文档库 最新最全的文档下载
当前位置:文档库 › 数学 多个绝对值相加求最小值问题

数学 多个绝对值相加求最小值问题

数学 多个绝对值相加求最小值问题
数学 多个绝对值相加求最小值问题

初一数学绝对值典型例题

绝对值 绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。 绝对值的定义及性质 绝对值 简单的绝对值方程 化简绝对值式,分类讨论(零点分段法) 绝对值几何意义的使用 绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|

[例1] (1) 绝对值大于2.1而小于4.2的整数有多少个? (2) 若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 (3) 下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 (4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少? 分析: (1) 结合数轴画图分析。绝对值大于2.1而小于4.2的整数有±3,±4,有4个 (2) 答案C 不完善,选择D.在此注意复习巩固知识点3。 (3) 选择D 。 (4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9 [巩固] 绝对值小于3.1的整数有哪些?它们的和为多少? <分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。 [巩固] 有理数a 与b 满足|a|>|b|,则下面哪个答案正确( ) A.a >b B.a=b C.a

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题 【例1】求 y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少 初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。 绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。 绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。 众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。 设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|, 由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|; 同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|, 由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。 一般说来,设f(x)=|x-a?|+|x-a?|+|x-a?|+???+|x-a n|, 其中a?≤a?≤…≤a n,那么: 当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1; 且f(a)=(a n-a1)+(a n-1-a2)+???+(a n/2+1-a n/2) =(a n+a n-1+??? a n/2+1)-(a1+a2+???+a n/2) 当n为奇数时,f min(x)=f(a(n+1)/2); 且f(a)=(a n-a1)+(a n-1-a2)+???+【a(n+1)/2+1-a(n+1)/2-1】 =【a n+a n-1+??? a(n+1)/2+1】-【a1+a2+???+ a(n+1)/2-1】

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值) 一、去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥?? -????≤? ; |x |>c (0) 0(0)(0)x c x c c x c x R c <->>?? ?≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或 ax b +<-c ;|ax b +|

(完整版)关于绝对值的几种题型与解题技巧

关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。即0≥a 。但是,绝对值里面的数值可以是正数也可以是负数。怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。 所以,0≥a ,而a 则有两种可能:o a π和0φa 。如:5=a ,则5=a 和5-=a 。合并写成:5±=a 。 于是我们得到这样一个性质: a 很多同学无法理解,为什么0πa 时,开出来的时候一定要添加一个“负号”呢?a -。因为此时0πa ,也就是说a 是一个负数,负数乘以符号就是正号了。如2)2(=--。因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。 例如:0πb a -,则)(b a b a --=-。 绝对值的题解始终围绕绝对值的性质来展开的。我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性 质; a (a >0) a 0φa 0 0=a a - 0πa

(2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=||| |b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b| 一:比较大小 典型题型: 【1】已知a 、b 为有理数,且0πa ,0πb ,b a φ,则 ( ) A :a b b a --πππ; B :a b a b --πππ; C :a b b a πππ--; D :a a b b πππ-- 这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。

专题十一:绝对值最值问题

绝对值最值问题 绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。数a的绝对值记作a 几个绝对值和的最小值问题:奇点偶段(含端点) 1、(1)阅读下面材料: 点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时,不妨设点A在原点, 如图甲,AB=OB=|b|=|a﹣b|; 当A、B两点都不在原点时, 1如图乙,点A、B都在原点的右边, AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|; ②如图丙,点A、B都在原点的左边, AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|; ③如图丁,点A、B在原点的两边 AB=OA+OB=|a|+|b|=a+(﹣b)=|a﹣b|. 综上,数轴上A、B两点之间的距离AB=|a﹣b|. (2)回答下列问题: ①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的 距离是,数轴上表示1和﹣3的两点之间的距离是; ②数轴上表示x和﹣1的两点分别是点A和B,则A、B之间的距离是,如果|AB| =2,那么x=; ③当代数式|x+2|+|x﹣5|取最小值时,相应的x的取值范围是. ④当代数式|x﹣1|+|x+2|+|x﹣5|取最小值时,相应的x的值是. ⑤当代数式|x﹣5|﹣|x+2|取最大值时,相应的x的取值范围是.

2、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题: (1)数轴上表示1和﹣3的两点之间的距离是: (2)若AB=8,|b|=3|a|,求a,b的值. (3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.

