文档库 最新最全的文档下载
当前位置:文档库 › 氯化石蜡_70的合成工艺进展及应用

氯化石蜡_70的合成工艺进展及应用

氯化石蜡_70的合成工艺进展及应用
氯化石蜡_70的合成工艺进展及应用

产 品

氯化石蜡-70的合成工艺进展及应用

汪多仁

(吉化公司石井沟联合化工厂 132105)

摘 要 介绍了氯化石蜡的性能、应用、生产工艺及其进展,阐明了市场需求,指明了广阔的发展前景。

关键词 氯气 石蜡 氯化石蜡

氯化石蜡-70简称氯烃70(RC l-70),是石蜡经通氯气氯化所得的(含氯量70%左右),目前主要生产国有美国、英国、日本、俄罗斯和中国等。50年代后期我国开始生产氯化石蜡。近年来,随着阻燃制品的增加,橡胶、塑料、氯碱工业的发展而推出了深度氯化产品———氯烃70,其产品因原料状态不同可分为固体粉末和粘稠液体。由于氯烃70的熔点、软化点较高,因而具有良好的耐热性、阻燃性和相容性,是一种高档的含氯阻燃剂和辅助增塑剂。每t产品可消耗氯气910kg,是氯碱厂平衡氯气的理想产品。

氯烃70分子式C25H30C l22。平均分子质量1060,本身不燃烧,有芳香气味,挥发性极微,溶于大多数有机溶剂,不溶于水和乙醇,与润滑油、醚、酮、酯、天燃橡胶、氯丁橡胶、合成橡胶、聚酯、醋酸类树脂相容性甚佳。

氯烃70外观为浅黄色粉状固体,密度: 1116;溶点:102℃;质量体积01608L/kg;颗粒尺寸(通过20目)100%;色泽(加纳尔色泽标准)质量分数为40%重量甲苯溶液,2;热稳定性(% HC l)4h175℃,0.12。

1 应用拓展与市场前景展望

世界范围对增塑剂的需求增长较快,尤其在亚洲,1993年的需求量占世界增塑剂总产量的3613%。1995年,世界三大增塑剂生产公司因事故停产和相继进入检修阶段,曾使增塑剂在全球范围内供不应求。国内市场价一度暴涨到2.1万元/t。近年,由于东南亚对软质PVC 需求快速增加和美国经济的复苏已使辛醇供应不足,曾对亚洲辛醇市场产生较大冲击的Aris2 tech公司、日本三菱集团、德国赫司特现已从亚洲市场完全撤出。日本辛醇销售因要先满足国内用户,已削减出口,这也加剧了亚洲国家辛醇供应的短缺,从而使DOP的产量锐减。

增塑剂是PVC加工生产必需的原料。增塑剂的短缺也使PVC市场变紧,价格上扬,在亚洲市场已接近1000美元/t。世界PVC1995年需求增长率为12%~14%。远东地区1993年增长了25%。近年亚太地区需求旺盛,日本PVC开工率达100%,预计到2000年,世界PVC总生产能力可达27800kt。国内总生产能力2600kt,需增塑剂600kt,加上合成橡胶等共需670kt。国内农膜和地膜的需求直线上升,预计到2050年需增塑剂750kt,到2100年需810kt。我国增塑剂1995年总生产能力近800kt,产量450kt,邻苯二甲酸酯占55%,其中DOP占70%,D BP占30%;氯化石蜡占23%。由于DOP市价上涨,迫使PVC制品生产厂家寻找DOP物美价廉的替代品以求大幅度地降低生产成本。

我国目前邻苯二甲酸酯中DOP、D BB的应用占主导地位。D BP在国外由于挥发性大已开始被淘汰。DOP自70年代,由于美国癌症研究所(NCI)和食品管理局(FDA)提出DOP可能致癌后,国外已在地板等方面限制了它的应用,近年最新环境研究表明,邻苯二甲酸酯在环境中散逸,进入人体或动物体内会产生仿造性激素的能力,对男性及雄性动物有影响。因此,它的发展仍将受环境法规的限制。

氯烃70由于含氯量高,与PVC相容性好,用作PVC的重要辅助增塑剂,在PVC中加量可达15%~25%,占增塑剂总量的1/2~1/3,能降低增塑制品成本10%~20%,增加加工成型时的塑性和流动性,并使制品具有柔韧性,国内已纷纷使用物美价廉的氯烃70替代DOP、D BB,我国塑料助剂市场无论在需求量还是发展前景,都属于新兴的市场,如此广阔的市场拓展空间,将会使氯烃70大有发展前途。

氯烃70是应用广泛的阻燃剂,用于PVC、聚烯烃、聚苯乙烯、聚醋酸乙烯、聚氨酯、天然橡胶、丁腈橡胶、氯丁橡胶、丙烯酸树脂、环氧树脂、酚醛树脂、醋酸纤维、硝酸纤维素、乙基纤维素等三大合成材料中,美国是世界上最大的阻燃剂生产和消费国,氯烃在塑料助剂中的产量仅次于邻苯二甲酸酯类,占第二位。随着橡塑制品的普及及技术进步,对橡塑制品的耐燃性要求越来越高,阻燃性法规也越来越多,要使橡塑制品在激烈的国内外市场竞争中立于不败之地,则必须开发耐燃橡塑材料。

氯烃70对橡塑材料的阻燃机理如下:

橡塑材料在空气中燃烧反应式为:

R-CH3O2CO+H2O

RCHO+OH

OH?+CO CO2+H?(1)

……………

H?+O2OH?+O(2)

………………

(1)和(2)式连续进行反应速度非常快,不断增殖非常活泼的CH?游离基,OH?游离基是决定燃烧速度的主要因素,需阻止橡塑材料燃烧,必须降低OH?的浓度,破坏燃烧条件,而氯烃70受热分解与可燃烧物质起反应生成游离基氯,反应式如下:

R1-C l R1?+C l?(1)

………………

C l?+R HC l+R?(2)

