文档库 最新最全的文档下载
当前位置:文档库 › 磷酸化

磷酸化

磷酸化
磷酸化

第二节蛋白质磷酸化

字体[大][中][小]蛋白质翻译后修饰是蛋白质化学研究的重要领域,对蛋白质结构的细节了解得越多,对蛋白质翻译后修饰的分类范围了解得也就越广。蛋白质修饰包括糖类、脂类、核酸、磷酸、硫酸、羧基、甲基、乙酰基、羟基等功能基团以共价键与蛋白质的连接。蛋白质经过修饰,在结合、催化、调节及物理性质等方面都被赋予了新的功能。蛋白质磷酸化是蛋白质翻译后修饰的重要内容,在酶和其它重要功能分子活性的发挥、第二信使传递和酶的级联作用中起到重要的作用。蛋白质磷酸化是在一系列蛋白激酶的作用下完成的,本节主要介绍蛋白磷酸激酶的分离与分析和磷酸化蛋白质的分析方法。

一、蛋白磷酸激酶的纯化与活性分析

蛋白磷酸激酶是能催化磷酸基团从磷酸供体转移到受体蛋白的酶,通常ATP的γ位磷酸(或其它三磷酸核苷)为供体。国际生物化学联合会根据受体氨基酸的特异性,将蛋白激酶分为以下几类:①以蛋白乙醇基作为受体的磷酸转移酶称为蛋白丝氨酸或苏氨酸激酶;②以苯基为磷酸受体的磷酸转移酶称为蛋白酪氨酸激酶;③以His,Arg或Lys为受体的磷酸转移酶称蛋白His激酶;④以Cys残基作为受体的磷酸转移酶称蛋白Cys激酶;⑤以乙酰基作为受体的磷酸转移酶称天冬或谷氨酰胺激酶。前两类酶最常见,许多蛋白丝/苏氨酸或酪氨酸激酶已被纯化。利用分子生物学技术,已克隆出100多个蛋白激酶的基因。有些已通过测定其核苷酸序列而推出其相应的氨基酸序列。在很多情况下,克隆的酶基因产物氨基酸受体特异性不能被直接测定,一般是通过序列分析与已知特异性的蛋白激酶比较而得出。所有已知的丝/苏和酪氨酸蛋白激酶都有一个共同的催化结构域(约270个氨基酸),通过催化结构域的序列同源性比较,可将蛋白酪氨酸激酶家族分成若干亚家族。蛋白丝/苏氨酸激酶家族较酪氨酸激酶家族大。此外,还有许多有关His,Lys和Arg特异性磷酸化酶活性的报道,但这些酶未被纯化,其分子结构也不清楚。

(一)蛋白磷酸激酶的纯化蛋白激酶的纯化分微量纯化和大量纯化两种,前者通常应用在特殊条件下培养的细胞,后者一般应用于特殊的组织器官。微量纯化的优点是克隆化的细胞株具有均一的细胞类型并处于同步的细胞周期,细胞内成分可被放射性同位素特异标记,在细胞培养时加特殊因素可研究细胞内某些感兴趣的途径。缺点是原料少,纯化出的蛋白量有限。

对某种新的蛋白激酶的物理特性一般并不清楚,因此对未知蛋白激酶的纯化没有一个固定的程序。为了从有限的原材料中纯化蛋白激酶,通常采用的策略是:①在进行高效的亲和纯化以前采用传统的色谱方法去除含量最多的杂蛋白;②在纯化早期去除抑制剂和失活剂;

③处理体积应尽快减小并避免透析;④纯化步骤尽量快并避免冷冻。用于去除大量杂蛋白的传统色谱技术包括阳离子和阴离子交换、疏水和凝胶排阻色谱。这些技术在许多有关蛋白质纯化的书籍中都有详细介绍,酶纯化的理想方案应在各步骤间不经透析即能进行顺利过渡。如离子交换步骤以后进行疏水色谱;凝胶排阻色谱放在最后使蛋白质和盐分子分开,但要注意在凝胶排阻介质中加入0.2~0.5mol/L盐以防酶非特异地与介质结合或聚合。检查酶在离子交换和疏水柱上的结合和洗脱行为的最简单方法是根据酶的理化特性将少量介质与少部分蛋白激酶在合适的pH下混合,然后变化离子强度后分析上清中酶的活性。完成以上纯

化步骤后,可以进行亲和纯化(常用的亲和配基为三磷酸核苷、底物或效应物分子)。通过高效亲和纯化手段使蛋白磷酸激酶达到104~106倍数的纯化,才能使产物达到均一。

为了自培养细胞或组织器官中纯化蛋白激酶,通常选用惰性系统,如Pharmacia的FPLC系统。该系统的优点是具有很大的内在惰性,并具有保持大分子生物活性的特点。该系统在一个单元内含有单一的硬件,可在冷室和室温操作。此外,可采用快速的梯度(40~45分钟)形式和较广适用范围的高效凝胶和柱系统。中性pH下采用阳离子交换色谱(MonoS预装柱或自行装填的快流速S柱)对蛋白激酶是一理想的纯化步骤。这是因为在此条件下多数蛋白质不与树脂结合,包括能使激酶失活的磷酸酶。然而,许多激酶尽管其表现等电点≤5.5,但在中性条件下仍可与MonoS结合,这可能是由于其磺酸基与ATP或底物分子结构有些类似。大体积抽提物可用泵直接进样,并进行连续两次的离子交换分离。FPLC 预装的凝胶排阻柱可在30分钟内完成分离,较传统凝胶快得多。但由于柱填料粒度小,上样体积不超过200μl,样品量不超过5~10mg,纯化量较小有些性质难以鉴定,因而需多次纯化。Pharmacia引入一种新的介质(Sephacryl HR)较传统的超细胶流速快5倍,这些凝胶在很大程度上减小了凝胶过滤色谱的时间。在完成亲和纯化后,酶的纯度可用SDS-PAGE检测并定量测定其比活性。

(二)蛋白磷酸激酶的活性分析蛋白激酶活性分析分为两步:①末端标记的三磷酸核苷核供体(通常是ATP,有时用GTP)中的磷酸基团转移到蛋白质或肽底物上;②将磷酸化的底物分离出并进行定量分析。前者通常在溶液中进行,酶和底物均在液相中。后者为了去除游离的标记核苷酸,通常需要用三氯醋酸沉淀、SDS-PAGE分离或使标记底物结合于纤维素膜上。

有时可将酶或底物固定于固相载体上,如蛋白质混合物经SDS-PAGE后转移到硝酸纤维素膜上,然后封闭,放入含有酶和标记ATP的溶液中。或者更进一步,设计一个蛋白激酶分析系统(酶活性的原位分析),将蛋白激酶和它的底物均固定于硝酸纤维素膜上,这一方法可与标准的液相分析方法达到相等的灵敏度和线性范围。其分析原理是含有蛋白激酶活性的样品先固定于硝酸纤维素膜上(点滴或真空抽吸),然后将滤膜浸入合适的蛋白底物溶液中,底物蛋白质与剩余的膜结合位点结合,然后加入同位素标记的ATP,作用一定时间后洗去膜上未反应的ATP并终止反应,参入物经放射自显影或液闪计数定量,与膜结合的酶和底物均具有一定的运动性,两者反应的定量值代表磷酸化的程度。

