文档库 最新最全的文档下载
当前位置:文档库 › 磁共振实验报告汇总

磁共振实验报告汇总

磁共振实验报告汇总
磁共振实验报告汇总

近代物理实验题目磁共振技术

学院数理与信息工程学院

班级物理082班

学号08220204

姓名

同组实验者

指导教师

光磁共振实验报告

【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。

【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构

【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。

【正文】

一、基本知识

1、铷原子基态和最低激发态能级结构及塞曼分裂

本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级.

设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为

E=-μF·B0=g F m FμF B0(1)

这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2)

图1

其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3)

上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差

ΔE=g FμB B0(4)

式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

2、光抽运效应

在热平衡状态下,各能级的粒子数遵从玻耳兹曼分布,其分布规律由式(2)表示.由于超精细塞曼子能级间的能量差ΔE很小,可近似地认为这些子能级上的粒子数是相等的.这就很不利于观测这些子能级之间的磁共振现象.为此,卡斯特勒提出光抽运方法,即用圆偏振光激发原子.使原子能级的粒子数分布产生重大改变.

由于光波中磁场对电子的作用远小于电场对电子的作用,故光对原子的激发,可看作是光波的电场分布起作用.设偏振光的传播方向跟产生塞曼分裂的磁场B0的方向相同,则左旋圆偏振的σ﹢光的电场E绕光传播方向作右手螺旋转动,其角动量为?;右旋圆偏振的σ-光的电场E绕光传播方向作左手螺旋转动,其角动量为-?;线偏振的π光可看作两个旋转方向相反的圆偏振光的叠加,其角动量为零.

现在以铷灯作光源.由图1可见,铷原子由5 2P1?2→5 2S1?2的跃迁产生D1线,波长为0.7948μm;由5 2P3?2→5 2S1?2的跃迁产生D2线,波长为0.7800μm.这两条谱线在铷灯光谱中特别强,用它们去激发铷原子时,铷原子将会吸收它们的能量而引起相反方向的跃迁过程.然而,频率一定而角动量不同的光所引起的塞曼子能级的跃迁是不同的,由理论推导可得跃迁的选择定则为

ΔL=±1 ,Δ F=0,±1,Δm F=±1 (5)

图2

所以,当入射光为D1σ+光,作用87Rb时,由于87Rb的5 2S1?2态和5 2P1?2态的磁量子数mF的最大值均为±2,而σ﹢光角动量为?只能引起Δm F=+1的跃迁,故D1σ﹢光只能把基态中除m F=+2以外各子能级上的原子激发到5 2P1?2的相应子能级上,如图2(a)所示.图2(b)表示跃迁到5 2P1/2上的原子经过大约10-8s后,通过自发辐射以及无辐射跃迁两种过程,以相等概率回到基态5 2S1?2各个子能级上.这样,经过多次循环之后,基态m F=+2子能级上的粒子数就会大大增加,即基态其他能级上大量的粒子被“抽运”到基态m F =+2子能级上.这就是光抽运效应.

同理,如果用D1σ-光照射,则大量粒子将被“抽运”到m F=-2子能级上.但是,π光照射是不可能发生光抽运效应的.

对于铷85Rb,若用D1σ+光照射,粒子将会“抽运”到m F=+3子能级上.

3、弛豫过程

光抽运使得原子系统能级分布偏极化而处于非平衡状态时,将全通过弛缘过程回复到热平衡分布状态.弛豫过程的机制比较复杂,但在光抽运的情况下,铷原子与容器壁碰撞是失去偏极化的主要原因.通常在铷样品泡内充入氮、氖等作为缓冲气体,其密度比样品泡中铷蒸气的原子密度约大6个数量级,可大大减少铷原子与容器壁碰撞的机会.缓冲气体的分子磁矩非常小,可认为它们与铷原子碰撞时不影响这些原子在磁能级上的分布,从而能保持铷原子系统有较高的偏极化程度.但缓冲气体不可能使铷原子能级之间的跃迁完全被抑制,故光抽运也就不可能把基态上的原子全部“抽运”到特定的子能级上.由实验得知.样品泡中充入缓冲气体后,弛豫时间为10-2s数量级.在一般情况下,光抽运造成塞曼子能级之间的粒子差数,比玻耳兹曼分布造成的差数大几个数量级.

4、磁共振与光检测

式(4)给出了铷原子在弱磁场B0作用下相邻塞曼子能级的能量差.要实现这些子能级的共振跃迁,还必须在垂直于恒定磁场B0的方向上施加一射频场B1作用于样品.当射频场的频率ν满足共振条件

h ν =ΔE =g FμB B0.(6)

时,便发生基态超精细塞曼子能级之间的共振跃迁现象.若作用在样品上的是D1σ+光,对于87Rb来说.是由m F=+2跃迁到m F=+1子能级.接着也相继有m F=+1的原子跃迁到m F=0,…….与此同时,光抽运又把基态中非m F=+2的原子抽运引m F=+2子能级上.因此,兴振跃迁与光抽运将会达到一个新的动态平衡.发生磁共振时,处于基态m F=+2子能级上的原子数小于未发生磁共振时的原子数.也就是说,发生磁共振时.能级分布布的偏极化程度降低了,从而必然会增大对D1σ+光的吸收。作用在样品上的D1σ+光,一方面起抽运作用.另一方面可用透过样品的光作为检测光,即一束光起了抽运和检测两重作用。

对磁共振信号进行光检测可大大提高检测的灵敏度.本来塞曼子能级的磁共振信号非常微弱,特别是密度很低的气体样品的信号就更加微弱,直接观察射频共振信号是很困难的.光检测充分利用磁共振时伴随着D1σ+光强的变化,可巧妙地将一个频率较低的射频量子(1~10MHz)转换成一个频率很高的光频量子(约108MHz)的变化,使观察信号的功率提高了7~8个数量级.这样,气体样品的微弱磁共振信号的观测,便可用很简便的光检测方法来实现。

二、实验仪器

由主体单元(铷光谱灯、准直透镜、吸收池、聚光镜、光电探测器及亥姆霍兹线圈)、电源、辅助源、射频信号发生器、示波器组成。

三、实验设计步骤

1.仪器的调节

(1)在装置加电之前,先进行主体单元光路的机械调整。再用指南针确定地磁场方向,主体

装置的光轴要与地磁场水平方向相平行。用指南针确定水平场线圈、竖直场线圈及扫场线圈产生的各磁场方向与地磁场水平和垂直方向的关系,并作详细记录。

(2)将“垂直场”、“水平场”、“扫场幅度”旋钮调至最小,按下辅助源的池温开关,接通电

源开关。开射频信号发生器、示波器电源。电源接通约三十分钟后,铷光谱灯点燃并发出紫红色光,池温灯亮,吸收池正常工作,实验装置进入工作状态。

(3)主体装置的光学元件应调成等高共轴。

调整准直透镜以得到较好的平行光束,通过铷样品泡并射到聚光透镜上。铷灯因不是点光源,不能得到一个完全平行的光束,但仔细调节,在通过聚光透镜即可使铷灯到光电池上的总光量为最大,便可得到良好的信号。