………………

HC l+OH?H2O+C l?(3)

……………

反应(2)和(3)不断进行,产生的氯化氢都是不燃性气体,起遮盖表面层的作用,使燃烧物热氧化难于进行。C l作为捕获剂,能捕获燃烧反应的活性自由基。降低OH?浓度,减慢燃烧速度,抑制火焰扩散,中断化学反应,直到火焰熄灭为止。

氯烃70与含锑或含磷化合物能发生协同作用使它显得特别有效。用氯烃70和三氧化二锑共混处理纺织品能阻燃和防水,并能抗辐射,亦可作为尼龙织品的抗静电剂。

作为阻燃增塑剂它主要用于煤矿用难燃运输带和阻燃电缆粒料,其中难燃运输带需用量在逐年增加。我国青岛橡胶六厂,沈阳橡胶机带厂都大量使用氯烃70为难燃带阻燃剂的主要成分。在聚苯乙烯树脂(PS)中,氯烃70加量10%~15%,与三氧化二锑合用,氧指数高达40以上。在不饱和聚酯组分中RC l-70加量30%,不但阻燃效果好,而且耐化学药品腐蚀性能好。

氯烃70已广泛用于氯化橡胶漆,丙烯酸树脂漆、醇酸树脂漆等,加量20%,由于氯烃70显示出相当独特的受人欢迎的特性组合,广泛用于特殊类清漆和油漆,包括道路标志漆、室外用漆、纤维特别是帐篷的阻燃涂层的配方和防潮剂,不燃性船舶涂料和汽车涂料,这些重要的特性包括增塑效果、耐水解性、燃烧性、耐多数化合物、低挥发性与树脂杰出的相容性,改善粘膜,增加粘结力及提高漆膜柔软性和在空气中的稳定性,提高耐紫外线的能力等。例如用于汽车油漆和涂料,国产汽车1995年为150万辆,到2000年为300万辆,将使氯烃70的用量增加一倍。

1995年国内阻燃剂总产量近110kt,其中氯蜡占90%,但几乎全是氯蜡42、52型,氯蜡70无论是能力还是产量均很低,国内仅有沈阳化工厂、广州助剂厂、上海氯碱总厂生产,预计到2000年国内需求阻燃剂将达120kt以上,国际市场年需求增长率为6%,国内为2%。氯蜡应重点发展氯烃70,调整及发展的任务还是相当重的,氯烃70的应用十分广泛,它可用于制造介电溶液和电绝缘材料,用于防火模塑和防火棉布、帆布、绳子和其它棉织物,阻燃性发泡地板、白漆式玻璃钢,还可用作防腐剂、弹性密封

剂、高压润滑油、金属加工切削助剂、皮革加工助剂、印刷油墨光亮剂及渗透剂、乳化剂等,它可大量替代多氯联苯作为无碳复制纸内颜料淀积用的溶剂等,市场需求量不断扩大,市场前景极为乐观。目前全世界生产能力已达近400kt。2 生产工艺进展

氯化石蜡19世纪中期由J?B?A?Dumas首先发现,19世纪30年代初,工业生产中产量迅速上升,在第二次世界大战期间,氯化石蜡作为阻燃剂和防腐剂的应用急剧增加,因其广泛用途和优良性能已被公认为是一种重要大宗化工产品。由于产量再次引人注目地增加,生产工艺在此间不断完善。

国外已在纷纷改进反应器,如西德Mo2 tallgesell Shall公司的反应器为玻璃泡罩塔,采用气液平流连续化流程;英国菲利浦公司采用上大下小的竖直反应装置连续氯化,还有的反应器采取立式玻璃管或耐腐蚀管道式反应器,用压缩空气或冷却水进行外部冷却,在反应器下部1/3处进行反应,通过对反应管管道设计计算,确定反应管长度、数量及各反应管的通氯量,既可采用分段进气,又可通过控制各反应管道的温度、反应速度而达到反应均衡。

生产氯蜡70的工艺有悬浮法、溶剂法和光氯化法三种。悬浮法易于分离,但氯气利用率低,设备腐蚀严重,国外仅西德赫斯特公司采用此法。溶剂法工艺成熟,氯气利用率高,美国大洋、英国ICI、日本三工公司采用此法。国内沈阳化工厂、上海氯碱总厂、重庆天原化工厂也采用此法,但四氯化碳毒性大,回收困难,工艺流程长,生产成本偏高。

催化光氯化法取消了有毒物溶剂和降低了生产成本,目前国内绥化化工厂、佳木斯化工厂、哈尔滨化工二厂等采用此法生产。

211 反应原理

氯化反应通常分两步进行。第一步由氯分子吸收光能或热能产生活性氯原子。活性氯原子再夺取烷烃分子中的氢,生成烷基自由基和氯化氢,带自由基的烃与氯分子再发生第二步反应生成氯代烷和新的活性氯原子,然后活性氯原子再和氯代烷烃分子进行反应,生成带自由基的氯代烷烃和氯化氢,呈链锁反应。反应如下:

C l2+2hν=2C l3

C l3+RH=R3+HC l

R3+C l2=RC l+C l3

C l3+RC l=R3C l+HC l

R3C l+C l2=RC l2+C l3

反应的关键是使氯分子变成两个氯原子即取决于氯气被石蜡吸附过程的速度,其影响因素为通氯量、温度、压力、时间、催化剂等。石蜡的氯化反应控制最适宜的温度十分重要。反应温度偏低,氯分子得以活化的数目少,反应速率慢,生产周期长,氯气利用率低;反应温度升高,氯化石蜡发生热解脱掉HC l同时产生生色基因-CH=CH-的副反应:

-CHC l-CH2-

-CH=CH-+HC l 温度越高,越能产生-CH=CH-生色基团,在兼顾产量、色泽和酸值情况下,反应温度初期应低些,随着反应的进行,粘度增大;温度逐步升高,粘度下降,有利于氯化反应。