以酪蛋白激酶Ⅱ的活性测定方法为例:

试剂:

缓冲液A25mmol/L Tris,1mmol/L EDTA,100mmol/L NaCl,pH8.0

缓冲液B25mmol/L Tris,1mmol/L EDTA,200mmol/L NaCl,10%甘油

(V/V),1mmol/L DTT,pH8.0

酪蛋白激酶Ⅱ底物水解或部分脱磷酸的酪蛋白10mg/ml溶解于缓冲液A中。

酪蛋白激酶Ⅱ反应混合物25mmol/L Tris,pH8.5,100mmol/L NaCl,10mmol/L MgCl2,1mmol/L DTT,0.1μmol/L 〔V-32P〕ATP(100Ci/mmol)

操作步骤:

1.剪一适当大小的硝酸纤维素膜并划成1cm大小的方格;

2.用缓冲液A浸湿膜并放于一用同样缓冲液浸湿的滤纸上,使膜平坦;

3.用缓冲液B(含1mg/ml牛血清白蛋白)将样品稀释到合适的浓度,膜上每个点所加的样品其激酶活性在0.5~50pmol单位(1pmol单位代表每分钟转移1pmol 32P的酶量),当酶比活性在1μmol/min·mg-1时则每个点应加纯酶0.5~50ng;

4.用微量加样器加1~5μl样品于膜上方格中央,待液滴消失后将膜面对含有缓冲液A(包括1~10mg/ml的底物)的Parafilm封口膜(贴于玻璃平板上),在湿润环境中23℃作用30分钟。大片膜可密封于塑料袋中;

5.在100ml缓冲液A中洗膜并置于一新的Parafilm膜上(加有反应混合物溶液25

μl/cm2),23℃作用5~30分钟;

6.用缓冲液A 100ml洗膜4次,空气干燥后进行放射自显影。或切成方块进行液闪计数定量。

该方法在应用时最常见的问题是硝酸纤维素膜过载(指总蛋白或酶活力单位)。硝酸纤维素膜结合BSA的线性范围可达50μg/cm2(相当于每斑点5μg),而结合容量可达500μg/cm2,如果样品本身造成蛋白质超载,则应降低稀释液中的BSA浓度。同时应注意不要加过量的酶,因为超过50pM单位即超过了该方法的线性范围,并可能影响硝酸纤维素膜邻近斑点的检测。

该方法用于其它蛋白激酶检测时应适当变换测定条件。因蛋白激酶活性的斑点印迹方法与标准的液相方法在灵敏度、检测范围、线性等方面相当,所以可以代替后者进行常规检测。也在天然凝胶电泳和转移电泳后分析蛋白激酶活性的分布,可用于分析酶在不同发育阶段各组织表达的变化、cDNA克隆分析和突变体分析。

二、磷酸化蛋白质的分析

磷酸化的蛋白底物需进一步确定其磷酸化位点,本节介绍HPLC分析磷酸酪氨酸、磷酸丝氨酸和磷酸苏氨酸的方法。蛋白水解后的氨基酸首先与荧光试剂(FMOC)反应形成衍生物,然后用阴离子交换色谱柱在等梯度洗脱条件下分离,分析路线如下:

1.Hunter T, Sefton BM. Protein phosphorylation. Part A. methods in enzymology. Vol 200. New York Academic Press, Inc. 1991.

2.Hunter T, Sefton BM. Protein phosphorylation. Part B. Methods in enzymology. Vol 201. New York Academic Press, Inc. 1991.

磷酸化是最重要的蛋白质翻译后修饰之一, 白质磷酸化和去磷酸化为...

摘要 磷酸化是最重要的蛋白质翻译后修饰之一,蛋白质磷酸化和去磷酸化为真核细胞提供了调节机制。随着高通量鉴定磷酸化蛋白质技术的发展,尤其是质谱技术在蛋白质组学中的应用,磷酸化修饰数据不断积累,从现有数据中挖掘规律从而对未知蛋白质进行磷酸化修饰位点预测的条件日益成熟。将计算方法引入磷酸化蛋白质组学的研究中,将有利于发现新的磷酸化修饰规律并为生物学实验提供验证信息,从而推动磷酸化蛋白质组学的发展。 计算智能领域的方法可以很好地应用于位点预测问题。但对于生物信息学来说,除了给出较为准确的预测结果外,还需要给出对判断结果易于理解的解释才能够增加预测方法的可信度。规则抽取不但可以提供合理的解释来指导生物学实验,而且可以从现有数据中发现新的具有生物学意义的磷酸化修饰规律为磷酸化蛋白质的进一步研究提供有价值的参考信息。 本文深入分析了磷酸化修饰位点数据的特点,采用支持向量机分类方法试验和比较了多种特征构造提取、特征选择和分类方法的有效性;提出用AdaBoost 方法对筛选后的氨基酸性质和邻近序列位置进行特征选择并进行分类器训练,形成了新的磷酸化位点预测算法AproPhos,该算法在特异性高于已有预测算法(约2个百分点)的基础上,大大提高了预测的灵敏度(约10个百分点)。同时设计了一种新的基于AdaBoost方法的规则抽取方法,可以给出可理解的修饰位点邻近序列上氨基酸性质分布规律,并对分类结果进行解释。AproPhos及其规则抽取算法扩展了磷酸化位点预测方法在实际中的应用范围,既可以用于提供充分信息的位点预测,又可以用来提高磷酸化蛋白质质谱鉴定效率。 最后本文提出了一种利用串联质谱同位素信息进行分子式预测的算法和系统FFP(Fragment ion Formula Prediction),无论从计算效率上还是预测精度上较以前的方法都有了很大的提高。使分子式预测可以广泛用于质谱的预处理和蛋白质(包括磷酸化蛋白质)的鉴定,提高鉴定效率。 关键词:磷酸化,位点预测,规则抽取,SVM,AdaBoost

蛋白质磷酸化概述

蛋白质磷酸化概述 蛋白质磷酸化是敏感而可逆地调节蛋白质功能的一种最常见和最重要的机制,是调节细胞增值的基础。很多多肽生长因子(血小板来源的生长因子和表皮生长因子)和细胞因子(白细胞介素-2、集落刺激因子-2和γ-干扰素)在与其受体结合后均激发磷酸化作用,而这些被诱导的磷酸化反过来激活细胞质内的蛋白激酶如raf、MEK和MAP。此外,在所以有核生物中,细胞周期中G1/S期和G2/M期的转换均受依赖细胞周期蛋白的蛋白激酶(CDK)的调节。磷酸化作用也控制着分化和发育,如果蝇视网膜的R7细胞和秀丽新小杆线虫(Caenorhabditis elegans)的阴门发育受控于受体蛋白激酶和胞内蛋白激酶。最后,新陈代谢受磷酸化作用的调节控制,尤其是葡萄糖和糖元的相互转换及葡萄糖的转运的代谢作用。因而,形形色色的生物学家为了弄清楚他们最感兴趣的基因及其编码产物的调控和功能,他们常常不约而同,有时还是不由自主地必须蛋白质地磷酸化。 研究蛋白质磷酸化最常用地方法是利用32P标记的无机磷酸盐(32Pi)进行生物合成标记。这种方法非常简单,而只将标记物中加入到培养基中。在节中描述了用32Pi进行生物成标记的一般方法。该方法能达到最大限度的提高掺入效率和降低放射性对工作人员的伤害及对设备的污染。 大多数蛋白质是在丝氨酸和苏氨酸残基上磷酸化,而许多与信号传导有关的蛋白质还在酪氨酸位置上被磷酸化。这三种羟基磷酸氨基酸在