(4)调节偏振片及1/4波片,使1/4波片的光轴与偏振光偏振方向的夹角为π/4以获得圆偏

振光。

2.光抽运信号的观察

扫场方式选择“方波”,调大扫场幅度。再将指南针置于吸收池上边,设置扫场方向与地磁场方向相反,然后拿开指南针。预置垂直场电流为0.07A 左右。用来抵消地磁场分量。然后旋转偏振片的角度、调节扫场幅度及垂直场大小和方向,使光抽运信号幅度最大。再仔细调节光路聚焦,使光抽运信号幅度最大。

图1(扫场波形中要加电场为零的纵轴线)

铷样品泡开始加上方波扫场的一瞬间,基态中各塞曼子能级上的粒子数接近热平衡,即各子能级上的粒子数大致相等。 因此这一瞬间有总粒子数7/8的粒子在吸收D 1σ+光,对光的吸收最强。随着粒子逐渐被抽运到M F =+2子能级上,能吸收σ+

的光粒子数减少,透过铷样品泡的光逐渐增强。当抽运到M F =+2子能级上的粒子数达到饱和时,透过铷样品泡的光达到最大且不再变化。当磁场扫过零(指水平方向的总磁场为零)然后反向时,各塞曼子能级跟随着发生简并随即再分裂。能级简并时铷的子分布由于碰撞等导致自旋方向混杂而失去了偏极化,所以重新分裂后各塞曼子能级上的粒子数又近似相等,对D 1σ+光的吸收又达到最大值,这样就观察到了光抽运信号,如图1

光抽运信号波形

扫场波形

3.磁共振信号的观察

扫场方式选择“三角波”,将水平场电流预置为0.7A 左右,并使水平磁场方向与地磁场水平分量和扫场方向相同(由指南针判断)。垂直场的大小和偏振镜的角度保持前面的状态不变。调节射频信号发生器,频率可以观察到共振信号如图2,对应波形,可读出频率1ν及对应的水平场电流I 。再按动水平场方向开关,使水平场方向与地磁场水平分量和扫场方向相反。同样可以得到2ν。这样水平磁场所对应的频率为2)(21ννν+=,即排除了地磁场水平分量及扫场直流分量的影响。

用三角波扫场法观察磁共振信号时,当磁场0B 值与射频频率0ν满足共振条件式时,铷原子分布的偏极化被破坏,产生新的光抽运。因此,对于确定的频率,改变磁场值可以获得Rb 87或Rb 85的磁共振。可得到磁共振信号的图像。对于确定的磁场值(例如三角波中的某一场值),改变频率同样可以获得Rb 87或Rb 85的磁共振。实验中要求在选择适当频率(600KHz )及场强的条件下,观察铷原子两种同位素的共振信号并详细记录所有参量。

4.测量g 因子

为了研究原子的超精细结构,测准g F 因子时很有用的。我们用的亥姆霍兹线圈轴线中心处的磁感强度为式中N 为线圈匝数,r 为线圈有效半径(米) 32310516-?=

I r N H

I 为直流电流(安)。B 为磁感强度(特斯拉),式hv= g F u B B B g h B F μν=0中,普朗克常数h=6.626×10-34焦耳秒,玻尔磁子u B =9.274×10-24

焦耳/特斯拉。利用两式可以测出g F 因子值。要注意,引起塞曼能级分裂的磁场是水平方向的总磁场(地磁场的竖上分量已抵消),可视为B=B 水平+ B 地+ B 扫,而B 地、B 扫的直流部分和可能还有的其它杂散磁场,所有这些都难以测定。这样给直接测量g F 因子带来困难,但只要参考霍尔效应实验中用过的换向方法,就不难解决了。测量g F 因子实验的步骤自己拟定。

有实验测量的结果计算出Rb 87或Rb 85的g F 因子值。计算理论值并与测量值进行比较。 H H I

四、实验数据记录与处理

1、图形展示

光抽运信号磁共振信号

2、公式2hν=gμB(B1+B2); 理论上Rb85g因子为1/3. Rb87g因子为1/2.

射频场频率(KH Z)Rb85对应的

电流值

Rb87对应的

电流值

扫场方向和

水平场的方向

Rb85g因子Rb87g因子

650 0.253 0.151 同方向(按下)

0.3317004210.501738767

0.346 0.245 反方向(弹起)

960 0.390 0.244 同方向(按下)

0.334603990.505073507

0.487 0.337 反方向(弹起)

平均值

0.333152205 0.503406137

误差0.054% 0.68%

五、实验结论

本次实验由于我们距离学习原子物理的时间较长,对于其中所涉及到的实验原理有些不理解的地方,当老师讲解过后,我们加深对原子超精细结构、光抽运、光跃迁及光磁共振的过程的理解。对于整个过程有了深刻的理解,最终顺利实验测定铷原子超精细结构塞曼子能级的郎德因子g。

微波顺磁共振实验报告

【摘要】本次实验在了解微波的一些基本原理的基础上来观察微波顺磁共振信号,并进行g 因子的计算。

【关键词】电子自旋、顺磁性、 g 因子 、共振跃迁

【引言】由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。对自由基而言,轨道磁矩几乎不起作用,总磁矩的绝大部分(99%以上)的贡献来自电子自旋,所以电子顺磁共振亦称“电子自旋共振”(ESR)。

EPR 现象首先是由苏联物理学家 Е.К.扎沃伊斯基于1944年从MnCl2、CuCl2等顺磁性盐类发现的。物理学家最初用这种技术研究某些复杂原子的电子结构、晶体结构、偶极矩及分子结构等问题。以后化学家根据 EPR 测量结果,阐明了复杂的有机化合物中的化学键和电子密度分布以及与反应机理有关的许多问题。美国的B.康芒纳等人于1954年首次将EPR 技术引入生物学的领域之中,他们在一些植物与动物材料中观察到有自由基存在。60年代以来,由于仪器不断改进和技术不断创新,EPR 技术至今已在物理学、半导体、有机化学、络合物化学、辐射化学、化工、海洋化学、催化剂、生物学、生物化学、医学、环境科学、地质探矿等许多领域内得到广泛的应用。

【正文】

一、实验原理

根据泡利原理:

每个分子轨道上不能存在两个自旋态相同的电子,因而各个轨道上已成对的电子自旋运动产生的磁矩是相互抵消的,只有存在未成对电子的物质才具有永久磁矩,它在外磁场中呈现顺磁性。

电子自旋产生自旋磁矩μs=g e β ,其中β是玻尔磁子;g e 是无量纲因子,称为g 因子。自由电子的g 因子为ge=2.0023,单个电子磁矩在磁场方向分量μ=1/2ge β外磁场H 的作用下,只能有两个可能的能量状态。即 E=±1/2g βH ,

能量差△E =g βH 这种现象称为塞曼分裂(Zeeman splitting)。

电子具有:

电子自旋磁矩和外磁场的相互作用能:

若设外磁场加在Z 轴方向上,则有: 这里:

共振条件:

0e E B μ=-?r r

00

e S E B

g m B μβ=-=

如果在垂直于H的方向上施加频率为hυ的电磁波,当满足下面条件:

hυ=gβH

则处于两能级间的电子发生受激跃迁,导致部分处于低能级中的电子吸收电磁波的能量跃迁到高能级中。这就是顺磁共振现象。

实验中受激跃迁产生的吸收信号经电子学系统处理可得到EPR吸收谱线,EPR波谱仪记录的吸收信号一般是一次微分线型,或称:一次微分谱线。

实验装置如下图:

二、实验步骤

1、连接实验线路,讲可变衰减器旋至最大,开启系统各仪器电源,预热20分钟。

同时自习阅读各仪器的使用说明书,熟悉各仪器的使用和调节方法,以及注意事项。

2、调节各仪器至工作状态。

3、将顺次共振的实验仪的旋钮和按钮作如下设置:“磁场”逆时针调到最低,“扫场”

顺时针调到最大。按下检波按钮,扫场按钮弹起,此时磁共振实验仪处于检波状态。

4、将样品位置刻度尺置于90mm处,样品腔置于磁靴正中央,并将单螺旋调配器的

探针逆时针旋至“0”刻度。

5、调节可变衰减器及检波灵敏度旋钮使磁共振实验仪的调谐电表指示占满刻度的

2/3以上。然后用波长表测定微波信号的频率。

6、为使样品谐振腔对微波信号谐振,调节样品谐振腔的可调终端活塞,使调谐电表

指示最小,此时,样品谐振腔中的驻波分布如下图。

7、然后按下扫场按钮,此时调谐电表指示为扫场电流的相对指示,调节扫场旋钮可

改变扫场电流。然后顺时针调节磁场电流,当电流达到1.7~1.9A之间时,即可出现下图所示的电子共振信号。

8、g因子的测定,读取磁共振仪的电流值,根据磁共振实验仪输出电流与磁场强度

H的数值的关系曲线,确定共振时磁场强度,根据实验时测定的频率,带入公式。

三、实验结果与数据分析

1、用波长表测定微波信号的频率,得出结果。

2、按照步骤调出共振图像

选取图像依据:扫场经过一个周期,对应的图像共振两次,此时共振是扫场

几乎处于零点。

电流I=2.152A

3、测量磁场大小

当两个共振点距离相等时,测量磁场大小,我们知道要产生共振,频率是固定的9370MHz ,已经调好,所以对应的B 0也就可以确定下来。磁感应强度用特斯拉计测量,

1 2 3 平均 B (mT )

333 340 342 338

g 因子计算:据 0B g E B μ=?

其中h = 6.626068 × 10-34 m 2 kg / s ,ν=9370MHZ ,玻尔磁子μB = 9.274×10-24 J ·T -1

, 计算得到g=1.9806,理论值g=2.0023,相对误差为1.08%。

四、实验总结

通过本次实验,我们了解到了顺磁共振的基本原理,并通过实验找出共振图像,顺利计算出g 因子,与理论值进行比较,误差很小。

在本次实验中,更深一步的了解了衰减器、波长表、检波器、示波器等仪器的使用。熟练掌握调节出共振图像的基本步骤,并对其中的原理有了充分的了解。 波长表 可变衰减器 隔离器震荡器 频率f 3.075m 0mm 3.852mm 9370MHz

核磁共振实验报告

【摘要】本次实验在了解核磁共振的基础上,用扫频法观察核磁共振现象,并测定g 因子,同时比较掺入顺磁物质浓度不同的水样品,观察它们吸收信号之间的差异。

【关键词】核磁 吸收 共振图像 g 因子

【引言】元素周期表中绝大多数元素都有核自旋和核磁矩不为零的同位素。这些核在恒定磁场 B 和横向高频磁场bo(ω)的同时作用下,在满足ωN=γNB 的条件下会产生核磁共振(γN 为核磁旋比),也可在恒定磁场B 突然改变方向时,产生频率为ωo=γB 、振幅随时间衰减的核自由进动,它在某些方面与核磁共振有相似之处。在固体中,核受到外加场Be 和内场Bi 的作用,使共振谱线产生微小的移位(约0.1%~1%),在金属中称为奈特移位,在一般化合物中称为化学移位,在序磁材料中由于核外电子的极化会产生约10~10T 的内场,称为超精细作用场。这些移位和内场反映核周围化学环境(指电子组态和原子分布等)的影响。研究核磁共振中的能量交换和转移的弛豫过程,包括核自旋-自旋弛豫和核自旋-点阵弛豫两种过程,也反映化学环境的影响。因此,核磁共振起着探测物质微观结构的微探针作用。目前,核磁共振已成为研究各种固体(包括无机、有机和生物大分子材料)的结构、化学键、相变和化学反应等过程的重要方法。新发展的核磁共振成像技术不但与超声成像和X 射线层析照相有相似的功能,而且还可能显示化学元素和弛豫时间的分布。

【正文】

一、实验原理

按照量子力学,原子核角动量的大小由η)1(+=I I P 决定,式中η为普朗克常数,I 为核自旋量子数,对于氢核I=1/2。把氢核放在外磁场B 中,取坐标轴z 方向为B 的方向。

任何两个能级间能量差,对氢核而言,自旋量子数I=1/2,所以磁量子数m 只能取两个值,即m=1/2和m=-1/2。磁矩在外场方向上的投影也只能取两个值。

氢核能级在磁场中的分裂 根据量子力学选择定则,只有1±=?m 的两个能级之间才能发生跃迁,其能量差为

B

g E N N μ=?。由此公式可知:相邻两个能级差E ?与外磁场B 的大小成正比,磁场越强,

则两个能级分裂也越大。

若实验时外磁场为B0,用频率为 0的电磁波照射原子核,如果电磁波的能量h 0恰好等于氢原子核两能级能量差,即00B g hv N N μ=,则氢原子核就会吸收电磁波的能量,由m=1/2的能级跃迁到m=-1/2的能级,这就是核磁共振吸收现象,上式就是核磁共振条件。 如果处于高能级上的核数目与处于低能级上的核数目没有差别,则在电磁波的激发下,上下能级上的核都要发生跃迁, 并且跃迁几率是相等的,吸收能量等于辐射能量,观察不到任何核磁共振信号。 只有当低能级上的原子核数目大于高能级上的核数目, 吸收能量比辐射能量多,这样才能观察到核磁共振信号。 在热平衡状态下,核数目在两个能级上的相对分布由玻尔兹曼因子决定:

)ex p()ex p(021kT B g kT E N N N N μ-=?-=

式中N1为低能级上的核数目,N2为高能级上的核数目,E ?为上下能级间的能量差,k 为玻尔兹曼常数,T 为绝对温度,0B g N N μ<

kT B g N N N N 0211μ-=

上式说明,低能级上的核数目比高能级上的核数目略微多一点。

本实验采用连续波的方法。首先有用此帖产生一个恒定匀强磁场B01,再由扫场线圈在B01上叠加一个旋进磁场B02= Asin ω0t 叠加后的匀强磁场为B0=B01+Asin ω0t ,即其在一定范围内做正弦运动。有信号检测器在探头内产生一个与B0垂直的正弦运动的磁场B1=Asin ω0t 其中B1的角频率ω可调。设B ω=ω/γ,则每当B1在运动过程中扫过B ω时,产生一次共振。故共振现象随扫场频率周期性发生。由示波器可观察共振信号。 二、实验装置