在反应初期,为避免溶解氯过大而引发剧烈反应,氯通入量应小些,后期为避免产物难于处理,氯通入量也应减少。掌握准确通氯量是控制液温的关键。增加通氯量反应温度随之上升。反之,减少通氯量液温迅速下降。212 原料

石蜡,平均含碳数24~25,正构烷烃含量9815%以上,芳烃012%以下,色泽洁白。含铁量:无;水分:无;熔点:54~58℃;密度(78℃):<0.78。

氯气,纯度:99.5%以上;含水:0.06%以下。

用气化的液氯可生产色泽、稳定性均好的产品。

213 操作

21311 四氯化碳溶剂法

(1) 工艺条件

氯含量42%,采用常规方法,控制反应温度100℃。

含氯量超过42%,加入四氯化碳溶剂,氯蜡42与溶剂的比为1∶3。

催化剂:偶氮二异丁腈

(2)

 工艺流程

(3) 操作过程

石蜡在氯化前贮存在加热贮槽内,在反

应器内加料后通入氯气和开夹套蒸汽进行加热氯化达70%的含氯量,四氯化碳作为溶剂,回收后再用。用冷却水维持正常的反应温度。当达到反应终点,从氯化器移入中间贮罐。尾气进入吸收塔用水吸收制成盐酸。

氯蜡以连续洗涤和汽提操作完成分离和精制。氯化液水洗后将洗涤水与氯蜡和四氯化碳分离。回收四氯化碳经干燥后再用。洗水用于吸收氯化氢。

经冷却、汽提从塔底制得的氯烃70再经

研磨、过筛,包装成袋出厂。21312 催化光氯化法

石蜡用泵输入第一号反应器,从塔上部进料,液体向下流动,将第一、二号反应器投入预热的定量石蜡后,再投入2%的偶氮二异丁腈催化剂。液氯经汽化罐汽化后进入第一反应器内,控制反应温度为70~85℃。随氯化反应温度升高逐渐提高塔温至100~105℃。从第二号反应器顶部出来的剩余氯从第一号反应器下部进入反应器,进行逆流接触反应。反应后的氯化石蜡从塔底部流出,用泵输送到第二号反应器再进行氯化反应,从底部输出合格的氯烃70,反应时间25h 。测其密度为1.16,用干燥氮气吹酸,在脱酸釜内检测氯烃70酸值合格后,加入乙二醇二缩水甘油醚稳定剂,通过空气搅拌均匀后,放入铁盘中冷却、筛分,计量包装。

参考文献

1 梁玉梅1河南化工,1991(5):23~24,292 王宏力,等1河南化工,1988(1)3 杨葆生1增塑剂,1990(1):32~45

收稿日期 1997年11月7日

干法氟化铝的生产方法与制作流程

本技术公开了一种干法氟化铝生产方法,以由含铝原料制得的氢氧化铝,以磷化工企业副产氟硅酸制得氟化铵,再将所得氢氧化铝和氟化铵为原料,采用固气相反应法生产干法氟化铝。该方法简化了工艺流程、减少设备投资,提升品质、降低成本、增加了经济效益。 权利要求书 1.一种干法氟化铝生产方法,其特征在于:以由含铝原料制得的氢氧化铝,以磷化工企业副产氟硅酸制得氟化铵,再以所得氢氧化铝和氟化铵为原料,采用固相混合反应法生产干法氟化铝;具体的,氢氧化铝、氟化铵的制备及固-气相反应按下述步骤操作: (1)、氢氧化铝制备 工序1:含铝物料的预处理 以煤矸石、粉煤灰或其它含铝矿物、尾矿、废渣中的任意一种戓两种或两种以上的混合物为原料;将上述含铝原料粉碎、研磨得细度为80~200目的含铝物料粉体; 工序2:浸出 将工序1所得粉体与液体于酸浸反应器中混合,所述液体为水或来自酸浸残渣洗涤工序的洗出液及加入适量无机酸的混合液,混合后控制工艺条件进行浸出反应,使所述物料中的铝、

铁转化为硫酸盐或氯化物而进入液相,反应结束,经过滤收得含有硫酸盐或氯化物的酸浸出液和主要成份为二氧化硅的酸浸残渣;将所得酸浸出液送铝、铁分离工序,将酸浸残渣洗涤后送硅综合利用工序,洗涤酸浸残渣所得洗出液返回酸浸工序用作配料液; 工序3:分离、提取 步骤1:将工序2所得酸浸出液送铝分离工序,于还原反应器中与还原剂混合,通过反应使酸浸出液中的Fe3+转化为Fe2+,反应结束,过滤得还原后液和还原残渣;还原后液送沉铝工序,还原残渣返回还原工序循环使用; 步骤2:将步骤1所得还原后液送沉铝工序,以碱调整体系pH值,使酸浸出液中的铝转化为氢氧化铝; 反应结束,经过滤、洗涤得粗氢氧化铝滤饼和含有Fe2+的沉铝后液;所得沉铝后液送铁沉淀工序进一步分离出其中的铁,送氧化铁工业颜料或聚合硫酸铁生产工序用作生产原料; 步骤3:将步骤2所得粗氢氧化铝滤饼送碱溶工序,在碱溶反应器中与水混合,再加氢氧化钠; 正常运行情况下与碳分母液处理工序回收的氢氧化钠溶液混合,使粗氢氧化铝中的铝转化为铝酸钠而进入液相,铁以氢氧化铁或铁酸钠物相留存于滤渣中,由此实现铝与铁的进一步分离;所得含铁滤渣与步骤2所述由沉铝后液沉淀所得铁沉淀物合并,送氧化铁工业颜料或聚合硫酸铁生产工序用作生产原料;所得铝酸钠溶液依次送脱硅、除铁工序; 步骤4:将步骤3所得铝酸钠溶液送脱硅及除铁工序,先加脱硅剂进行脱硅反应,脱硅反应结束,经过滤得硅酸钙滤渣和脱硅后液,硅酸钙滤渣收集存放;再将脱硅后液送除铁工序,加除铁剂除铁;除铁反应结束,依次经压滤、精密过滤得纯净的铝酸钠溶液; 步骤5: ①碳沉析生产工业氢氧化铝