酸性PH条件下化学性质稳定,酸水解后它们可被回收并被直接鉴定出来。在节中介绍了通过酸水解和双向薄层电泳鉴定磷酸丝氨酸、磷酸苏氨酸和磷酸酪氨酸的技术。蛋白质也可在组氨酸、半胱氨酸和天冬氨酸位置上与磷酸共价键合,它们可以是以磷酸-酶的中间体或稳定修饰物的形式存在,这些磷酸氨基酸在酸性条件下不稳定,不能用对酸稳定磷酸氨基酸的标准技术来研究,它们只能通过排除法或演绎法来鉴定。研究这些酸不稳定的氨基酸已超出本书的范围,读者可以参考《酶学方法》(Methods in Enzymolcgy)第200卷有关鉴定这些新磷酸氨基酸的技术。 磷酸酪氨酸不是含量丰富的磷酸氨基酸,因而一般很难在用32Pi标记的样品中检出,尤其是当样品中含有大量在丝氨酸残基上磷酸化的蛋白质或有RNA污染时则更难。凝胶电泳分级后的样品以碱处理,使RNA水解并使磷酸丝氨酸脱磷酸,可以大大提高磷酸酪氨酸和磷酸苏氨酸的检出率,在节中描述一种碱处理的简单方法。 如果蛋白质被磷酸化,无需借助生物合成标记方法也可鉴定磷酸氨基酸。例如,蛋白质中所含的稀有的磷酸酪氨酸可用抗磷酸酪氨酸的抗体来检测,其特异性和敏感性相当高。更普遍的是,蛋白质的磷酸化常常使蛋白质在SDS-聚丙烯酰氨凝胶电泳中的迁移率发生变化,而且几乎总是改变它的等电点。将蛋白质和磷酸酶共同温育后,从凝胶迁移率的变动可以推论出非标记蛋白质存在磷酸化残基。这种方法在内源性ATP以[γ-32P]ATP进行标记的效率很差时很实用,如目的蛋白是来源于某些难以进行生物合成标记的组织或来源于体外翻译的情

全新方法:用于磷酸化蛋白的分离和检测

全新方法:用于磷酸化蛋白的分离和检测 蛋白磷酸化是一种重要的翻译后修饰方式,调控广泛的细胞活性,包括细胞周期、分化、代谢和神经元通讯等。此外,异常的磷酸化事件与许多疾病状态相关。 传统的检测蛋白磷酸化的方法: ? 放射性同位素标记 ? Western Blot ? 酶联免疫吸附分析(ELISA) ? 流式细胞仪和免疫细胞化学/免疫组织化学(ICC/IHC) ? 质谱——由于磷酸化蛋白的信号较弱,目前还具有一定的难度。 需要特异性的磷酸化抗体!!! 可是,没有磷酸化抗体怎么办呢? Phos-tag是一种能与磷酸离子特异性结合的功能性分子,可取代传统的酶免疫法和放射性同位素法,用来分离和检测磷酸化蛋白。 有两类: Phos-tag Acrylamide和Phos-tag Biotin。 Phos-tag Acrylamide Phos-tag Acrylamide 分离:SDS-PAGE分离不同磷酸化水平的蛋白

该方法可以在同一个电泳条带里面同时观察靶蛋白的不同磷酸化状态,以及外因引起的磷酸化状态的改变。 有老师可能会问,这么好用的产品,怎么操作呢? 只要在配置SDS-PAGE胶的时候,将phos-tag配成的溶液加入分离胶里面,就配置成Phos-tag聚丙烯酰胺凝胶了,后续用跟常规SDS-PAGE一样的步骤进行操作就可以,用起来简单的呢。 如果想进一步确认一下分开的这些条带是不是你要的蛋白,可以用常规的抗体来确认(常规抗体就可以代替多个磷酸化抗体哦,省时省钱又省力)。 详细的protocol可见APExBIO官网哦! 特点 ? 非放射性元素,非荧光物质 ? 磷酸化蛋白亚型可以在同一电泳道分离出多条带 ? 操作简便,与常规SDS-PAGE蛋白电泳相似 ? Phos-tag 的结合特异性与氨基酸种类、序列无关 ? Phos-tag SDS-PAGE实验后,可进行常规的免疫组化、质谱等 ? 性质稳定,溶于蒸馏水后可以稳定保存至少3个月 ? 磷酸化和非磷酸化蛋白可以同时被分离检测 ? 不同位点磷酸化修饰以及磷酸化程度不同的蛋白在同一泳道中因迁移率不同而被分离开来 应用举例

蛋白质磷酸化1

浅谈蛋白质磷酸化 摘要:蛋白质翻译后修饰几乎在所有的蛋白质上都会发生,被修饰后的蛋白质功能将会发生显著的变化。而蛋白质磷酸化是最常见、最重要的一种蛋白质翻译后修饰方式,在蛋白质翻译后修饰研究中有着重要地位,它参与和调控生物体内的许多生命活动。随着蛋白质组学技术的发展和应用,蛋白质磷酸化的研究越来越受到广泛的重视。本文主要介绍了蛋白质磷酸化的主要知识,主要类型与功能,以及研究蛋白质磷酸化的主要目的,最后简单了提到了预测蛋白质磷酸化位点的方法。 关键词:蛋白质修饰;蛋白质磷酸化;磷酸化位点预测 随着基因组计划基本完成,生命科学研究已进入后基因时代,主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是生命科学研究的核心内容。传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。它的研究内容包括:(1)蛋白质鉴定;(2)蛋白质翻译后修饰的研究;(3)蛋白质结构研究;(4)蛋白质细胞内定位及功能确定;(5)发现药物靶分子及制药等。 早期蛋白质组学的研究范围主要是指蛋白质的表达模式,随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。所谓蛋白质翻译后修饰指的是蛋白质折叠过程中和折叠过程后再多肽链上发生的共价反应,使蛋白质质量发生改变并且赋予蛋白质各种功能。 一、蛋白质磷酸化的概述 蛋白质的磷酸化反应是指通过酶促反应把磷酸基团从一个化合物转移到另一个化合物上的过程,是生物体内存在的一种普遍的调节方式,在细胞信号的传递过程中占有极其重要的地位。已经发现在人体内有多达2000个左右的蛋白质激酶和1000个左右的蛋白质磷酸酶基因。蛋白质的磷酸化是指由蛋白质激酶催化的把ATP或GTP上γ位的磷酸基转移到底物蛋白质氨基酸残基上的过程,其逆转过程是由蛋白质磷酸酶催化的,称为蛋白质脱磷酸化。蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。其磷酸化和去磷酸化这一可逆过程,受蛋白激酶和磷酸酶的协同作用控制.酶蛋白的磷