核磁共振实验仪主要包括磁铁及扫场线圈、探头与样品、 边限振荡器、 磁场扫描电源、 频率计及示波器。实验装置如图所示

三、实验内容

(1)校准永久磁铁中心的磁场Bo ,把样品为水(掺有三氟化铁)的探头下端的样品盒插 入到磁铁中心,并使电路盒水平放置在磁铁上方的机座上,左右移动电路盒使它大致处于机 座的中间位置,将电路盒背面的“频率测试”和“共振信号”分别与频率计和示波器连接, 把示波器的扫描速度旋钮放在5ms/格位置,纵向放大旋钮放在0.1V/格或0.2V/格位置,打 开频率计,示波器和边限振荡器的电源开关,这时频率计应有读数,接通可调变阻器电流到 中间位置,缓慢调节边限振荡器的频率旋钮,改变振荡频率(由小到大或由大到小)同时监 视示波器,搜索共振信号。水的共振信号将出现尾波振荡,而且磁场越均匀尾波中的振荡次 数越多。因此一旦观察到共振信号以后,应进一步仔细调节电路盒在木座上的左右位置,使 尾波中振荡的次数最多,即使探头处在磁铁中磁场最均匀的位置,并利用木座上的标尺记下 此时电路盒边缘的位置。

作为定量测量,我们除了要求出待测量的数值外,还关心如何减小测量误差并力图对误 差的大小作出定量估计从而确定测量结果的有效数字,从图可以看出,一旦观察到共振信号,B 0的误差不会超过扫场的幅度'B 。

现象观察:适当增大'B ,观察到尽可能多的尾波振荡,然后向左(或向右)逐渐移动电路盒在木座上的左右位置,使下端的探头从磁铁中心逐渐移动到边缘,同时观察移动过程中共振信号波形的变化并加以解释。

(2)测量F19的g 因子

把样品为水的探头换为样品为聚四氟乙烯的探头,并把电路盒放在相同的位置,示波器的纵向放大旋钮调节到50mV/格或20mV/格,用与校准磁场过程相同的方法和步骤测量聚四氟乙烯中F19与B 0对应的共振频率vN 。以及在峰顶及谷底附近的共振频率'v F 及''v F ,利用vF 和公式(9)求出F19的g 因子,根据公式(9),g 因子的相对误差为

2002)()(B B v v g g F F ?+?=?

式中B 0和ΔB 0为校准磁场得到的结果。求出Δg/g 之后可利用已算出的g 因子求出绝对误差Δg ,Δg 也只保留一位有效数字并由它确定g 的有效数字,最后给出g 因子测量结果的完整表达式。观测聚四氟乙烯中氟的共振信号时,比较它与掺有三氟化铁的水样品中质子的共振信号波形的差别。

四、实验数据记录与处理

1磁场强度/T

H F 4930 20925KHz 19686KHz 2、通过测量未知原子核的共振频率v 便可求出待测原子核γ值(通常用

π

γ2值表征) 或g 因子: B v 2=πγ或h B v g N //μ= 其中h

N μ=7.6225914 MHz/T 。

样品 弛豫时间 共振时的频率v(MHz) g

4CuSO

0.1ms 20.5815 0.000548 4SO M n

0.1ms 20.7783 0.000553 氟碳 0.1ms

20.7195 0.000551 3eCl F

0.1ms 20.7372 0.0005523

3、共振图像

五、注意事项及误差分析

实验中共振信号出现的频率范围很小,在实验中要调节微调旋钮,利用粗调旋钮很容易会跳过共振频率。因此在实验中,在实验参数共振频率的 1MHz之间微调,知道观察到共振信号。

误差表现:

实验参数中H的共振频率为20.925MHz,但是观察到共振信号时,频率计给出的频率为20.7783MHz,由此可见,温度对实验参数的影响。

本实验的误差主要有以下几个方面原因产生:

1、温度引起的误差,对于试剂,温度会使试剂中分子和原子的状态发生略微改变,影响其

各方面性质参数,使实验结果产生误差。

2、仪器产生的误差,由于实验仪器非常精密,温度的变化会使电路的稳定性测量的精确性

等各方面受到影响。

3、操作产生的误差,操作过程中会发生诸如试剂未放置于磁场中央等误差。

六、实验总结

1、本次实验结果的各项实验数据与核磁共振理论的预言值符合的较好,说明了核磁共振理

论的正确性。经分析表明,实验装置中永磁铁所产生的匀强磁场并不是完全均匀的,其方向也并不一致。由此也引起了实验测量的一些误差。

2、尾波产生的原因:对于某些可发生磁共振的物质,在共振讯号产生之后,会有振幅不断衰

减的波形出现, 这就是尾波。

3、核磁共振吸收信号与磁场成正比,外磁场越强粒子差数越大,越有利于观察核磁共振信

号。如果磁场在样品的整个体积范围内是均匀的,则具有最佳的检测特性。最强的共振信号与边限振荡器刚刚起振的状态相对应。射频幅度增大 ,其共振信号反而减弱。射频幅度影响射频频率,对于已调好的状态 ,如改变射频幅度,则共振信号不再等间距。

4、扫描电压越大越有利于观察核磁共振信号,扫描电压较小,信噪比较差,如扫描电压为零,

则观察不到共振信号。

南京大学-光磁共振实验报告

光磁共振 (南京大学物理学院 江苏南京 210000) 摘要:光磁共振是利用光抽运的方法,进一步提高磁共振灵敏度的技术。本实验依据光磁共振技术,运用“光抽运—磁共振—光探测”的方法,测量地磁场垂直分量和水平分量以及铷原子的相关参量。 关键词:光磁共振;光抽运;磁共振;塞曼效应;塞曼子能级;地磁场;朗德因子 一、实验目的 1.掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。 2. 测定銣原子87Rb 和85Rb 的参数:基态朗德因子F g 和原子核的自旋量子数I 。 3. 测定地磁场B 地的垂直分量B 地垂直、水平分量B 地水平 及其倾角θ。 二、实验原理 光磁共振技术是根据动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。 1.铷原子的超精细结构及其塞曼分裂 铷是一价碱金属原子,有一个价电子,处于第五壳层,主量子数n=5,电子轨道量子数L=0,1,2,3…,n-1,电子自旋S=1/2。铷原子中价电子的轨道角动量L P 和自旋角动量S P 发生轨道—自旋耦合(LS 耦合),得到电子总角动量J P ,其数值 ,,1,,J P J L S L S L S ==++-???-。当不考虑铷原子核的自旋时,铷原子总 磁矩2J J J e e g P m μ=-,其中,e e m -分别为电子的电荷、质量。朗德因子 (1)(1)(1) 12(1) J J J L L S S g J J +-+++=++ 从而形成原子的超精细结构能级,这时,铷原子的基态能级21S J n S +对应于 n=5,L=0,S=1/2,J=1/2,即为212 5S ,相应的朗德因子2J g =;铷原子的第一激发态能级 21 S J n P +对应于n=5,L=1,S=1/2,J=1/2、3/2,是双重态,即为212 5P 和232 5P ,相应的朗德因子 24 ,33J g = 。22132255P S →的能级跃迁产生光谱线1D 线(1794.76nm λ=);223322 55P S →的跃迁产生光谱线2D 线(2780.0nm λ=)。本实验观测与1D 线有关的能级的超精细结构及其在弱磁场中的塞曼分裂。 通常原子核也具有角动量,记原子核的总角动量为P ,它是核中质子和中子的轨道角 动量和自旋角动量的矢量和,核的总角动量的数值I P = ,通常也称为核自旋, 其中I 称为核的自旋量子数,I 为整数或半整数,已知稳定的原子核的I 值在0~7.5之间。 核的总角动量I P 的最大可测的分量值为 I 。当0I ≠时,原子核的总磁矩为