第七章 费托合成

第七章 F-T合成试题 一、填空题 1、F T合成是和在1925年首先研究成功的。 2、20世纪50年代初期,中国建成了一个F-T合成工厂即。 3、F-T合成可能得到的产品包括和,以及、。 4、F-T合成催化剂分为和。 5、复合催化剂采用制成。 6、沉淀铁系催化剖根据助剂和载体的不同,主要分为、和。 7、液态油通过蒸馏分离可得到和。 8、SASOL一厂工艺经净化后的煤制合成气分两路进入 和。 9、在F-T合成中,反应器类型有多种,在SASOL厂生产中使用了和两种装置。 10、催化剂组成为9.0~Fe;0. 9%K/硅沸石-2,硅沸石-2具有,具有较小的, 有利于。 11、熔铁型催化剂主要应用的装置是。 12、铁催化剂是活性很好的催化剂,用在固定床反麻器的中压合成时,反应温度为。 13、柴油的十六烷值约为,汽油的辛烷值为。 14、F-T合成原料气中新鲜气占,循环气占。 15、SASOL二厂工艺流程中净化后的合成气经反应后,合成产物首先.将反应生成 的和冷凝下来。水经氧化得和,液态油经、 可得汽油。 16、在SMFT合成模试工艺流程中一段反应器为,采用;二段反应器为,采用, 对一段产物进行改质以提高油品质量和收率,简化后处理工序。 17、F-T合成采用沉淀铁催化剂的固定床反应器,空速为;采用熔铁催化剂的气流床 反应器,空速为。 二、名词解释 1、F-T合成法 2、MFT合成

3、SMFT合成 4、担载型催化剂 5、熔铁型催化剂的制备原理 6、积炭反应 三、判断正误 1、单一催化剂主要有钌、镍、铁和钴.其中只有钌被用于工业生产。() 2、SASOL一厂的合成产物中的蜡经减压蒸馏可生产中蜡(370~500℃)和硬蜡(>500℃), 可分别加氢精制。() 3、SASOL一厂工艺的气流床反应器主要产物为柴油。() 4、F-T合成反应温度不宜过高,一般不超过400℃,否则易使催化剂烧结,过早失去 活性。() 5、当合成气富含氢气时,有利于形成烷烃。() 6、用含碱的铁催化剂生成含氧化合物的趋势较大,采用低的V(H2)/V(CO)比,高压和大空 速条件进行反应,有利于醇类生成,一般主要产物为甲醇。() 7、积炭反应为放热反应。() 8、从动力学角度考虑,温度升高,反应速度加快,同时副反应速度也随之加快。() 9、SASOL一厂流程中将冷凝后的余气先脱除C02.二厂流程中将余气直接分离,然后进 行深冷分离成富甲烷、富氢、C2和C3~C4馏分,可以获得高产值的乙烯和乙烷组分。 () 10、浆态床反应器结构复杂,投资费用高。() 11、气流床反应器由反应器和催化剂沉降室组成。() 12、原料气中的(CO+H2)含量高,反应速度快,转化率高,但反应放出的热量少,易使 催化剂床层温度降低。() 四、回答问题 1、简述F-T合成的反应原理。 2、F-T合成应中铁系催化剂包括哪些类型? 3、简述复合催化剂的作用。 4、简述F-T合成反应需在等温条件下进行的原因。

【CN110295043A】氟化物红色荧光体的制造方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910168061.1 (22)申请日 2019.03.06 (30)优先权数据 2018-057331 2018.03.24 JP (71)申请人 国立大学法人新泻大学 地址 日本新泻县 申请人 信越化学工业株式会社  N-发光股份有限公司 (72)发明人 户田健司 盐原利夫 兼子达朗  工藤嘉昭  (74)专利代理机构 北京三友知识产权代理有限 公司 11127 代理人 褚瑶杨 庞东成 (51)Int.Cl. C09K 11/61(2006.01) (54)发明名称 氟化物红色荧光体的制造方法 (57)摘要 本发明的课题在于提供一种能够在不使用 氟化氢的情况下制造的氟化物红色荧光体的制 造方法。氟化物红色荧光体的制造方法的特征在 于,包括如下工序:作为钾源和氟源准备氟化钾 的工序;作为硅源准备聚硅氮烷、TEOS、SiO 2、硅 酸钾中的至少一种的工序;作为锰源准备 K 2MnF 6、Mn(HPO 4)2、Mn(CH 3COO )2·4H 2O、MnO (OH)2、Na 2MnF 6或KMnO 4中的至少一种的工序;准 备弱碱性、中性或酸性的溶液的工序;将所述钾 源和氟源、所述硅源、所述锰源以及所述溶液进 行混合的工序;以及使所述混合物反应而析出 K 2SiF 6的工序,并且,在准备所述溶液的工序中, 使用由除HF和KHF 2以外的化合物制备的酸性、中 性或弱碱性的溶液。权利要求书2页 说明书12页 附图16页CN 110295043 A 2019.10.01 C N 110295043 A