磷酸化蛋白质组学常用分析和定量方法

蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。蛋白质的磷酸化和去磷酸化这一可逆过程几乎调节着包括细胞的增殖、发育、分化、信号转导、细胞凋亡、神经活动、肌肉收缩及肿瘤发生等过程在内的所有生命活动。目前已知有许多人类疾病是由于某些异常的磷酸化修饰所引起,而有些磷酸化修饰却是某种疾病所导致的后果。在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰;在脊椎动物基因组中,有5%的基因编码的蛋白质是参与磷酸化和去磷酸化过程的蛋白激酶和磷酸(酯)酶。磷酸化修饰本身所具有的简单、灵活、可逆的特性以及磷酸基团的供体ATP的易得性,使得磷酸化修饰被真核细胞所选择接受而成为一种最普遍的调控手段。鉴于磷酸化修饰在生命活动中所具有的重要意义,探索磷酸化修饰过程的奥秘及其对细胞功能的影响已成为众多生物化学家及蛋白组学家所关心的内容。用蛋白质组学的理念和分析方法研究蛋白质磷酸化修饰,可以从整体上观察细胞或组织中磷酸化修饰的状态及其变化,这对以某一种或几种激酶及其产物为研究对象的经典分析方法是一个重要的补充,同时提供了一个全新的研究视角,并由此派生出磷酸化蛋白质组学(phosphoproteomics)这一新概念。在蛋白质组学水平进行磷酸化蛋白质的分析定量研究已引起人们广泛关注,各种技术也相应地发展起来. 1.1 免疫亲和色谱 富集磷酸化蛋白质最简单的方法就是用识别磷酸化氨基酸残基的特异抗体进行免疫共沉淀,从复杂混合物中免疫沉淀出目标蛋白质。目前,仅有酪氨酸磷酸化蛋白质的单克隆抗体可以用来进行有效的免疫共沉淀。这是因为该抗体具有较强的亲和力和特异性,可以有效地免疫沉淀酪氨酸磷酸化的蛋白质。Imam-Sghiouar等人从B-淋巴细胞中通过免疫沉淀获得酪氨酸磷酸化的蛋白质,然后再用二维电泳分离技术并结合质谱分析方法,鉴定出多个与斯科特综合症相关的酪氨酸磷酸化的蛋白质。由于抗磷酸化丝氨酸和苏氨酸抗体的抗原决定簇较小,所以令抗原抗体的结合位点存在空间障碍,特异性较差。因此,目前采用磷酸化丝氨酸/苏氨酸的抗体来富集磷酸化蛋白质的研究相对较 少。 1.2 固相金属亲和色谱(IMAC) 固相金属亲和色谱(immobilized metal affinity chromatography, IMAC)是一项较为成熟的磷酸化多肽分离富集技术。它是利用磷酸基团与固相化的Fe3+、Ga2+和Cu2+等金属离子的高亲和力来富集磷酸肽。目前发展的高通量磷酸化蛋白质组分析途径主要采用IMAC亲和色谱-反相液相色谱-串联质谱-数据库检索联用的方法。Ficarro等人最先将IMAC富集技术应用到细胞系大规模磷酸化蛋白质组学的分析中,并从啤酒酵母中鉴定出了216个磷酸化肽段和383个磷酸化位点。该方法的优点在于对每个可溶磷酸肽,不管其长度如何,都有富集作用,而且IMAC柱洗脱下的样品可直接用于RP-HPLC分析,但有可能丢失一些与IMAC柱结合能力较弱的磷酸肽或某些因有多个磷酸化位点而难以洗脱的磷酸肽。另外,那些富含酸性氨基酸的非磷酸化肽段与固相金属离子也有结合能力,也可能被富集。为了解决IMAC柱的非特异性吸附的问题,可以采用对羧基进行酯化反应以及改变洗脱液的体系等方法来提高IMAC 柱的特异性。此外,自动化IMAC- capillary RP HPLC-ESI MS/MS技术平台的研究开发,使磷酸肽的富集、反相分离和质谱检测都能自动在线进行,为IMAC在蛋白质组学中的高通量应用开辟了道路。 1.3 TiO2色谱 近期金属氧化物亲和富集技术得到了人们极大的关注。2004年,Pinkse等人将二氧化钛(TiO2)技术引进磷酸化蛋白质组学领域,利用TiO2与磷酸肽上磷酸基团的亲和能力实现对磷酸肽的相对富集,并建立了通过TiO2作为预分离的2D-NanoLCESI-MS/MS 技术平台。虽然该技术在对磷酸化肽段富集时的选择性和灵敏度方面都优于IMAC技术,但仍然存在非特异性吸附等问题。后来,人们又利用纳米材料比表面积大的特点,对TiO2纳米级材料进行了开发

论述蛋白质磷酸化与去磷酸化在细胞信号系统传导中的作用及研究进展

论述蛋白质磷酸化与去磷酸化在细胞信号系统传导中的作用及研究进展 病毒所梁晓声200628012415030 细胞信号传导过程中磷酸酶/磷酸激酶对蛋白磷酸化程度的调控控制了细胞信号传递与否,信号强度等等细胞信号传导的过程从某种程度上说就是信号传导相关分子磷酸化水平的调节过程。 磷酸酶/磷酸激酶作为胞内信号直接或间接的靶酶通过磷酸化程度控制其它酶类或蛋白质的活性,一般情况下被磷酸化的酶有活性,脱磷酸后的酶没有活性。通过这种方式可以在不改变细胞内酶或相关蛋白的浓度的情况下将部分酶活冻结或解冻。在有外界信号刺激的时候可以迅速解冻酶活而不必合成新的酶。 由于酶反应具有高度专一性,使得蛋白质磷酸化与去磷酸化这种方式在胞内介导胞外信号时具有专一应答的特点。这就使得细胞信号传导途径的上游成分只能针对一个或几个的下游成分起作用,使信号传递具有很强的专一性。同时对信号的灭活也不会由于识别的错误而影响其他信号传导途径。 磷酸化与去磷酸化在细胞对外界信号的持续反应中具有重要的作用。信号引起的细胞生理学效应中,有许多是相当持久的,如细胞的分裂、分化等。虽然胞内信号分子的寿命可以很短,但蛋白激酶一旦激活,其活性却可以通过某些方式(如自身磷酸化)维持较长时间;更重要的是被它磷酸化所调节的蛋白质和酶类,其效应可以维持更长时间,直到被蛋白磷酸酶脱磷酸化为止。 蛋白磷酸化对外界信号具有放大作用,由于是酶促反应,一个酶分子可以催化成百上千个底物分子,即使只有很弱的胞外信号也可以通过酶促反应得到充分的放大。 蛋白质激酶 蛋白质激酶是一类磷酸转移酶,其作用是将ATP的磷酸基转移到它们的底物上特定氨基酸残基上去。依据这些氨基酸残基的特异性,将这些激酶分为4类。其中主要的两类是蛋白质丝氨酸/苏氨酸激酶(STK),和蛋白质酪氨酸激酶(PTK)。这两类酶的蛋白质激酶结构域的大小约为250-300个氨基酸残基。二者的催化域在进化上是密切相关的,并认为它们有共同的祖先。因此,它们的催化域的氨基酸残基序列在很大程度上也是一致的。更重要的是,这些序列表现为一组组高度保守的,甚至是完全保守的氨基酸模体,这些模体却嵌埋在氨基酸残基序列保守性很差的区域之内。一共有11种这类高度保守的短氨基酸残基序列模体。它们都以罗马数字命名,从最N-端的I开始,到最C-端的XI。对这些酶的结晶进行X-射线结构分析,发现这些模体对这些蛋白质激酶催化结构域的磷酸转移酶活性十分重要。据以为,亚域I,II和VII在结合ATP中起重要作用;而亚域VIII则在识别肽底物中起主要作用。对酪氨酸激酶家族来说,在亚域VIII中,紧靠关键模体上游的氨基酸残基有十分有趣的差异,它们是-KWTAPE- 或-KWMAPE-,看来这些序列造成了激酶家族的这个分支的底物专一性。 蛋白磷酸酯酶 丝氨酸/苏氨酸蛋白磷酸酯酶,选择性地作用于含磷酸丝氨酸或磷酸苏氨酸残基的肽链,使之脱去磷酸基团并改变生物活性。主要成员:PPl,PP2A,PP2B,PP2C等。 酪氨酸蛋白磷酸酯酶(PTPase)分胞质型(非受体型)和受体型(PTPR)