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

核磁共振实验

核磁共振实验 发现的背景 所谓核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。核磁共振的发现,跟核磁矩的研究紧密相关。 1911年,卢瑟福根据a 粒子散射实验提出核原子模型后,直到原子光谱的超精细结构发现以后,1924年泡利才正式提出,原子光谱的超精细结构是核自旋与外电子轨道运动相互作用的结果;原子核应具有自旋角动量和磁矩。 斯特恩创造了分子束方法,对核磁矩作过重要研究。1933年他和弗利胥(O.Frisch )、爱斯特曼(I.Estermann )等人用分子束实验装置测量氢分子中质子和氘核的磁矩。所得结果表明质子磁矩比狄拉克电子理论预言的大2.5倍而氘核磁矩则在0.5到1个核磁子之间。氘核是由质子和中子组成的,由此即可推测中子也有磁矩。这说明尽管中子整体不带电,其内部却有电荷分布和电流效应。这些实验事实,激励了其他人对核的电磁特性的探索。 拉比的分子束磁共振方法对斯特恩实验作了重大改进。改进的关键在于利用了共振现象。二十年代末,拉比访问欧洲时,就在斯特恩的实验室里工作了一年,研究原子磁矩的测量。1929年,他回到哥伦比亚大学开展原子束分子束的研究。后来他受到荷兰物理学家哥特(C.J.Gorter )的启发,并于1938年把哥特射频共振法应用于分子束技术,创立了分子束共振法。 拉比对分子束磁共振方法的研究和布洛赫对核磁共振的研究都是受到了斯特恩的启发。 分子束磁共振方法在1945-1946年间又取得了突破性的进展,这就是通过磁共振的精密测量,发现了核磁共振。 人物介绍 图11.1 布洛 赫 图11.2 珀塞尔 布洛赫 Felix Bloch 珀塞尔 Edward Purcell

光磁共振实验报告

近代物理实验报告 光磁共振 班级物理081 学号 08180140 姓名周和建 时间 2011年4月27日

【摘要】 以光抽运为基础的光检验测磁共振的方法,使用DH807A型光磁共振实验装置来观察光抽运信号,进而测定铷原子两个同位素87Rb和85Rb的超精细结构塞曼子能级的朗德因子的测量。 【关键词】 光磁共振光抽运塞曼能级分裂超精细结构 【引言】 光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。 光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。 利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、实验原理 (一)铷(Rb)原子基态及最低激发态的能级 实验研究对象是铷的气态自由原子。铷是碱金属,它和所有的碱金属原子Li、Na、K一样,在紧紧束缚的满壳层外只有一个电子。铷的价电子处于第五壳层,主量子数n=5。主量子数为n的电子,其轨道量子数L=0,1, …,n-1。基态的L=0,最低激发态的L=1。电子还具有自旋,电子自旋量子数S=1/2。 由于电子的自旋与轨道运动的相互作用(即L-S耦合)而发生能级分裂, 称为精细结构。轨道角动量P s、的合成角动量P J =P L +P S 。原子的精细结构用总角动 量量子数J来标记,J=L+S,L+S-1, …,│L-S│。对于基态,L=0和S=1/2,因此 Rb基态只有J=1/2。其标记为52S 1/2。铷原子最低激发态是52P 1/2 及52P 3/2 双重态。 这是由于轨道量子数L=1,自旋量子数S=1/2。52P 1/2态的J=1/2, 52P 3/2 态的J=3/2。 5P与5S能级之间产生的跃迁是铷原子主线系的第1条线,为双线。它在铷灯 光谱中强度是很大的。52P 1/2→52S 1/2 跃迁产生波长为7947.6?的D 1 谱线,52P 3/2 →52S 1/2跃迁产生波长7800?的D 2 谱线。 原子的价电子在LS耦合中,总角动量P J 与原子的电子总磁矩μ J 的关系为 (1) (2)

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

磁共振图像后处理算法设计

地理与生物信息学院 2012/ 2013 学年第二学期 实验报告 课程名称:医学成像技术 实验名称:磁共振图像后处理算法设计 班级学号: B10090405 学生姓名: 陈洁 指导教师: 戴修斌 日期:2013 年 5 月

一、实验题目:磁共振图像后处理算法设计 二、实验内容: 1.对图像进行去除噪声操作 ; 2.对图像进行灰度变换操作 ; 三、实验目的: 1.加强下同学们实际的动手编程能力 ; 2.重在体验和过程 ; 四、 实验过程: 实验1:对图像进行去除噪声操作: 1.操作步骤: 1) 对图像加入高斯噪声 2) 使用中值滤波对图像进行去噪处理 3) 模板尺寸设为5×5,也可自己设定 4) 图像边缘缺失部分使用对称方法补足 51141671 81 91 71819151141611 21 31 1121311121511471 81 71 51113121161481 311691 91 1471 81 51718171 51711481 91 1691811691 91

2. 算法实现流程: 1) 读入图像函数:imread(),中值滤波函数:medfilt2(); 实验2:对图像进行灰度变换操作 1.操作步骤: 1) 原图像灰度范围[50 150]内的像素灰度值转成[10 250]范围; 2) 原图像灰度范围[50 150]内的像素灰度值转成[20 200]范围; 2.算法实现流程: 源代码: clear;clc; iptsetpref('ImshowBorder','tight'); I = imread('C:\Documents and Settings\nupt\桌面\4.bmp'); J = imnoise(I,'gaussian',0.02,0.02); K = medfilt2(J,[5,5]); figure,imshow(I),title('原图'); figure,imshow(J),title('高斯噪声'); figure,imshow(K),title('中值滤波'); f (x , y ) a m b n g (x , y ) ?? ?? ???>≤≤+---<=b y x f n b y x f a m a y x f a b m n a y x f m y x g ),( ),( ]),([),( ),(