奥美拉唑中间体的合成

奥美拉唑中间体的合成 摘要:奥美拉唑又名洛塞克,是第一个应用于临床的质子泵抑制剂。有抑酸作用强,持续时间长,有高度选择性,副作用小等特点。用于治疗胃及十二指肠溃疡、返流性食管炎、卓一艾氏综合症等。2-硝基-4-甲氧基-氨基苯为奥镁拉唑重要的中间体,本文改变原有反应条件改进,以廉价的扑热息痛为原料,经甲基化、硝化、还原等反应,最终得到2-硝基-4-甲氧基-氨基苯。通过反复实验,得到橙红色结晶的2-硝基-4-甲氧基-氨基苯,收率70%。该工艺简单,条件温和,原料为工业常见产品,且价格便宜,设备简单,操作方便,收率较高,适合工业化生产 关键词:奥美拉唑,抗溃疡药,2-硝基-4-甲氧基-氨基苯 1. 前言 奥美拉唑是优良的胃酸分泌抑制剂。是瑞典ASq'RA公司研究开发的一种质子泵抑制剂类抗溃疡药。该药能高度选择性抑制胃部H+ K+- ATP 酶(质子泵) ,从阻止胃酸分泌形成至最后的过程,无论对人体的基础胃酸,还是其它形式的应激胃酸分泌均可产生强有效的抑制作用。同时具有疗效显著,复发率低,副作用少且发生率低,服用方便等特点,临床应用日趋广泛,可治疗十二指肠溃疡,胃溃疡和反流性食管炎,并可消除难治性溃疡危象,因此也得到临床上的重视。奥美拉唑于1988年上市,到1992年已有65个国家批准使用。国内用于临床依靠进口,国家“九五”计划把该药列为二类新药进行开发。奥美拉唑(omeprazole),化学名为5-甲氧基-2-{[(4-甲氧基-3,5-二甲基-2-吡啶基)甲基]亚磺酰基}-1H-苯并咪唑,分子式C17H19N3O3S ,分子质量为345.41,化学结构式如图1所示。纯净的奥美拉唑为白色结晶或结晶性粉末,溶于二氯甲烷、三氯甲烷,几乎不溶于乙腈和乙酸乙酯,熔点为147~150 ℃。奥美拉唑呈弱碱性,在pH值为7~9 的条件下化学稳定性好。其合合成方法较多,常用2,3,5-三甲基吡啶经氧化、硝化、甲氧基化、在乙酐中重排、碱性水解、氯化亚砜氯化,与2-巯基-5-甲氧基苯并咪唑缩合成硫醚,最后氧化制得。其合成方法在文献[1-3]中有详细解说。 图 1 奥美拉唑结构式 2-硝基-4-甲氧基-氨基苯是合成奥美拉唑的重要中间体,其合成方法国内外有很多种,其中以廉价的扑热息痛为原料,改进原有的反应条件,经过反复实验,以混酸为第二步反应的硝化剂,经过不同的混酸比浓度,得到较好的实验效果,使2-硝基-4-甲氧基-氨基苯收率提高,从而使奥美拉唑的收率提高。参照文献[1]设计如下所示的路线来制备。 具体的合成路线如下:

费托合成工艺学习分析报告本科

关于煤间接液化技术“费-托合成”的学习报告报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: (1) (2) 生成烯烃: (3) (4) 副反应 生成含氧有机物: (5) (6) (7) 生成甲烷: (8) 积碳反应: (9) 歧化反应:

(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T合成液体产物C数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe催化剂也可用Co系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图错误!未指定顺序。反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 固定床反应器(Arge反应器) 由于催化剂到冷却界面的传热距离限制,固定床式反应器要想法设法增大表面积。早期由于管式反应器直径过大而采取了层炉式反应器,然而由于散热和催化剂利用效率的问题而不被广泛使用。随后的发展趋势就是反应器内“管”越来越多、越来越细;1955年Sasol公司开发了内含2052根直径50毫米“管”的固定床反应器;1990年Shell公司开发了内含26150根直径26毫米“管”的反应器。而“管越多、越细”,反应器的效率和生产能力也越高(这点后面要提到)。 这种反应器优点易于操作运行,产品易于分离,适用于蜡生产;但是缺点也很明显,由于此类反应器温度分布不均,其温度需要控制在较低水平,影响反应速率和产率,以及因此带来的对于催化剂细度的要求,使得催化剂利用效率低,用量大;同时反应器由于承受压降厚度较大,铁催化剂定期更换要求复杂的网络结构,加大了设备成本。 浆态床反应器

费托合成

费-托合成(煤间接液化介绍,包括催化技术、反应器以及国内正在进行项目介绍) 间接液化概念 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。 煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T 命名的,简称F-T合成或费托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因

素而盛衰不定。费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费托合成技术工业化的国家。1992和1993年,又有两座基于天然气的费托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自

费托合成工艺学习报告(本科)

关于煤间接液化技术“费-托合成”的学习报告 报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: nCO+2n+1H2==C n H2n+2+nH2O(1) n+1H2+2nCO==C n H2n+2+nCO2(2) 生成烯烃: nCO+2n H2==C n H2n+nH2O(3) n H2+2nCO==C n H2n+nCO2(4) 副反应 生成含氧有机物: nCO+2n H2==C n H2n+nH2O(5) nCO+(2n?2)H2=C n H2n O2+(n?2)H2O(6) n+1CO+2n+1H2==C n H2n+1CHO+nH2O(7) 生成甲烷: CO+3H2==CH4+H2O(8) 积碳反应: CO+H2==C+H2O(9) 歧化反应: 2CO==C+C O2(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1

和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T 合成液体产物C 数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe 催化剂也可用Co 系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图1反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 2 46 5 3 1 1-合成气注入通道;2-均布段;3-冷却管道;4- 反应段;5-分离段;6-输出通道;(吴尧绘制)

奥美拉唑生产工艺规程完整

×××药业有限公司现行文件 奥美拉唑的生产工艺规程 文件编号:SOP-MF-301-00 起草人:技术员起草日期:年月日 审阅人:车间主任审阅日期:年月日 审核人:质保经理审核日期:年月日 批准人:总经理审批日期:年月日 执行日期:年月日 分发部门:质量保证部2份 生产技术部2份 设备部1份

目录 1、产品概述 2、原辅料、包装材料质量标准及规格 3、化学反应过程 4、生产流程图 5、工艺过程 6、中间体、半成品的质量标准和检验方法 7、技术安全与防火 8、综合利用与三废治理 9、操作工时与生产周期 10、劳动组织与岗位定员 11、设备一览表及主要设备生产能力 12、原材料、能源消耗定额和技术经济指标 13、物料平衡 附录 附页 奥美拉唑的生产工艺规程一:产品概述 (一)产品名称 1、中文名称:奥美拉唑,别名洛赛克