磷酸化蛋白的western blot百替生物

下面是我从在丁香园上看到的一篇文章,看得出来,作者是做做磷酸化蛋白的western blot 的高手!我整理了出来特想与大家分享!来源于 https://www.wendangku.net/doc/f79313829.html,/bbs/post/view?bid=68&id=11443307&sty=1&tp g=1&age=0 我做了很久的western blot,尤其是phospho-抗体,可以算是达人了。我根据自己的经验,对磷酸化蛋白之western blot提出以下建议,供刚入门的同仁参考: 1.一定要在lysis buffer中加入蛋白酶抑制剂,还要加入一定量的磷酸酶抑制剂,否则即使band压出来也会很浅,结果也不可信。 2.加一抗后最好4度过夜,保证抗体有充分的结合时间。因为磷酸化的蛋白只占总的蛋白量的极少部分。4度也可使一抗重复使用多次。毕竟磷酸化的抗体都挺贵的。二抗则室温1小时即可。 3.磷酸化抗体的好坏是一个关键因素,所以要选择好的厂商。个人认为,Cell signaling公司做的磷酸化抗体不错,尤其是MAPKs磷酸化抗体。 3.最好根据厂商的protocol来操作实验,这是实验成功的保证。如Cell signaling会建议用含5%BSA的TBST稀释phospho-p38等抗体,效果不错,而不是用常见的含5%non-fat milk的TBST。 4.抗体的稀释倍数也要适当。不同厂商也会有不同要求。 5.研究完某一蛋白的磷酸化情况后最好也要研究一下该蛋白总的表达量。如压完phospho-p38抗体后,我会把相同的membrane做strip后再压p38,然后再strip一次,再压内标actin。

6.做磷酸化蛋白WB时,除了目标蛋白的band以外,往往会出现非特异性的band.磷酸化抗体不好的话,甚至会压出非特异性的band,而没有你想要的band,所以压片以后,你一定要根据markers比对一下,你压出的band分子量是否正确.我以前压WB时,压出了一条band,就以为是我想要的那条,然后还根据趋势推测可能的机制,走了不少怨枉路.还有一次,把markers的分子量记错了,比对出来的结果当然也不对. 7.磷酸化蛋白WB时backgroud也往往较深,所以压片时间要适当,不能太长或过短,太长则backgroud太深盖住想要的那条band,时间过短则可能没有band或者band太浅. 8.磷酸化蛋白WB时,用TBST洗时也要注意一下,摇床的转速不要太快,洗的时间不要太长,孵育一抗和二抗之后分别洗5min 3次即可,宁愿background深一些,总比做不出来强得多.另外,洗的时候,最好不要把几张membrane叠在一起洗。 9.附件中表格列出的是我所用的做磷酸化蛋白western blot的lysis buffer 的配方,效果不错,供您参考. 10.对我的lysis buffer配方作以下说明: (1)Na3VO4要活化 (2)我的配方配的是100ml 细胞裂解液,但如您各个成分的体积加起来,会发现total=102.1ml,那是因为这些成分加在一起后总体积会缩小的. 11.正如我在第5点所说的,"研究完某一蛋白的磷酸化情况后最好也要研究一下该蛋白总的表达量“。这有两种方法,一是:相同的sample在不同的well 中上样两次(可在相同的gel上,也可在不同的gel),其一压磷酸化蛋白,另

分子生物学---11蛋白质磷酸化和信号转导

蛋白质磷酸化和信号转导 一、蛋白质磷酸化过程和功能 1、蛋白质磷酸化p r o t e i n p h o s p h o r y l a t i o n (1)过程: P r o t e i n k i n a s e(蛋白激酶) P r o t e i n p h o s p h o r y l a t e d p r o t e i n A T P A D P P h o s p h a t a s e(磷酸酶) P i (2)主要磷酸化位点(对有-O H的氨基酸进行磷酸化) 丝氨酸(S e r)/苏氨酸(T h r):磷酸化之后电荷发生变化使蛋白质活性改变 酪氨酸(T y r):磷酸化之后通常招募其他蛋白因子,使下游蛋白质活性改变 (3)蛋白质磷酸化的功能 生物热力学;蛋白质降解;酶活性的调控(激活o r抑制);蛋白质相互作用 2、重要的蛋白激酶 (1)C D K s:c y c l i n-d e p e n d e n t k i n a s e周期蛋白依赖性蛋白激酶,属于一组调控细胞周期的S e r/T h r蛋白激酶,和周期蛋白c y c l i n协同作用发挥激酶活性,作用于细胞周期的不同阶段 (2)R T K s:R e c e p t o r T y r o s i n K i n a s e受体酪氨酸激酶,是具有酪氨酸激酶活性的受体,如E G F R(表皮生长因子受体) (3)C y t o p l a s m i c P r o t e i n-T y r o s i n e K i n a s e s:非受体酪氨酸激酶,存在于细胞质中,大部分结构中存在S H2、S H3结构域,是磷酸化的结合位点。如S r c、J A K、 F A K等 二、信号转导 1、信号转导的种类 E n d o c r i n e(内分泌):激素 P a r a c r i n e(旁分泌):神经递质 A u t o c r i n e(自分泌):生长因子 2、信号转导的步骤 (1)信号分子的合成 (2)信号分子释放 (3)信号分子传导 (4)信号分子与受体结合 (5)激活细胞内信号通路 (6)细胞内信号传导