物理实验报告_铁磁共振

铁磁共振 摘 要 本实验观察了速调管的振荡模式,谐振腔的谐振曲线,单晶样品的共振曲线,用逐点法测量了多晶样品的共振曲线.实验测得谐振腔的有效品质因数为861.24,测得单晶样品共振线宽H D =224.5A/m,旋磁比g =11 2.1810′Hz·m/A,朗德因子g=2.4,弛豫时间t =7 2.1410 -′s.测得多晶样品H D =31847.5A/m,g =11 2.3610′Hz· m/A,g=2.6,t =10 2.110 -′s . 关键词 铁磁共振,共振曲线,谐振曲线,品质因数,微波 一、引言 共振是自然界中普遍存在的一种客观现象.共振技术被广泛应用于机械、化学、力学、电磁学、光学、原子与分子物理学、工程技术等几乎所有的科技领域.磁共振是发生在既有角动量又有磁矩的系统在磁场作用下形成的塞曼能级间的共振感应跃迁,它不但具有共振的共性,还有其自身的特点.在目前可得到的磁感应强度的条件下,磁共振所涉及的共振频率通常处于射频和微波频段. 铁磁共振是于20世纪40年代发展起来的一种研究物质宏观性能和微观结构的重要实验手段,是指铁磁体材料在受到相互垂直的稳恒磁场和交变磁场的共同作用时发生的共振现象.利用铁磁共振现象可以测量体磁体材料的g 因子、共振线宽、弛豫时间等性质.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值.通过本实验,熟悉微波传输中常用的元件及其作用,掌握传输式谐振腔的工作特性,了解谐振腔观察铁磁共振的基本原理和实验条件. 二、实验原理 1、铁磁共振 当铁磁体材料同时受到两个相互垂直的磁场,即恒定磁场0H 和微波交变磁场h ,在0H 的作用下,铁磁体的磁化强度将围绕0H 进动,进动频率为: 00H w g = (1)

南京大学_光磁共振实验报告

光磁共振 (大学物理学院 210000) 摘要:光磁共振是利用光抽运的方法,进一步提高磁共振灵敏度的技术。本实验依据光磁共振技术,运用“光抽运—磁共振—光探测”的方法,测量地磁场垂直分量和水平分量以及铷原子的相关参量。 关键词:光磁共振;光抽运;磁共振;塞曼效应;塞曼子能级;地磁场;朗德因子 一、实验目的 1. 掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。 2. 测定銣原子87Rb 和85Rb 的参数:基态朗德因子F g 和原子核的自旋量子数I 。 3. 测定地磁场 B 地的垂直分量B 地垂直、水平分量B 地水平 及其倾角θ。 二、实验原理 光磁共振技术是根据动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。 1.铷原子的超精细结构及其塞曼分裂 铷是一价碱金属原子,有一个价电子,处于第五壳层,主量子数n=5,电子轨道量子数L=0,1,2,3…,n-1,电子自旋S=1/2。铷原子中价电子的轨道角动量L P 和自旋角动量S P 发生轨道—自旋耦合(LS 耦合),得到电子总角动量J P ,其数值 ,,1,,J P J L S L S L S ==++-???-。当不考虑铷原子核的自旋时,铷原子总 磁矩2J J J e e g P m μ=-,其中,e e m -分别为电子的电荷、质量。朗德因子 (1)(1)(1) 12(1) J J J L L S S g J J +-+++=++ 从而形成原子的超精细结构能级,这时,铷原子的基态能级21 S J n S +对应于n=5,L=0,S=1/2,J=1/2,即为212 5S ,相应的朗德因子2J g =;铷原子的第一激发态能级 21S J n P +对应于n=5,L=1,S=1/2,J=1/2、3/2,是双重态,即为212 5P 和232 5P ,相应的朗德因 子24 ,33J g = 。221322 55P S →的能级跃迁产生光谱线1D 线(1794.76nm λ=);22332 2 55 P S →的跃迁产生光谱线2D 线(2780.0nm λ=)。本实验观测与1D 线有关的能 级的超精细结构及其在弱磁场中的塞曼分裂。 通常原子核也具有角动量,记原子核的总角动量为P ,它是核中质子和中子的轨道角动量和自旋角动量的矢量和,核的总角动量的数值I P = ,通常也称为核自旋,其中I 称为核的自旋量子数,I 为整数或半整数,已知稳定的原子核的I 值在0~7.5之间。核的总角动量I P 的最大可测的分量值为I 。当0I ≠时,原子核的总磁矩为

核磁共振实验报告

1、前言和实验目的 核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。本实验的样品在外磁场中,外磁场使样品核能级因核自旋不同的取向而分裂,在数千高斯外磁场下核能级的裂距一般在射频波段,样品在射频电磁波作用下,粒子吸收电磁波的能量,从而产生核能级的跃迁。1932年发现中子后,才认识到核自旋是质子自旋和中子自旋之和,质子和中子都是自旋角动量为2 的费米子,只有质子数和中子数两者或其一为奇数时,核才有非零的核磁矩,正是这种磁性核才能产生核磁共振。 核磁共振信号可提供物质结构的丰富信息,如谱线的宽度、形状、面积、谱线在频率或磁场刻度上的准确位置、谱线的精细结构、超精细结构、弛豫时间等,加之是对样品的无损测量,广泛的应用于分子结构的确定、液相和固相的动力学研究、医用诊断、固体物理学、分析化学、分子生物学等领域,是确定物质结构、组成和性质的重要实验方法。核磁共振还是磁场测量和校准磁强计的标准方法之一,其不确定度可达001.0±%。 实验目的: (1)掌握核磁共振的实验原理和方法 (2)用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 2、实验原理 如原子处在磁场中会发生能级分裂一样,许多原子核处在磁场中也会发生能级的分裂,因为 原子核也存在自旋现象。质子和中子都是自旋角动量等于2 的费米子,当质子数和中子数都为偶数时原子核的磁矩为0,当其一为奇数时原子核磁矩为半整数,当两个都为奇数时核磁矩为整数。只有具有核磁矩的原子核才有核磁共振现象。 我们知道在微观世界里物理量都只能取分立的值,即都是量子化的。原子核的角动量也只能取分立的值 )1(+= I I p ,I 为自旋量子数,取分立的值。对于本实验用到的H 1和F 19,自旋量 子数I 都为1/2。沿z 方向的角动量为 m p z =,在这里m 只能取1/2或-1/2。而自旋角动量不为0的核具有核磁矩p m e g p 2F =,考虑沿z 轴方向则有N z p Z mgF p m e G F ==2,其中以 γ== p z m e F 2为原子核磁矩的基本单位,p m e 2=γ。 在没有磁场作用时,原子核的能量时一样的,但处于磁场中则会发生能级分裂, B m γ-B -F B F E Z =?=?-=,本实验中1=?m ,故有B E γ=?。外加一射频场,当满足一定 的条件时就会发生共振吸收,条件为πγγυ2hB B E h = =?= ,从而有共振频率B π γ υ2= 。通过

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

铁磁共振

用传输式谐振腔观测铁磁共振 铁磁共振在磁学和固体物理学中都占有重要地位。它是微波铁氧体物理学的基础,而微波铁氧体在现代雷达和微波通信方面都有重要应用。 铁磁共振和核磁共振、电子自旋共振一样,成为研究物质宏观性能和微观结构的有效手段。早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性。经过若干年在超高频技术发展起来后,才观察到铁磁共振现象。多晶铁氧体最早的铁磁共振实验发表于1948年。以后的工作则多采用单晶样品。 实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术。 2.通过观测铁磁共振,进一步认识磁共振的一般特性和实验方法。 实验原理 1.微波谐振腔 在微波技术中谐振腔是一个非常重要的部分。所谓微波谐振腔就是一个封闭的金属导体空腔,一般为矩形或圆柱形。腔壁反射电磁波辐射,使电磁波局限在空腔内部。谐振腔的入射端开一小孔,使电磁波进入谐振腔。电磁波在腔内连续反射。若波形和频率与谐振腔匹配,可形成驻波,也即发生谐振现象。如谐振腔无损耗,则腔内振荡便可持续下去。(1)矩形波导管 矩形截面的空心导体管构成矩形波导,它是传播微波最常用的传输线。矩形谐振腔实际上是一段封闭的矩形波导,即在波导入射端和出射端加装了反射电磁波的金属片。理论分析表明:在波导管中不存在电场纵向分量和磁场纵向分量同时为零的电磁波。在波导管中传播的电磁波可以分为两大类:(1)横电波又称为磁波。简写为TE波或H波;磁场可以有纵向和横向分量,但电场只有横向分量。矩形波导管传播的基本波形是TE10波。(2)横磁波又称为电波,简写为TM波或E波;电场可以有纵向和横向分量,但磁场只有横向分量。至于电场和磁场的纵向分量都不为零的电磁波,则可以看成横电波和横磁波迭加而成。 在实际应用中,总是把波导管设计成只能传播单一波形。我们使用的矩形波导管只能传播TE10波。