2、英文名称:Omeprazole、Losec 3、化学名称:5-甲氧基-2-{[(4-甲氧基-3,5-二甲基-2-吡啶基)-甲 基]-亚磺酰基}-1H-苯并咪唑 4、分子式:C17H19N3O3S 5、分子式量:345.42 6、化学结构: 7、理化性质:本品为白色至类白色结晶性粉末,无臭,遇光易变色,熔点156℃。本品在二氯甲烷中易溶,在甲醇或乙醇中略溶,在丙酮中微溶,在水中不溶;在0.1mol/L氢氧化钠溶液中溶解。 (二)临床用途 ①消化性溃疡出血、吻合口溃疡出血。 ②应激状态时并发的急性胃黏膜损害,和非甾体类抗炎药引起的急性胃黏膜损伤; ③亦常用于预防重症疾病(如脑出血、严重创伤等)胃手术后预防再出血等; ④全身麻醉或大手术后以及衰弱昏迷患者防止胃酸反流合并吸入性肺炎。 (三)药理作用 本品是近年来研究开发的作用机制不同于H2受体拮抗作用的全新抗消化性溃疡药。它特异性地作用于胃粘膜壁细胞,降低壁细胞中的氢钾ATP酶的活性,从而抑制基础胃酸和刺激引起的胃酸分泌。由于氢钾ATP酶又称做"质子泵",故本类药物又称为"质子泵抑制剂"。 (四)包装规格要求及储藏 包装规格:胶囊剂:每个胶囊20mg。注射液:每支40mg。 储藏:密闭,在凉暗,干燥处保存。 二、原辅料、包装材料质量标准及规格

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923 首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费-托合成技术工业化的国家。1992 和1993年,又有两座基于天然气的费-托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费-托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费-托合成天然气液化工厂。 F-T合成的主要化学反应 F-T合成的主反应: 生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O 生成烯烃:nCO+(2n)H2 = CnH2n+nH2O 另外还有一些副反应,如: 生成甲烷:CO+3H2 = CH4+H2O 生成甲醇:CO+2H2 = CH3OH 生成乙醇:2CO+4H2 = C2H5OH+ H2O 积炭反应:2CO = C+CO2 除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。

国内外防腐蚀颜料开发变化调研调查报告

国内外防腐蚀颜料发展调研报告 添加时间: 2010-4-26 16:15:45 点击数: 582 前言 金属的腐蚀所造成的损失随着工业的发展也日趋严重。因此,防腐蚀方法始终是人们关心的课题。目前防腐蚀措施虽然很多,但应用最广的仍然是涂料保护方法。在这种方法中防锈颜料是影响保护效果的重要因素。传统的防锈颜料如红丹、铬酸盐、金属颜料等虽然性能优异但由于环保法规而受到限制,因而人们对低毒无公害防锈颜料的开发和研究更为关注。以下将对国内外防腐蚀颜料的开发及应用情况作系统介绍。 1 国内外防锈颜料的演变过程 1.1 金属腐蚀 腐蚀是包含阳极反应的电化学过程,腐蚀反应中,金属以离子形式进入溶液,阳极反应释放电子,阴极捕获电子发生阴极反应,以维持溶液中离子的电中性电化学腐蚀反应的必要条件是:(1)力学不稳定金属如钢铁; (2)离子型电解质导体,水或其它导电溶液,氢离子或溶解氧等电子接受体。 因此,需要控制可利用的电解质,最好的方法是用涂膜屏蔽,或减少电子接受体如氢离子和溶解氧的浓度。 1.2 传统防锈颜料 20世纪80年代前,防腐蚀涂料中防腐蚀颜料绝大部分采用含铅和铬的品种,包括红丹、黄丹、硅铬酸铅、铬酸锶、铬酸锌等。80年代,由于1983~1989年间长达7年之久的全球性经济大繁荣,刺激了颜料工业的发展。世界各地特别是北美和西欧环保法规和工业卫生条例日趋强化,一些有害于环境和生命的含铅、铬、镉等重金属颜料的生产,呈停滞不前和下降的趋势,表1列举了1984年美国和西欧的防锈颜料消费量。 表1 美国和西欧防锈颜料消费量及其比例 颜料名称 美国西欧 消费量/t 比例消费量/t 比例 红丹 1 350 3 19 700 38 铬酸锌 5 400 12 3 640 7 铬酸锶 1 800 4 1 560 3 碱式硅铬酸铅 4 050 9 高铅酸钙 锌粉27 000 60 19 700 38 磷酸锌 1 800 4 6 240 12 云母氧化铁 其他 3 600 8 1 040 2 45 000 100 52 000 100 从表1可看出,西欧消费的防锈颜料中,有48%含有铅和铬,而美国仅有28%含有铅和铬,其中红丹用量很少仅占3%,相比之下日本防锈涂料采用红丹比例高达45%以上。 1.3 环保 铅中毒是由酸溶性铅引起的。所谓酸溶性铅是指在人体胃液的酸度条件下可以被溶解并被人体吸收的铅离子。含铅汽车尾气、各种含铅颜料、工矿区的铅尘和铅烟以及铅含量超标的食品、