2016上海初一数学绝对值难题解析

2016上海初一数学绝对值难题解析 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0), |a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b, 解得b=0,这时a≥0;

绝对值的最值问题

【例题1】:求|x+11|+|x-12|+|x+13|的最小值,并求出此时x的值? 分析:先回顾化简代数式|x+11|+|x-12|+|x+13|的过程 可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40 3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25 5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48 7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 可知:当x<-13时,|x+11|+|x-12|+|x+13|=-3x-12>27 当x=-13时,|x+11|+|x-12|+|x+13|=40 当-1312时, |x+11|+|x-12|+|x+13|=3x+12>48 观察发现代数式|x+11|+|x-12|+|x+13|的最小值是25,此时x=-11 解:可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)将-11,12,-13从小到大排列为-13<-11<12 可知-11处于-13和12之间,所以当x=-11时,|x+11|+|x-12|+|x+13|有最小值是25 例题4:求代数式|x-1|+|x-2|+|x-3|+|x-4|的最小值 分析:回顾化简过程如下 令x-1=0,x-2=0,x-3=0,x-4=0 则零点值为x=1 , x=2 ,x=3 ,x=4 (1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 (2)当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 (3)当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4 (4)当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2 (5)当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10 根据x的范围判断出相应代数式的范围,在取所有范围中最小的值,即可求出对应的x的范围或者取值 解:根据绝对值的化简过程可以得出 当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 >6 当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 4<2x+8≤6 当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b| 2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|. 3.已知xy<0,x<y且|x|=1,|y|=2. (1)求x和y的值; (2)求的值. 4.计算:|﹣5|+|﹣10|÷|﹣2|. 5.当x<0时,求的值. 6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.

7.若|3a+5|=|2a+10|,求a的值. 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值. 9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|. 10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|. 11.若|x|=3,|y|=2,且x>y,求x﹣y的值. 12.化简:|3x+1|+|2x﹣1|. 13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.

14.++=1,求()2003÷(××)的值. 15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值? (2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值? (3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值? 16.计算:|﹣|+|﹣|+|﹣|+…+|﹣| 17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值. 18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.