3.光磁共振实验预习报告

光磁共振实验预习报告 【摘要】 光磁共振是利用光泵抽运方法来研究气态原子基态及激发态精细和超精细结构塞曼能级间的磁共振。实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。本实验在加深对原子超精细结构的理解的基础上,掌握观测光抽运效应的条件和方法,观察和测量共振信号的扫场法,超精细结构的理解,掌握以光抽运为基础的光检测磁共振方法,进而测定铷原子两个同位素Rb 87 或Rb 85 的超精细结构塞曼子能级的朗德因子g 的测量。 【关键字】 光磁共振 精细结构 铷原子 朗德因子 【引言】 光磁共振是“激光之父”卡斯特勒提出并实现。它的基本思想是利用光的抽运效应造成原子基态Zeeman 能级上粒子布居的偏极化,即偏离热平衡时所遵循的Boltzmann 分布。然后利用磁共振效应对这种偏极化布局进行扰动,使光的抽运速率变化。通过对抽运速率变化的探测来研究原子塞曼能级超精细结构。 由于气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难以观察。 1950年卡斯特勒(A.Kastler)提出了光抽运方法(又称光泵),使原子能级的粒子数分布产生重大改变,并利用抽运光对磁共振信号作光检测,从而大大提高了信号强度和检测灵敏度,成功地观测了气体原子塞曼子能级间的磁共振,由此发展起来的光泵磁共振技术,为现代原子物理学的研究提供了新的实验手段,并为激光和量子频标的发展打下了基础,卡斯特勒也因此荣获1966年度的诺贝尔物理奖。 【正文】 一、实验原理 1. 铷(Rb )原子基态及最低激发态的能级 铷的价电子处于第五壳层,主量子数n=5。基态的L=0, 最低激发态的L=1。电子还具有自旋,电子自旋量子数S=1/2。由于电子的自旋与轨道运动的相互作用(既L —S 耦合)而发生能级分裂,称为精细结构。电子轨道角动量L P 与其自旋角动量S P 的合成电子的总角动量S L J P P P +=。 原子能级的精细结构用总角动量量子数J 来标记,J=L+S ,L+S-1,…,|L-S |.对于基态, L=O 和S=1/2,因此Rb 基态只有J=1/2。其标记为521/2S 。铷原子最低激发态是 3/22P 5及1/22P 5。1/22P 5态的J=1/2, 3/22P 5态的J=3/2。5P 于5S 能级之间产生的跃迁是 铷原子主线系的第1条线,为双线。它在铷灯光谱中强度是很大的。1/22P 5→1/22S 5跃迁产

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

微波铁磁共振

微波铁磁共振 实验仪器:(注明规格和型号) 微波铁磁共振实验系统;三厘米固态信号源;示波器;微安表;特斯拉计 实验目的: 1. 熟悉、掌握微波实验系统的调试和测试方法 2. 了解用谐振腔法观测铁磁共振的基本原理和实验方法 3. 通过观察铁磁共振现象和测定有关的物理量,认识铁磁共振的一般特性 实验原理简述: 铁磁共振(FMR )观察的对象是铁磁介质的未偶电子,因此可以说是铁磁介质中的电子自旋共振。 铁磁介质的磁导率主要由电子自旋所决定的,按经典力学原理电子自旋角动量m J 与自旋磁矩m P 有如下关系: m m J P γ= 其中, /B g μγ= 称为磁旋比。在外磁场B 中自旋电子将受到一个力矩T 的作用 B P T m ?= 因而角动量m J 将发生变化,其运动方程为 T dt dJ m = 计算得: )(B P dt dP m m ?=γ 若在铁氧体中单位体积内有N 个自旋电子,则磁化强度M 为 m NP M = 因此有 )(B M dt dM ?=γ 若磁矩M 按t i y x e m M 0,ω=规律进动,而稳恒磁场z i B B 0=,代入解此方程,得00B γω= 这就是通常称为拉莫尔进动的运动方式,从量子力学的观点来看,共振吸收现象发生在电磁场的量子ω 恰好等于系统M 的两相邻塞曼能级间的能量差,即 m B g E B ?=?=0μω 吸收过程中产生1±=?m 的能级跃迁,因此这一条件等同于 00ωγω==B ,与经典力学的结论一致。 在外加恒定磁场B 0的作用下,磁矩M 将围绕着磁场B 0进动。实际上这种进动是不会延续很久的,因为磁介质内部有损耗存在。如图4-3-2所示。 这个过程就是磁化过程,磁性介质所以能被磁化就说明其内部存在有阻尼损耗。图中T D 表示阻尼力,其方向指向B 0。磁矩M 受阻尼力的作用很快转向B 0方向,其周期为,如果要维持其进动,必须另外提供能量。这个能量通常由微波磁场提供。系统从微波磁场中吸收的能量恰好补充铁磁样

光磁共振实验讲义

25P 1 2 794.76nm 780.0nm Fig.1 铷原子精细结构的形成 光磁共振讲义 一、 讲课形式(时间安排) 40分钟理论及相关知识的讲述,15分钟仪器介绍及操作演示。 二、 教学要求 1 通过研究铷原子基态的光磁共振,加深对原子超精细结构的认识; 2 掌握光磁共振的实验技术; 3 测定铷原子的g 因子和测定地磁场。 三、 实验原理 1.概念介绍 1) 光抽运(光泵):利用光照射打破原子在所研究能级间的热平衡态,造成 期望集居数差,它基于光和原子间的相互作用。 2) 如何提高探测灵敏度:采用光探测,探测原子对光量子的吸收而不是采 用一般的磁共振的探测方法(直接探测原子对射频量子的吸收),因光量子能量比射频量子能量高几个数量级,因而大大提高探测灵敏度。 3) 光磁共振:是将光抽运、磁共振、光探测技术结合起来研究气态原子精 细和超精细结构的一种实验技术,加深了人们对原子磁矩、 因子、能级寿命、能级精细结构、超精细结构及原子间相互作用的认识。 2.铷原子的能级分裂(精细结构的形成) 1) 研究对象:铷(Rb )的气态自由原子,价电子处于第五电子层,主量子 数n=5,轨道量子数L=0,1,…,n-1,电子自旋量子数S=1/2 2) 原子精细结构的形成:由电子的自旋与轨道运动相互作用(L-S 耦合) 发生能级分裂 3) 铷原子基态与最低激发态的形成:用J 表示电子总角动量量子数,J=L+S,L+S-1,…,|L-S| 4) 对于基态,L=0,S=1/2,得J=1/2,标记 为21/25S ;对于最低激发态,L=1,S=1/2, 得J=3/2,1/2,标记为22 3/21/25,5P P ,如右 图所示,形成两条谱线。

