题 8.如图 F 5-6①,点 O 是正方形 ABCD 两条对角线的交点.分别延长 O D 到点 G ,OC 到点 E ,使 OG =2OD ,OE =2OC , 然后以 OG 、OE 为邻边作正方形 OEFG ,连结 AG ,DE . (1)求证:DE ⊥AG ; (2)正方形 ABCD 固定,将正方形 OEFG 绕点 O 逆时针旋转 α 角(0°<α <360°)得到正方形 OE ′F ′G ′,如图②. ①在旋转过程中,当∠OAG ′是直角时,求 α 的度数; ②若正方形 ABCD 的边长为 1,在旋转过程中,求 AF ′长的最大值和此时 α 的度数,直接写出结果,不必说明理 由. 图 F 5-6 参考答案 1.A 7 2 1 3 9 9 2 4 注:此题把比较两个式子的大小转化为比较两个代数式的差的正负. 3.B [解析] ∵多边形的外角和为 360°,这里每一个外角都为 24°,∴多边形的边数为 360°÷24°=15.

《九下数学专题复习——数学思想方法》教学设计

《九下数学专题复习——数学思想方法》教学设计 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、教学目标 通过学习感知初中阶段所涉及数学思想方法,会运用数学思想解决问题 四、教学过程: (1)基础练习,初步提炼数学思想方法: 1、若x-2y=3,则3-2x+4y的值是().(整体代换思想) A、-3 B、0 C、6 D、9 2.等腰三角形一个角是80°,则顶角的度数是()(分类讨论思想)A.80°B.80°或20°C.80°或50°D.20°

4、观察上图中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为 (用n 的代数式表示)(类比思想) 5.在直线l 上依次摆放着七个正方形(如图9所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_________.(转化思想) 6、在矩形ABCD 中,AB=4,BC=3,点P 在AB 上,若将△DAP 沿DP 折叠,使点A 落在矩形的对角线BD 上,则AP 长为 (方程思想) 7、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).(转化思想) (2)、数学思想方法提炼 ①、整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1:已知m 是方程012=--x x 的一个根,求4)3()1(22++-+m m m m 的值

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

专题二 中考数学转化思想(含答案)-

第2讲 转化思想 概述:在解数学题时,所给条件往往不能直接应用,?此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到. 典型例题精析 例1.(2002,上海)如图,直线y= 1 2 x+2分别交x ,y 轴于点A 、C 、P?是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9. (1)求P 点坐标; (2)设点R 与点P 在同一反比例函数的图象上,且点R 在直线PB 右侧.作RT ⊥x 轴,?T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标. 分析:(1)求P 点坐标,进而转化为求PB 、OB 的长度,P (m ,n )?再转为方程或方程组解,因此是求未知数m ,n 值. ∵S △ABP =9,∴涉及AO 长,应先求AO 长,由于A 是直线y= 1 2 x+2与x 轴的交点,∴令y=0,得0= 1 2x+2, ∴x=-4, ∴AO=4. ∴(4)2 m n =9…① 又∵点P (m ,n )在直线y=1 2 x+2上, ∴n=1 2 m+2…② 联解①、② 得m=2,n=3, ∴P (2,3).

(2)令x=0,代入y=1 2 x+2中有y=2, ∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b. 分类讨论: ①当2 4 b a =…① 又由P点求出可确定反比例函数y=6 x 又∵R(m+a,b)在反比例函数y=6 x 上 ∴b= 6 m a + ……② 联解①、②可求a,b值,进而求到R点坐标. ②当2 4 a b =时,方法类同于上. 例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)?的顶点是A,抛物线y2=x2-2x+1的顶点是B. (1)判断点A是否在抛物线y2=x2-2x+1上,为什么? (2)如果抛物线y1=a(x-t-1)2+t2经过点B, ①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形??若能,求出t的值;若不能,请说明理由. 分析:(1)∵y1的顶点为(t+1,t2),代入y2检验 x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2, ∴点A在y2=x2-2x+1的抛物线上. (2)①由y2=x2-2x+1=(x-1)2+0, ∴y2顶点B(1,0),因为y1过B点, ∴0=a(1-t-1)2+t 2?at2+t2=0. ∵t≠0,∴t2≠0,∴a=-1. ①当a=-1时,y=-(x-t-1)2+t2, 它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2?x-t-1=±t ∴x1=t+t+1=2t+1, x2=-t+t+1=1. 情况一:两交点为E(2t+1,0),F(1,0).

相关文档
相关文档 最新文档