绝对值的最小值”探究教学

绝对值的最小值”探究教学 发表时间:2018-11-03T15:18:12.423Z 来源:《中国教师》2018年12月刊作者:谭志勇 [导读] 在“绝对值”教学中,很多同学往往只掌握到会求如 “|2x-3|的最小值”这类问题的程度。把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手,本文旨在引导学生利用数轴探究得出“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”的一般方法,激发学生的探索精神和实践能力。 谭志勇乐山市沙湾区太平镇初级中学 614901 【提要】在“绝对值”教学中,很多同学往往只掌握到会求如 “|2x-3|的最小值”这类问题的程度。把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手,本文旨在引导学生利用数轴探究得出“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”的一般方法,激发学生的探索精神和实践能力。 中图分类号:G623.2 文献标识码:A 文章编号:ISSN1672-2051 (2018)12-073-02 “绝对值”是七年级学生进入中学以来学习到的第一个比较抽象的概念,很多同学对这个知识点掌握的不是很好,特别是把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手。比如:求|x-1|+|x- 2|+|x-3|的最小值是多少。 我们知道一个数a的绝对值表示的是在数轴上a所对应的点到原点的距离,因此|a|≥0,也就是|a|的最小值是0。部分同学能运用这点解决如:“求|2x-3|的最小值”这样问题已经算是不错的了,但对于学有余力的同学来说仅掌握到这个程度还不够,让学生进一步理解绝对值的几何意义,并运用绝对值的几何意义来解决“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”对发展学生的数学思维有着积极的作用,为此,我引导学生从下面一些步骤由浅入深的逐步探索,最终发现其规律。 一、牢固掌握绝对值的概念 在数轴上,一个数所对应的点到原点的距离叫做这个数的绝对值。 例如: |-2|的绝对值表示的是:在数轴上-2对应的点到原点的距离,所以|-2|= 2 。 因为点到点的距离总是大于等于零的,由此,我们可以概括:|a|≥0。那么什么数的绝对值最小呢?为什么? 二、准确理解绝对值的几何意义 |a|的几何意义:在数轴上数a对应的点到原点的距离。 |a-b|的几何意义:在数轴上a、 b两数所对应的点之间的距离。 例如:数轴上1和4之间的距离可以写成:|1-4| 或|4-1|。反过来|1-4| 或|4-1|表示的都是数轴上1和4之间的距离。 那么:|a+b|几何意义又是什么呢?因为 “|a+b|”可以改写成“|a-(- b)|”,因此|a+b|几何意义是数轴上a和-b对应的两数之间的距离。在此老师一定要强调:a、b两数之间的距离一定要表示成两数之差的绝对值,也就是|a-b|,如:|2+5|的几何意义先要改写差的形式:|2-(-5)|或|5-(-2)|,所以|2+5|的几何意义是:数轴上2、-5对应的两数之间的距离或数轴上5、-2对应的两数之间的距离。 三、利用数轴探索最小值问题 探索1:求|x-1|的最小值是多少? 因为|x-1|表示的是数轴上x到1之间的距离,所以,当 x=1 时,|x-1|有最小值是:0。 在这里,老师一定要让学生实际操作,在数轴上移动数x的位置,体会x到1的距离发生怎样的变化,让学生真正理解当x=1时,|x-1|有最小值是0,这对后面的继续探索很重要。 探索2、求|x-1|+|x-2|的最小值是多少? 在经历了“|x-1|的最小值”探索后,现在我们来看“|x-1|+|x-2|的最小值是多少”这个问题。根据绝对值的几何意义,我们知道|x-1|+|x-2|表示的是数轴上x对应的这个数到1的距离与到2的距离之和,因为在“|x-1|+|x-2|”中,字母x表示的同一个数,所以“求|x-1|+|x-2|的最小值”我们翻译一下就是:在数轴上找一个点,使这个点到1和2的距离之和对小。 如图所示,我们看到1和2把数轴分成了三部分,分别是:1的左边、1和2之间、2的右边。那么x分别在这三段里面,它会不会影响|x-1|+|x-2|的结果呢?有了这样的疑问,激励同学们一起通过画图来探索当x分别在“1的左边、1和2之间、2的右边”三种不同情况时|x-1|+|x-2|的结果。 我们把x到1和2 的距离分别表示成d1,d2,通过画图我们发现: 当x<1时:d1+d2=2 d1+1>1; 当1≤x≤2时:d1+d2=1(分三种情况观察:x在1的位置时,x在1、2之间时,x在2的位置时d1+d2的值有没有变化); 当x>2时:d1+d2=2 d2+1>1. 通过上面的探索,我们得到:当1≤x≤2时:d1+d2=1是最小值。也就是说当1≤x≤2时,|x-1|+|x-2|的最小值是1。 探索3、求|x-1|+|x-2|+|x-3|的最小值是多少? 如图:求|x-1|+|x-2|+|x-3|的最小值,就是要在数轴上找一个点,使它到1、2、3之间的距离之和最短。 这里为了使探索更加便捷,我们可以利用前面探索的结论,求|x-1|+|x-2|+|x-3|的最小值,我们假如没有中间的|x-2|,只考虑“求|x- 1|+|x-3|的最小值”,那么x应该在1和3之间,这样我们就把x的位置从整个数轴缩小到1和3之间。所以“求|x-1|+|x-2|+|x-3|的最小值”其实就是要在1和3之间找到一个点使|x-2|的值最小,那么|x-1|+|x-2|+|x-3|的值就最小,在探索1中我们知道当x=2时,|x-2|的值最小,并且x=2满足在1和3之间,我们把x=2带入原式就可以求出|x-1|+|x-2|+|x-3|的最小值。 通过上面的分析,我们得到:当x=2时,|x-1|+|x-2|+|x-3|的最小值是2。 经过探索1、2、3后,组织同学们总结一下:求一个、两个绝对值的和、三个绝对值的和……最小值问题时我们分别是找到一个点,两个点之间,一个点…… 是不是可以大胆的提出猜想:求奇数个绝对值的和最小值时,找到的是一个点,求偶数个绝对值的和最小值时找到的范围是两个点之间。有了这样的猜想,我们来验证一下:

绝对值经典练习题

绝对值专项训练 一、基础题 1、(绝对值的意义) 1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________. 2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________. (2006年贵阳)(1)2-的绝对值等于( )A 、2 1 - B 、2 C 、2- D 、2 1 (2006年连云港)(2)3-等于 ( ) A 、3 B 、-3 C 、3 1 D 、 3 1- (2005年梅州)(3)设a 是实数,则|a|-a 的值( ) A 、可以是负数 B 、不可能是负数 C 、必是正数 D 、可以是正数也可以是负数 2、(绝对值的性质)(1)任何数都有绝对值,且只有________个. (2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______. (3)绝对值是正数的数有_____个,它们互为_________. (4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________. (2006年资阳)(4)绝对值为3的数为____________ 3、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小. (2005年无锡)(5)比较4 1,31,21 --的大小,结果正确的是( )

A 、413121 <-<- B 、314121-<<- C 、213141-<-< D 、4 12131<-<- 二、[典型例题] 1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________. 2、(易错题)化简(4)--+的结果为___________ 3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( ) A 、0a > B 、0a ≥ C 、0a ≤ D 、0a < 4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、5 5、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( ) A 、a b b a <-<<- B 、b a b a -<<<- C 、a b b a -<<-< D 、b b a a -<<-< 三、[自主练习题] 一、选择题 1、有理数的绝对值一定是 ( ) A 、正数 B 、整数 C 、正数或零 D 、自然数 2、下列说法中正确的个数有 ( ) ①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个 3、如果甲数的绝对值大于乙数的绝对值,那么 ( )

绝对值试题(经典)100道

绝对值试题(经典)100道

————————————————————————————————作者:————————————————————————————————日期: 2

绝对值综合练习题 1、有理数的绝对值一定是_________。 2、绝对值等于它本身的数有________个。 3、下列说法正确的是() A、—|a|一定是负数 B、只有两个数相等时它们的绝对值才相等 C、若|a|=|b|,则a与b互为相反数 D、若一个数小于它的绝对值,则这个数为负数 4.若有理数在数轴上的对应点如下图所示,则下列结论中正 确的是() b a A、a>|b| B、a|b| D、|a|<|b| 5、相反数等于-5的数是______,绝对值等于5的数是________。 6、-4的倒数的相反数是______。 7、绝对值小于2的整数有________。 8、若|-x|=2,则x=____;若|x-3|=0,则x=______; 若|x-3|=1,则x=_______。 3

10、已知|a|+|b|=9,且|a|=2,求b的值。 11、已知|a|=3,|b|=2,|c|=1,且a0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________. 13、如果,则 的取值范围是() 4

A.>O B.≥O 5

C.≤O D.<O 14、绝对值不大于11.1的整数有() A.11个B.12个C.22个D.23个 15、│a│= -a,a一定是() A、正数 B、负数 C、非正数 D、非负数6

双绝对值最值嵌套问题(每日一题)

试题出处:2019学年第二学期浙江“七彩阳光”联盟阶段性评估(高三) 2020年5月20日每日一题 编辑:浙江杭州李矗 审校:安徽宣城李江鸿 双绝对值最值嵌套问题 已知,,a b R ∈设函数()tan sin cos ,0,4f x x a x x b x π??=+++∈???? 上的最大值为(),,M a b 则(),M a b 的最小值为 . 答案: 34 解法一:数形结合 考虑()1tan ,0,4f x x a x π??=+∈????,其最大值的最小值为()1101422 f f π??- ???= 考虑()2sin 2,0,24x f x b x π??=+∈????,其最大值的最小值为()2201424f f π??- ???= 两者都在0x =或4 π时取到,所以()()()12f x f x f x =+的最大值的最小值为34. 解题教师:湖南长沙李昌达 解法二:绝对值不等式 因为()tan sin cos f x x a x x b =+++,??????∈4, 0πx 令tan ,t x =则()[]2t ,0,11t g t a b t t =++ +∈+ 因为2,1 t y t y t ==+在[]1,0∈t 上单调递增,