铁磁共振实验报告

一、实验背景 早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性.经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Hogan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段.自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段. 微波铁磁共振现象是指铁磁介质处在频率为?0的微波电磁场中,当改变外加恒定磁场H 的大小时,发生的共振吸收现象.通过铁磁共振实验,我们可以测量微波铁氧体的共振线宽、张量磁化率、饱和磁化强度、居里点等重要参数.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值. 二、实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术. 2.掌握铁磁共振的基本原理,观察铁磁共振现象. 3.测量微波铁氧体的共振磁场B ,计算g 因子. 三、实验原理 1.磁共振 自旋不为零的粒子,如电子和质子,具有自旋磁矩.如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为: 02B h E πγ=? (1) (其中,γ为旋磁比,h 为普朗克常数,0B 为稳恒外磁场). 又有e m e g 2=γ,故0022B g B h m e g E B e μπ =?=?.(其中,g 即为要求的朗德g 因子,其值约为2.πμe B m eh 4=为玻尔磁子, 其值为1241074.29--??T J ) 若此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

电子科技大学学院

电子科技大学生命科学与技术学院标准实验报告 (实验)课程名称《医学成像技术》 电子科技大学教务处制表

电子科技大学 实验报告 学生姓名:陈睿黾学号:2209101028指导教师:廖小丽 实验地点:人文楼418 实验时间:2006.6.2 一、实验室名称:医疗仪器实验室 二、实验项目名称:傅立叶变换核磁共振一维、二维成像 三、实验学时:4学时 四、实验原理: 利用样品的原子核在梯度磁场及高频电磁场的激励下产生的自发辐射信号的频率和相位因空间位置不同而不同来进行成像。 五、实验目的: 对磁共振成像整个过程进行了解,同时对每一个参数改动后对磁共振信号及图像影响的效果有直观的认识,了解一维、二维成像原理,进一步熟悉磁共振成像原理。 六、实验内容: 采用定标样品(三注油孔)对一维成像(空间频率编码)有所认识。对梯度场各参数对一维成像的影响进行观察。 了解瞬间梯度场,对二维成像(空间相位编码)有所认识。了解瞬间梯度场的梯度大小和瞬间梯度保持时间对二维成像图形的影响。 七、实验器材: GY-CTNMR-10KY核磁共振成像实验仪、计算机、注油三孔实验样品 八、实验步骤: 1.按实验要求连线。 2.开机预热。

3.将注油三孔样品放入样品池中,打开磁共振成像软件,设置共振频率:按下“参数设置”页面再按下“自动采集”出现采集的信号图及傅立叶变换的频谱图,调节“频率设置”中间的按钮,直至出现波形符合预期目标的图形。 4.调节匀场:分别调节电源上匀场调节电位器并同时调节软件中的XY 匀场至傅立叶频谱图中峰最尖锐最高信号最长,适当调节共振频率,使波形看上去尽量平滑。 5.设置Z 梯度场和一维成像:调偏Z 匀场调节使峰变宽变低,同时出现Z 轴线上投影的一维成像信号。调节Z 梯度和工作频率,使得信号频谱占半个屏幕同时在中间。 6.二维磁共振成像记录:按下“成像记录及操作”,然后按下“记录”等待2分钟,记录结束计算机会提示结束并且“采集”不再闪动。按下“二维傅立叶变换”这时你调节“行选择”可以看到每一列二次傅立叶变换的谱图。按下“成像彩色显示”即可得到所需的成像彩色密度图。 九、 实验数据及结果分析: 1.一维成像: 开机预热,磁铁温度在34.62℃,匀场电流为19.4mA 。 放入注油三孔样品,打开核磁共振成像软件,调节共振频率及相关参数,通过观察,发现在第一脉冲宽度为12S μ、第二脉冲宽度为24S μ、脉冲间隔为15mS 、XY 匀场电流分别为38mA 、5mA 、共振频率在18.7402MHz 附近时波形较好、噪声较小。 观察自由衰减信号及其频谱,逐渐加大梯度场观察到信号及频谱的变化,在无梯度场时无法区分任何空间信息,如图(1)。

钟浩鹏 光泵磁共振实验报告

扬州大学物理科学与技术学院 近代物理实验论文实验名称:光泵磁共振实验及地磁场的测量 班级:物教1301班 姓名:钟浩鹏 学号:130801131 指导老师:王文秀

光泵磁共振实验报告 摘要:在本实验中,我们通过调节水平磁场,竖直磁场和扫场观察了抽运信号和光泵磁共振现象。通过测量水平磁场的电流值并计算得到铷的朗德因子g。同时通过地磁场水平分量与总磁场和扫场的关系,计算出地磁场的水平分量大小。由于装置的摆放决定了总场沿水平方向时共振信号最强,由此测量了地磁场竖直分量的大小,从而测得了地磁场的大小和方向。In this experiment, we adjust the horizontal magnetic field, the vertical magnetic field and sweeping field observed the pumping signal and optical pump magnetic resonance phenomenon. By measuring the level of the current value of the magnetic field and calculate the rubidium land factor g. At the same time through the geomagnetic field level component to the total magnetic field and sweeping field, the relationship between size to calculate the horizontal component of the geomagnetic field. Put the device determines the strongest resonance signal when PLD along the horizontal direction, thus to measure the size of the vertical component of geomagnetic field, so as to have the size and direction of the magnetic field. 关键词:光抽运;光泵磁共振;地磁场 一、引言 光泵也称光抽运,是借助于光辐射获得原子基态超精细结构能级及塞曼子能级间粒子数的非平衡分布的实验方法。光泵磁共振技术于1955年由法国科学家卡斯特勒发明,它是将光抽运技术和射频或微波磁共振技术相结合的一种实验技术,这种技术最早实现了粒子数反转。气体原子塞曼子能级之间的磁共振信号非常弱,普通方法很难探测。本实验利用光泵磁共振方法克服了磁共振信号弱的特点,将探测灵敏度提高了七八个数量级,能在弱磁场下精确检测原子能级的超精细结构。本实验研究Rb原子的光泵磁共振现象,天然Rb有两种同位素: 85 Rb(丰度为72.15%)、87 Rb(丰度为27.85%)。 二、实验原理 1.铷原子基态和最低激发态的能级 铷(Z=37)是一价金属元素,天然铷中含量大的同位素有两种:87Rb,占27.85 %和85Rb,占72.15%。它们的基态都是52S1/2。 图1 Rb原子精细结构的形成 在L—S耦合下,形成双重态:52P1/2和52P3/2,这两个状态的能量不相等,产生精细分裂。因此,从5P到5S的跃迁产生双线,分别称为D1和D2线,如图1所示,它们的波长分别是794.76nm和780.0nm。

相关文档