磷酸化蛋白质组学常用定量方法介绍

磷酸化蛋白质组学常用定量方法介绍 蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。蛋白质的磷酸化和去磷酸化这一可逆过程几乎调节着包括细胞的增殖、发育、分化、信号转导、细胞凋亡、神经活动、肌肉收缩及肿瘤发生等过程在内的所有生命活动。目前已知有许多人类疾病是由于某些异常的磷酸化修饰所引起,而有些磷酸化修饰却是某种疾病所导致的后果。在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰;在脊椎动物基因组中,有5%的基因编码的蛋白质是参与磷酸化和去磷酸化过程的蛋白激酶和磷酸(酯)酶。磷酸化修饰本身所具有的简单、灵活、可逆的特性以及磷酸基团的供体ATP的易得性,使得磷酸化修饰被真核细胞所选择接受而成为一种最普遍的调控手段。鉴于磷酸化修饰在生命活动中所具有的重要意义,探索磷酸化修饰过程的奥秘及其对细胞功能的影响已成为众多生物化学家及蛋白组学家所关心的内容。用蛋白质组学的理念和分析方法研究蛋白质磷酸化修饰,可以从整体上观察细胞或组织中磷酸化修饰的状态及其变化,这对以某一种或几种激酶及其产物为研究对象的经典分析方法是一个重要的补充,同时提供了一个全新的研究视角,并由此派生出磷酸化蛋白质组学(phosphoproteomics)这一新概念。在蛋白质组学水平进行磷酸化蛋白质的分析定量研究已引起人们广泛关注,各种技术也相应地发展起来。 1. 磷酸化蛋白质和磷酸肽的富集 1.1 免疫亲和色谱 富集磷酸化蛋白质最简单的方法就是用识别磷酸化氨基酸残基的特异抗体进行免疫共沉淀,从复杂混合物中免疫沉淀出目标蛋白质。目前,仅有酪氨酸磷酸化蛋白质的单克隆抗体可以用来进行有效的免疫共沉淀。这是因为该抗体具有较强的亲和力和特异性,可以有效地免疫沉淀酪氨酸磷酸化的蛋白质。Imam-Sghiouar等人从B-淋巴细胞中通过免疫沉淀获得酪氨酸磷酸化的蛋白质,然后再用二维电泳分离技术并结合质谱分析方法,鉴定出多个与斯科特综合症相关的酪氨酸磷酸化的蛋白质。由于抗磷酸化丝氨酸和苏氨酸抗体的抗原决定簇较小,所以令抗原抗体的结合位点存在空间障碍,特异性较差。因此,目前采用磷酸化丝氨酸/苏氨酸的抗体来富集磷酸化蛋白质的研究相对较 少。 1.2 固相金属亲和色谱(IMAC) 固相金属亲和色谱(immobilized metal affinity chromatography, IMAC)是一项较为成熟的磷酸化多肽分离富集技术。它是利用磷酸基团与固相化的Fe3+、Ga2+和Cu2+等金属离子的高亲和力来富集磷酸肽。目前发展的高通量磷酸化蛋白质组分析途径主要采用IMAC亲和色谱-反相液相色谱-串联质谱-数据库检索联用的方法。Ficarro等人最先将IMAC 富集技术应用到细胞系大规模磷酸化蛋白质组学的分析中,并从啤酒酵母中鉴定出了216个磷酸化肽段和383个磷酸化位点。该方法的优点在于对每个可溶磷酸肽,不管其长度如何,都有富集作用,而且IMAC柱洗脱下的样品可直接用于RP-HPLC分析,但有可能丢失一些与IMAC柱结合能力较弱的磷酸肽或某些因有多个磷酸化位点而难以洗脱的磷酸肽。另外,那些富含酸性氨基酸的非磷酸化肽段与固相金属离子也有结合能力,也可能被富集。为了解决IMAC柱的非特异性吸附的问题,可以采用对羧基进行酯化反应以及改变洗脱液的体系等方法来提高IMAC柱的特异性。此外,自动化IMAC- capillary RP HPLC-ESI MS/MS技术平台的研究开发,使磷酸肽的富集、反相分离和质谱检测都能自动在线进行,为IMAC在蛋白质组学中的高通量应用开辟了道路。

磷酸化

磷酸化(phosphorylation ):生物分子结合磷酸基团的过程。 磷酸化是将磷酸基团加在中间代谢产物上或加在蛋白质(protein)上的过程。磷酸基团的添加或除去(去磷酸化)对许多反应起着生物“开/关”作用。磷酸基团的添加或除去能使酶(enzyme)活化或失活,控制诸如细胞分裂这样的过程。添加磷酸基团的酶称为激酶(kinases);除去磷酸基团的酶称为磷酸酶。 磷酸化就是通过磷酸转移酶在底物上加上一个磷酸基团。 光合磷酸化(photophosphorylation):在光照条件下,叶绿体将ADP和 无机磷(Pi)结合形成ATP的生物学过程。是光合细胞吸收光能后转换成化学 能的一种贮存形式。 氧化磷酸化(oxidative phosphorylation):物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。主要在线粒体中进行。 底物水平磷酸化(substrate level phosphorlation):物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化 底物水平磷酸化不同于:氧化磷酸化(电子传递水平磷酸化) 1. 氧化磷酸化偶联在生物氧化过程中,代谢物脱下的氢经呼吸链氧化生成水时,所释放出的能量用于ADP磷酸化生成A TP。氧化是放能反应,而ADP生成ATP是吸能反应,这两个过程同时进行,即氧化时偶联磷酸化的过程称为氧化磷酸化。这种方式生成的ATP 约占ATP生成总数的80%,是维持生命活动所需能量的主要来源。 2. 电子传递链中A TP形成的部位 3. 影响氧化磷酸化的因素 (1)ATP与ADP的调节作用:ADP/ATP比值下降,说明细胞储备ATP较多,所以氧化磷酸化速度缓慢甚至停止。反之这个比值升高说明细胞需要ATP,于是氧化磷酸化加速进行。 (2)甲状腺素的调节作用:导致氧化磷酸化增强,促进物质氧化分解代谢,结果耗氧量和产热量均增加。故甲状腺机能亢进的病人常出现基础代谢率(BMR)增高、怕热,易出汗等症状。 (3)氧化磷酸化的抑制剂:氧化磷酸化的抑制剂主要有两类:一是抑制电子传递的抑制剂(呼吸链抑制剂);另一类是使氧化磷酸化拆离的解偶联剂。呼吸链抑制剂的作用与一定部位的电子传递体结合而阻碍其电子传递。 氧化磷酸化解偶联剂不影响呼吸链的电子传递,但能减弱或停止ATP合成的磷酸化反应。最常见的解偶联剂是2,4-二硝基苯酚(DNP)。