所以()(),0M a b g a b ≥=+且()1,142M a b g a b π??≥=+++ ??? , 所以()()1132,011,4222M a b g g a b a b π??≥+=+++++≥+= ??? 即()3,.4M a b ≥当且仅当[]11,0,,02a b ??∈-∈-???? 时,取到等号. 解题教师:福建省漳州市吴献 上海静安邱敏 山东青岛仇鹏程 解法三 曼哈顿距离 将()tan sin cos f x x a x x b =+++转化为x a y b +++的形式利用曼哈顿距离解题 令tan ,t x =则()[]2t ,0,11t g t a b t t =++ +∈+, 寻找将[]2,t 0,11 t y t =∈+包裹住的最小正方形. 3:,CD :y .2AD y x x ==-+所以正方形中心为()3,,04a b ??--= ??? ,即()3,.4M a b ≥ 解题教师:安徽阜阳梁浩 浙江宁波陈红冲 解法四:纵向距离 因为()tan sin cos f x x a x x b =+++,?? ????∈4,0πx , 所以(){}max max tan sin cos ,tan sin cos f x x x x a b x x x a b =+++-+- 令()tan sin cos g x x x x =+,设tan ,t x =则2sin cos 1 t x x t =+

绝对值和的最小值练习题(答案)

①试求|x+0.3|+|x-0.3|+|x|的最小值。 答案:0.6 解析:|x|的几何意义是x到原点的距离。 本题相当于求在数轴上与-0.3,0,0.3这三个点距离和最小的点。 选正中间的点x=0,代入可得|0+0.3|+|0-0.3|+|0|=0.6 ②一条笔直的公路有A、B、C、D四个村庄,其中A还通过小路连接着A1、A2、A3三个村庄, 如果在公路上建一个公交站,使它距离7个村庄的距离之和最短,那么应该选在( )。A: 只能在A B: 只能在B C: 只能在A与B之间(包含A,B) D: 以上都不对 答案:A 解析:A1,A2,A3到A的距离固定,且只计算一次,不影响总的距离和。所以可以当做有4个A点。相当于共7个点:A、A、A、A、B、C、D。最中间的是A,所以只能选在A处。 ③试求|4x+1|+|x-2|+|x-3|的最小值。 答案:5.5 解析:原式=4|x+0.25|+|x-2|+|x-3| 求在数轴上与-0.25,-0.25,-0.25,-0.25,2,3距离和最小的点,x=-0.25即可 代入得4|-0.25+0.25|+|-0.25-2|+|-0.25-3|=5.5 ④试求|x+1|+|x+2|+…+|x+99|+|x+100|的最小值。 答案:2500 解析:根据绝对值的几何意义,相当于求在数轴上与-100,-99,…,-2,-1距离和最小的点, x在-51,-50之间即可(-51≤x≤-50) 把x=-50代入得|-50+1|+|-50+2|+…+|-50+99|+|-50+100|=2500 ⑤一条笔直的公路连接着城市P和三个村庄A、B、C(距离P的距离分别是4千米,6千米,10千米)。在公路上建一个汽车站使三个村庄到这个汽车站的距离和最短,那么最短的距离和是多少千米。 答案:6千米 解析:距离A,B,C三点的距离和最短,这个点应该取在B点。 所以最短距离就是AC的长度:10-4=6千米。 ⑥试求|x-9|+|x-3|+|3x+6|+|2x-6|的最小值。 答案:21 解析:原式=|x-9|+3|x-3|+3|x+2| 共7个点即-2,-2,-2,3,3,3,9(按大小顺序),所以选正中间的x=3。 代入得|3-9|+3|3-3|+3|3+2|=21

例谈绝对值与最值

例谈绝对值与最值 山西耿京娟 对绝对值概念有几何、代数两种描述方法.其中几何方法的描述是:|x|是在数轴上表示数x的点与原点的距离.据此,我们可以略加推广:|x-a|指在数轴上表示数x的点与表示数a的点的距离.下面举例说明其应用. 一.利用几何方法求最值 例1已知y=|x-2|-|x-5|,求y的最大值与最小值. 分析此题常见的方法是根据x的取值范围,去绝对值,然后分别讨论求出最大值、最小值.但根据绝对值几何意义解,那就容易多了. 解设数轴上表示数2、5、x的点分别为A、B、C.C可在数轴上移动,那么 y=|x-2|-|x-5|=AC-BC,如图1,当C点在B点右边时,AC-BC=AB=5-2=3; 图1 当C点在A点左边时(如C1处), AC-BC=-AB=-3; 当C点在线段AB上(包括A、B点)(如在C2处)时,-3≤AC-BC≤3. 综上所述,y的最大值为3,最小值为-3. 例2已知y=|x-2|+|x-1|,求y的最小值. 图2 解设数轴上表示数2、1和的点分别为A、B、C,则y=|x-2|+|x-1|=AC+BC(如图2),当C点在A点右边时,AC+BC>AB,即y>1.当C点在B点左边时(如在C1处),AC+BC>AB,即y>1.当C点在线段AB上(包括A、B点)(如在C2处)时, y=AC+BC=AB=1, 综上所述y≥1,y的最小值为1. 通过上述两题,我们知道,利用绝对值几何意义解决此类问题,显得直观又简单,同时 我们还能得出一些有用的结论: 如果y=|x-a|-|x-b|,那么y有最大值|a-b|,最小值-|a-b|. 如果y=|x-a|+|x-b|,那么y有最小值|a-b|,无最大值. 并且还求出最大值,最小值时对应的x值的范围. 二.利用界点分段法求最值 例3.求代数式∣x-1│+∣x-2│+∣x-3│的最小值 分析:根据上题很容易找到三个分界点是x=1、2、3,这样将数轴分成四部分,112233 ,,,,然后分段讨论。 ≤<≤<≤> x x x x ∣ 解:这里有三个分界点:1、2、3