第14章-奥美拉唑生产工艺0615

第十四章奥美拉唑生产工艺 学习目标: 掌握采用追溯求源法进行奥美拉唑化学合成工艺路线设计的思路,了解各条工艺路线的优缺点。掌握奥美拉唑及主要中间体的生产工艺原理、工艺条件的选择及控制,熟悉奥美拉唑及主要中间体的生产工艺过程,了解奥美拉唑的三废处理方法。 奥美拉唑在临床上被广泛用于治疗胃酸相关性的疾病,如胃溃疡、十二指肠溃疡等,是20世纪消化性溃疡治疗史上的新里程碑。从不同起始原料出发,可设计出多条奥美拉唑的化学合成工艺路线。本章以国内广泛采用的合成路线为例,介绍奥美拉唑的生产工艺原理及其过程。 14.1 概述 奥美拉唑为第一个上市的质子泵抑制剂,能特异性地作用于胃壁细胞膜中的H+/K+-ATP 酶(质子泵),从而阻断胃酸分泌的终端步骤,产生强力的抑制胃酸分泌作用。其作用特异性高,作用强大且时间长,临床广泛用于治疗胃酸相关性的疾病,如胃溃疡、十二指肠溃疡、反流性食管炎和卓-艾氏综合征等。 14.1.1 奥美拉唑的理化性质 奥美拉唑(Omeprazole),化学名称为:5-甲氧基-2-{[(4-甲氧基-3,5-二甲基-2-吡啶基)-甲基]-亚磺酰基}-1H-苯并咪唑,英文化学名称为:5-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1H-benzimidazole。化学结构式如图14-1所示。结构中亚磺酰基(亚砜基)的S原子所连的两个取代基不同,S原子具有手性,亚砜具有光学活性。最初上市的药物奥美拉唑是外消旋体。 图14-1 奥美拉唑的结构(1) 奥美拉唑为白色或类白色结晶性粉末;无臭;遇光易变色。在二氯甲烷中易溶,在水、甲醇或乙醇中微溶;在0.lmol/L氢氧化钠溶液中溶解。几乎不溶于乙腈和乙酸乙酯,熔点为156℃。奥美拉唑呈弱碱性,在pH值=7~9的条件下化学稳定性好。 14.1.2 奥美拉唑的临床应用 奥美拉唑为苯并咪唑类质子泵抑制剂,能特异性地作用于胃壁细胞膜中的H+/K+-ATP酶(质子泵),从而阻断胃酸分泌的终端步骤,产生强力的抑制胃酸分泌作用。奥美拉唑是一种无活性的前药,是非竞争性酶抑制剂。口服后,由于其为弱碱性化合物,在pH值为7的环境中不易解离,为非活性状态。通过细胞膜进入胃壁细胞分泌小管的高酸性环境中,在H+的影响下,依次转化为螺环中间体,次磺酸和次磺酰胺。次磺酰胺是奥美拉唑的活性代谢物,其结构中的硫原子可与H+/K+-ATP酶α-亚单位上的半胱酸残基(cys)中的巯基共价结合形成二硫键,不可逆地使H+/K+-ATP酶失活,导致胃壁细胞内的H+不能转运到胃腔中,阻断了胃

我国氟化钠生产技术的现状及发展趋势

我国氟化钠生产技术的现状及发展趋势 徐建国周贞锋应盛荣 (衢州市鼎盛化工科技有限公司 浙江衢州 324000) 摘要:介绍了我国氟化钠的市场需求现状和生产技术现状,并对氟化钠的现有工业化生产技术进行总结和比较,着重介绍了氟硅酸全循环法生产工艺技术新成果,认为该成果用于磷肥厂处理含氟尾气有很好的经济和环保价值。 关键词:氟化钠 工艺技术 氟硅酸 磷肥 1、引言 氟化钠是一种离子化合物,化学式为NaF。室温下为无色晶体或白色固体,无臭味。其晶体结构类似氯化钠,Na+及F?离子占八面体配位。熔点993℃,沸点1695℃,密度2.558克/厘米3(41℃)。氟化钠微溶于水,温度升高对溶解度影响不大。如100克的水0℃时能溶解氟化钠4克,100℃时也只能溶解5克。水溶液呈弱碱性[1]。 氟化钠(NaF)是一种重要的化工原料,用途十分广泛,它是许多氟化合物中氟离子的主要来源。与氟化钾相比,它不但价格便宜,也较少发生潮解。主要用途:作为制造其它氟化物的原料;用作于农业杀虫剂、杀菌;也作为木材防腐剂、水处理剂、轻金属氟盐处理剂、冶炼精炼保护剂、核工业中用作UF3吸附剂;钢和其它金属的清洗液,助焊剂及焊剂;陶瓷、玻璃及搪瓷的熔剂和遮光剂,制革工业的生皮和表皮处理剂;胶合剂的防腐剂;在黑色金属表面处理中作磷化促进剂,使磷化液稳定,改良磷化膜性能;在密封材料和刹车片生产中作为添加剂,起增加耐磨度的作用;在机械刀具镶钢中作助焊剂,增加焊接强度;在混凝土中作为添加剂,增强

混凝土的耐腐性。 2、氟化钠生产状况 2.1、市场需求现状和趋势 近几年来,由于国内氟化钠使用行业的快速发展,氟化钠的需求也得到较快增长,在冶炼精炼、耐磨材料、黑色金属表面处理、陶瓷和玻璃制造等行业都有明显增长,但在农业杀虫剂杀菌剂、木材防腐剂等方面基本上已被其它原料代替。由于各行业对原材料的要求越来越高,氟化钠产品在市场细分中也呈多样化需求的发展态势。2009国内市场对氟化钠的需求量约为8万吨。 中国每年出口小部分氟化钠;从氟化钠的出口价格看,2007年为584.1美元/吨,2008年涨到901.3美元/吨,2009年因世界金融危机的影响价格回落至710美元/吨,但还比2007年高;根据《中国化工信息》的统计数据,2009年氟化钠出口为6066吨。 2.2、生产企业及产能 目前我国有氟化钠生产企业40多家,生产规模在5000吨以上的生产企业有十多家,最大产能10000吨;但由于近几年磷肥企业加大了氟资源的回收利用,一些磷肥厂也开始生产氟化钠,这部分的产能未能掌握;根据抽样调查,截止2009年底国内氟化钠的年生产能力已超过10万吨。下表为氟化钠国内主要生产企业及其产能: 表1 氟化钠国内主要生产企业产能情况