磷酸化蛋白之western blot检测操作细节和注意事项

磷酸化蛋白之western blot检测操作细节和注意事项 1.一定要在lysis buffer中加入蛋白酶抑制剂(配方见后页),还要加入一定量的磷酸酶抑制 剂,否则即使band压出来也会很浅,结果也不可信。 2.加一抗后最好4度过夜,保证抗体有充分的结合时间。因为磷酸化的蛋白只占总的蛋白量 的极少部分。4度也可使一抗重复使用多次(站长注:可加入防腐剂,如叠氮钠,Proclin TM 等,保存时间更长)。毕竟磷酸化的抗体都挺贵的。二抗则室温1小时即可。 3.磷酸化抗体的好坏是一个关键因素,所以要选择好的厂商。个人认为,Cell signaling公司 做的磷酸化抗体不错,尤其是MAPKs磷酸化抗体 4.最好根据厂商的protocol来操作实验,这是实验成功的保证。如Cell signaling会建议用 含5%BSA的TBST稀释phospho-p38等抗体,效果不错,而不是用常见的含5%non-fat milk的TBST。 5.抗体的稀释倍数也要适当。不同厂商也会有不同要求。 6.研究完某一蛋白的磷酸化情况后最好也要研究一下该蛋白总的表达量。如压完phospho-p 38抗体后,我会把相同的membrane做strip后再压p38,然后再strip一次,再压内标acti n。 7.做磷酸化蛋白WB时,除了目标蛋白的band以外,往往会出现非特异性的band.磷酸化抗体 不好的话,甚至会压出非特异性的band,而没有你想要的band,所以压片以后,你一定要根据markers比对一下,你压出的band分子量是否正确.我以前压WB时,压出了一条band,就以为是我想要的那条,然后还根据趋势推测可能的机制,走了不少怨枉路.还有一次,把markers 的分子量记错了,比对出来的结果当然也不对. 8.磷酸化蛋白WB时backgroud也往往较深,所以压片时间要适当,不能太长或过短,太长则b ackgroud太深盖住想要的那条band,时间过短则可能没有band或者band太浅.

蛋白质磷酸化对于许多生物现象的引发是很必要的,包括细胞

蛋白质磷酸化对于许多生物现象的引发是很必要的,包括细胞生长、增殖、泛素(ubiquitin)介导的蛋白降解等过程。特别是酪氨酸磷酸化,作为细胞信号转导和酶活性调控的一种主要方式,通常通过引发蛋白质之间的相互作用,进而介导生长因子、荷尔蒙和细胞因子等对细胞膜上受体的信号调控。 然而,酪氨酸磷酸化在细胞的所有磷酸化修饰中所占的比例却非常低。大概10%的细胞蛋白会受到磷酸化共价修饰,但每100次蛋白的磷酸化修饰中仅有1次酪氨酸基团的修饰。与大部分细胞中的丝氨酸和苏氨酸磷酸化水平相比,酪氨酸磷酸化的水平估计要低2000倍。正是由于细胞中酪氨酸磷酸化的水平相当低,才能保证细胞在内外信号的刺激下,作出灵敏的反应,所以研究酪氨酸的磷酸化对于细胞信号的调控和许多重要生物现象的研究具有极为重要的意义,而对发生酪氨酸磷酸化的蛋白质的识别及磷酸化位点的鉴定对揭示细胞过程的调控和药物的作用位点起到非常重要的作用。 研究蛋白质磷酸化的相关方法: 磷酸化Western Blot 对于信号转导科研来说,抗酪氨酸磷酸化抗体的出现是一个意义重大的事件。在没有抗酪氨酸磷酸化抗体之前,蛋白质和酶的酪氨酸磷酸化只能通过非常危险的并且很费时的放射性实验来检测。而利用抗酪氨酸磷酸化抗体,则可以通过Western Blot或其它免疫学方法轻松地检测到磷酸化信号。常规的检测方法包括:用抗酪氨酸磷酸化抗体在Western Blot上检测内源或外源表达的磷酸化蛋白。如果目标蛋白的含量较低,也可利用免疫沉淀的方法先富集发生磷酸化的酪氨酸蛋白,再检测目标蛋白的水平。抗酪氨酸磷酸化抗体也常用于检测在不同处理的条件下,细胞内总的酪氨酸磷酸化水平的变化情况,作为许多细胞生物现象的一个重要指标。 我们都知道如果需要检测某一个目标蛋白的某一特定位点的磷酸化状态,可以选用该蛋白特定位点的磷酸化特异性抗体。但由于我们研究的通常是新的磷酸化位点,或者这些蛋白特定位点的磷酸化抗体效果不够好,我们不得不自己制备磷酸化抗体。如果大家自己制备过磷酸化抗体,就会知道磷酸化抗体的制备比一般抗体的制备更加困难,而且浪费大量宝贵时间。现在国外的科学家发现可以使用通用型的磷酸化抗体,只要巧妙的设计实验,也可以达到同样的检测目的。以Yuan的文章为例,他们需要检测BCR-ABL的磷酸化,但他们没有特异性的磷酸化抗体。他们首先使用了抗c-ABL的抗体和蛋白G-琼脂糖珠子来免疫沉淀富集BCR-ABL蛋白,然后再通过Western-Blot和4G10通用型酪氨酸磷酸化抗体(pan-phosphotyrosine)来鉴定BCR-ABL蛋白的酪氨酸磷酸化水平。另外一组以Clemens 为首的科学家,则利用抗Dock蛋白抗体先免疫共沉淀了DACK蛋白,再用4G10酪氨酸磷酸化抗体来检测DACK蛋白和DSH3PX1蛋白的酪氨酸磷酸化水平,通过区分这些蛋白的分子量大小,来确认相应的磷酸化条带的蛋白身份。 与做普通的Western Blot相比,磷酸化Western Blot有一些要额外需要注意的事项: 首先,由于蛋白的磷酸化是可逆的,会被磷酸酶去磷酸化,所以在样品制备和整个免疫检测过程中,需要抑制或避免细胞内源性和外源性的磷酸酶的干扰。针对细胞内源性的磷酸酶,我们在样品制备时,需要在细胞裂解液中加入足量的并且是新鲜的磷酸酶抑制剂,如

磷酸化蛋白质的分析方法

磷酸化蛋白质的分析方法 试剂: 乙腈(Acetonitrile,ACN),三氟乙酸(Trifluoroacetic acid,TFA) 购自 Merck 公司(Darmstadt,Germany)。尿素(urea),氯化钠(Sodium chloride,NaCl)购自Sigma 公司。甲酸(Formic acid,FA)、乙酸(Acetic acid,HAC)购自Aldrich(St. Louis,MO,USA)。盐酸胍(Guanidine hydrochloride,GuCl),二硫苏糖醇(dithiothreitol,DTT),碳酸氢铵(Ammonium bicarbonate),碘乙酰胺(Iodoacetamide,IAA) 购自Bio-Rad (Hercules,CA,USA)。胰蛋白酶(Trypsin)购自Promega (Madison,WI)。所有的化学品的纯度级别除了乙腈是色谱纯外都是分析纯。实验所用水都经过Milli-Q system (Millipore,Bedford,MA,USA)处理。 样品制备 样品用2D 裂解液裂解(8 M Urea,4% CHAPS,65 mM DTT,40 mM Tris),100W 30 s 超声后,15,000g 离心45 min。取上清,Bradford法定量;取500μg 样品加入2ul 1M DTT,于37℃还原反应2.5h;再加入10ul 1M IAA 于室温避光烷基化40min。100%丙酮沉淀过夜,100mM碳酸氢铵(pH 8.5)溶解样品,按50:1加入胰蛋白酶酶解过夜。 磷酸化多肽的富集: Loading buffer: (饱和glutamic acid/65%乙腈/2%TFA) Wash buffer 1: (65%乙腈/0.5%TFA) Wash buffer 2: (65%乙腈/0.1% TFA)