上海初一数学绝对值难题解析

上海初一数学绝对值难题 解析 Revised final draft November 26, 2020

2016上海初一数学绝对值难题解析 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左 侧,请化简下列式子: (1)|a-b|-|c-b| (2)|a-c|-|a+c| 2、设x<-1,化简2-|2-|x-2|| 。 3、设3<a<4,化简|a-3|+|a-6| 。 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 第二类:考察对绝对值基本性质的运用 5、已知2011|x-1|+2012|y+1|=0,求x+y+2012的值? 6、设a、b同时满足: (1)|a-2b|+|b-1|=b-1; (2) |a-4|=0;那么ab等于多少? 7、设a、b、c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0, 请化简:|b|-|a+b|-|c-b|+|a-c| 。 8、满足|a-b|+ab=1的非负整数(a,b)共有几对?

绝对值练习题100道

《 绝对值综合练习题一 1、有理数的绝对值一定是() 2、绝对值等于它本身的数有()个 3、下列说法正确的是() A、—|a|一定是负数 B只有两个数相等时它们的绝对值才相等 C、若|a|=|b|,则a与b互为相反数 D、若一个数小于它的绝对值,则这个数为负数 4.若有理数在数轴上的对应点如下图所示,则下列结论中正确的是() 【 A、a>|b| B、a|b| D、|a|<|b| 5、相反数等于-5的数是______,绝对值等于5的数是________。 6、-4的倒数的相反数是______。 7、绝对值小于2的整数有________。 8、若|-x|=2,则x=____;若|x-3|=0,则x=_ __;若|x-3|=1,则x=_______。 9、实数a、b在数轴上位置如图所示,则|a|、|b|的大小关系是_______。 10、已知|a|+|b|=9,且|a|=2,求b的值。 11、> |a|=3,|b|=2,|c|=1,且a0, n<0, m<|n|,那么m,n,-m, -n的大小关系()

13、如果,则的取值范围是() A.>O B.≥O C.≤O D.<O 14、绝对值不大于的整数有() $ A.11个B.12个C.22个D.23个 15、│a│= -a,a一定是() A、正数 B、负数 C、非正数 D、非负数 16、有理数m,n在数轴上的位置如图, 17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______. 18、如果,则,. 、 19、已知│x+y+3│=0, 求│x+y│的值。 20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c= 21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1, 求代数式 x b a +x2+cd的值。 22、" 23、已知│ a│=3,│b│=5,a与b异号,求│a-b│的值。

初一数学绝对值典型例题精讲

第三讲 绝对值 绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。 绝对值的定义及性质 绝对值 简单的绝对值方程 化简绝对值式,分类讨论(零点分段法) 绝对值几何意义的使用 绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|

[例1] (1) 绝对值大于2.1而小于4.2的整数有多少个? (2) 若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 (3) 下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 (4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少? 分析: (1) 结合数轴画图分析。绝对值大于2.1而小于4.2的整数有±3,±4,有4个 (2) 答案C 不完善,选择D.在此注意复习巩固知识点3。 (3) 选择D 。 (4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9 [巩固] 绝对值小于3.1的整数有哪些?它们的和为多少? <分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。 [巩固] 有理数a 与b 满足|a|>|b|,则下面哪个答案正确( ) A.a >b B.a=b C.a

相关文档 最新文档