磷酸化蛋白的研究进展

多学科的相互渗透和研究技术手段的高速发展,生命科学在20世纪取得了巨大的进步。特别是在基因组研究方面已取得了许多的成果,包括人类基因组在内的多种生物的基因组全序列测定已陆续完成,面对庞大的遗传信息,人们开始关注这些序列信息与生命活动之间的直接或间接的联系。基因的功能是什么?它们又是如何发挥这些功能的? 蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。蛋白质磷酸化是一种重要的翻译后修饰,它参与和调控生物体内的许多生命活动。随着蛋白质组技术的不断发展,蛋白质磷酸化的研究越来越受到广泛的重视。本文介绍了蛋白质磷酸化定义、修饰的主要类型与功能、磷酸化蛋白质鉴定技术、检测方法并综述了近年来国内外的主要研究进展。 蛋白质磷酸化:指由蛋白质激酶催化的把ATP或GTP上的磷酸基转移到底物蛋白质氨基酸残基上的过程,是生物体内一种普通的调节方式,在细胞信号转导的过程中起重要作用。

磷酸化蛋白质根据其磷酸氨基酸残基的不同大致可分为四类,即:O-磷酸盐、N-磷酸盐、酰基磷酸盐和S-磷酸盐。O-磷酸盐是通过羟氨基酸的磷酸化形成的,如丝氨酸、苏氨酸或酪氨酸,羟脯氨酸或羟赖氨酸磷酸化仍不清楚;N-磷酸盐是通过精氨酸、赖氨酸或组氨酸的磷酸化形成的;酰基磷酸盐是通过天冬氨酸或谷氨酸的磷酸化形成;而S-磷酸盐通过半胱氨酸磷酸化形成。 蛋白质磷酸化具有以下功能: (1) 磷酸化参与酶作用机制,在此过程磷酸化为反应性中间产物(多为S-或N-磷酸盐) ,如在磷酸烯醇型丙酮酸羧激酶依赖的磷酸转移酶系统( PTR) 的组氨酸蛋白激酶(HPr) 。 (2) 磷酸化介导蛋白活性,蛋白分子通过蛋白激酶发生磷酸化,如蛋白激酶A(丝氨酸和苏氨酸残基) 或不同的受体酪氨酸激酶(酪氨酸残基) 。 (3) 天冬氨酸、谷氨酸和组氨酸的磷酸化在细菌趋化反应的感觉性传导中发生解离。 [32 P]放射性标记法是最经典的磷酸化蛋白质检测方法。体内代谢培养用[32P]标记磷酸盐作为磷酸基团供体,被[32P]标记的蛋白质进行一维或二维凝胶电泳分离,用放射自显影或磷储屏检测磷酸化蛋白质。磷蛋白酸水解产物用二维磷酸肽作图法分析可以确定蛋白质的磷酸化氨基酸类型。磷蛋白水解肽段经HPLC分离,通过监测放射性活度收集到磷酸肽,用Edman测序或串联质谱分析都可以确定磷酸化位点,当然这需要有足够量的磷蛋白用于分析。早在1991年, Arrigo等就采用[32P]代谢标记和二维凝胶电泳分析的方法观察了细胞在耐热处理后再经热刺激和肿瘤坏死因子刺激后热休克蛋白hsp28磷酸化程度的变化,发现耐热处理后细胞在热刺激和肿瘤坏死因子刺激下所引起的hsp28的磷酸化程度会显著降低。[32P]放射性标记可以非常灵敏、直观地检测磷蛋白,尤其是与二维凝胶电泳结合后可以从蛋白质组的角度整体观察细胞内蛋白质磷酸化程度的变化,它的缺点是不能标记组织样本,并且存在放射性污染的问题。

综述蛋白质磷酸化在信号转导过程中的作用

蛋白质磷酸化在细胞内信号传导中的意义 摘要:生物体对环境(包括外环境和内环境)信号变化有极高的反应性。细胞对外界刺激的感受和反应都是通过信号转导系统的介导实现的。该系统由受体、酶、通道和调节蛋白等构成。通过信号转导系统、细胞能感受、放大和整合各种外界信号。蛋白质的可逆磷酸化在这一过程中起着至关重要的作用。 关键词:蛋白质磷酸化,细胞信号转导 Abstract:The organisms are very sensible to the changes of environmental signals(both external or internal) .The the feelings and reactions of the cells to the external stimulation are all dependent on the signal transduction system. The system consists of receptors, enzymes, channels and regulatory proteins. Acording to the signal transduction system, cells can feel, amplify and integrate a variety of external signals. Reversible protein phosphorylation plays an very important role in this progress. Key words: protein phosphorylation; cells signal transduction 生物体对环境(包括外环境和内环境)信号变化有极高的反应性。如精子获能的过程中精子周围环境因子以及活性氧的诱导作用等[1][2]。细胞对外界刺激的感受和反应都是通过信号转导系统(signal transduction system)的介导实现的。该系统由受体、酶、通道和调节蛋白等构成。通过信号转导系统、细胞能感受、放大和整合各种外界信号。蛋白质的可逆磷酸化在这一过程中起着至关重要的作用。 一细胞信号转导的概念和类型 1细胞信号转导的概念 细胞信号转导系统由能接受信号的特定受体( recep tor) 、受体后的信号转导通路以及其作用的终端所组成。细胞信号通过受体或类似于受体的物质激活细胞内的信号转导通路,触发离子通道的开放、蛋白质( p rotein) 可逆磷酸化反应以及基因( gene)表达改变等变化,进而导致一系列生物效应。不同的信号转导通路间具有相互的联系和作用,形成极其复杂的网络,主要包括物理信号、化学信号和生物信号[3][4]。

生物氧化与氧化磷酸化答案

生物氧化与氧化磷酸化 (一)名词解释 1.生物氧化(biological oxidation)物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及 电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2 和H2O 的同时,释放的能量使ADP 转变成ATP。 2.呼吸链(respiratory chain)有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。 3.氧化磷酸化(oxidative phosphorylation)在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP 的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP 的主要方式。 4.三羧酸循环: 在线粒体内乙酰辅酶A与草酰乙酸缩合为柠檬酸,进行一系列反应又生成草酰乙酸,同时乙酰基被彻底氧化为CO2 和H2O,并产生大量能量的过程。 5.底物水平磷酸化(substrate level phosphorylation)在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘油激酶催化下形成ATP 的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP 的反应均属底物水平的磷酸化反应。另外,在三羧酸环(TCA)中,也有一步反应属底物水平磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA 合成酶的催化下转移给GDP 生成GTP。然后在核苷二磷酸激酶作用下,GTP 又将末端的高能磷酸根转给ADP 生成ATP。 6.能荷(energy charge)能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态。能荷=([ATP]+ 1/2[ADP])/([ATP]+[ADP]+[AMP]) 7.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 8.乳酸循环: 乳酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过 糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳 酸循环。 9.发酵: 厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产物乙醛,使之 生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。 10.糖酵解途径: 糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖 代谢最主要途径。 11.糖的有氧氧化: 糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的 过程。是糖氧化的主要方式。 12.肝糖原分解: 肝糖原分解指肝糖原分解为葡萄糖的过程。 13.磷酸戊糖途径: 磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄 糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸 戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

相关文档
相关文档 最新文档