费托合成(F-T)综述

综述 F-T合成的基本原料为合成气,即CO和H2。F-T合成工艺中合成气来源主要有煤、天然气和生物质。以煤为原料,通过加入气化剂,在高温条件下将煤在气化炉中气化,然后制成合成气(H2+CO),接着通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。煤间接液化工艺主要有:Fischer-Tropsch 工艺和莫比尔(Mobil)工艺。 典型的Fischer-Tropsch工艺指将由煤气化后得到的粗合成气经脱硫、脱氧净化后,根据使用的F-T合成反应器,调整合成气的H2/CO 比,在反应器中通过合成气与固体催化剂作用合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加工成汽油、柴油、航空煤油、石蜡等成品。F-T合成早已实现工业化生产,早在二战期间,德国的初产品生产能力已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692?1744 )。二战之后,由于石油的迅述兴起,间接液化技术一度处于停滞状态。期间,南非由于种族隔离制度而被“禁油”,不得不大力发展煤间接液化技术。但是随着70年代石油危机的出现,间接液化技术再次受到强烈关注。同时,由间接液化出来的合成液体燃料相比由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。80年代后,国际上,一些大的石油公司开始投资研发GTL相关技术和工艺[1]。目

耐火云母带

耐火云母带 耐火云母带耐火云母带简称云母带,是一种耐火绝缘材料,按用途可分为:电机用耐火云母带、耐火电缆用耐火云母带。按结构分为:双面带、单面带、三合一带、双膜带、单膜带等。按云母又可分为:合成云母带、金云母带、白云母带。 常温性能:合成云母带最好、白云母带次之、金云母带较差. 耐火云母带 高温下绝缘性能:合成云母带最好、金云母带次之、白云母带较差.耐高温性能:合成云母带氟金云母带,不含结晶水,熔点1375℃,安全裕度大,耐高温性能最好,金云母在800℃以上释放出结晶水,耐高温性能次之、白云母600℃释出结晶水,耐高温性能较差.耐火电缆用耐火云母带 耐火电缆用耐火云母带是一种高性能的云母绝缘制品,具有优良的耐高温性能和耐燃烧性能。粉云母带常态时具有良好的柔软性,适用于各种耐火电缆中主要耐火绝缘层。在遇明火燃烧时基本不存在有害烟雾的挥发,所以该产品用于电缆不但有效,而且很安全。 1合成云母耐火云母带 合成云母是以氟离子代替羟基,在常压条件下合成出的尺寸大、晶型完整的人工云母。合成云母带是将合成云母抄制成的云母纸为主要材料,再用粘合剂将玻璃布粘贴在一面或两面而制成的。将玻璃布粘贴在云母纸一面的叫做“单面带”,两面都粘贴的叫“双面带”。在制造过程中,将几个结构层次粘合在一起后,再经过炉子烘干,然后收卷,再分切成不同规格的带子。 合成云母带除具有天然云母带的特性即:膨胀系数小、介电强度大、电阻率高和介电常数均匀以外,其主要特点是耐热等级高,可达到A级耐火水平(950一1000℃)

合成耐火云母带耐温大于1000℃,厚度范围在0.08~0.15mm,最大供应宽度920mm 。 A. 双面合成耐火云母带:以合成云母纸为基材,用玻纤布作双面补强材料,用硅树脂粘合剂粘合,是制造耐火型电线电缆最理想的首选材料。耐火性能最好,推荐重点工程使用。 B.单面合成耐火云母带:以合成云母纸为基材,用玻纤布作单面补强材料,是制造耐火型电线电缆最理想的首选材料。耐火性能好,推荐重点工程使用。 2金云母耐火云母带 金云母耐火云母带具有良好的耐火性、耐酸碱性和抗电晕、抗辐射的特性,且有很好柔软性及拉伸强度,适合于高速缠绕。耐火实验表明:包绕了金云母带的电线电缆,在温度840℃电压1000V的条件下可保证90min小时不发生击穿。 金云母玻纤耐火带被广泛应用于高层建筑、地下铁道、大型电站及重要的工矿企业等与防火安全和消防救生有关的地方,例如,消防设备及紧急向导灯等应急设施的供电线路和控制线路。由于其价格低廉,是做耐火线缆的首选材料。 A.双面金云母耐火云母带:以金云母纸为基材,用玻纤布作双面补强材料,主要用于耐火电缆的芯线与外皮之间做耐火绝缘层。耐火性能较好,推荐普通工程使用。 B.单面金云母耐火云母带: 以金云母纸为基材,用玻纤布作单面补强材料,主要用于耐火电缆做耐火绝缘层。耐火性能较好,推荐普通工程使用。 C.三合一金云母耐火云母带:以金云母纸为基材,用玻纤布和无碳性薄膜作单面补强材料,主要用于耐火电缆做耐火绝缘层。耐火性能较好,推荐普通工程使用。 D.双膜金云母带:以金云母纸为基材,用塑料薄膜作双面补强,主要用于电机绝缘层。耐火性能差,耐火电缆严禁使用。 E.单膜金云母带:以金云母纸为基材,用塑料薄膜作单面补强,主要用于电机绝缘层。耐火性能差,耐火电缆严禁使用。

奥美拉唑的生产工艺流程框图

图14-4 4-甲氧基-2-硝基乙酰苯胺的合成工艺流程框图 原图: 文字描述:对氨基苯甲醚、冰乙酸和水混合,搅拌溶解。加入碎冰,0~5℃加入乙酐,搅拌至结晶析出。冰浴冷却下加入浓硝酸,60~65℃保温10min,冷却至25℃,结晶完全析出后,抽滤,冰水洗至中性,干燥,得黄色晶体状产物,mp114~116℃,收率约84%。 修改图:

图14-5 4-甲氧基-2-硝基苯胺的合成工艺流程框图 原图: 文字描述:将4-甲氧基-2-硝基乙酰苯胺原料加入Claisen碱液中,加热回流15min,加水,再回流15min,冷却至0~5℃结晶,抽滤,冰水洗3次,得砖红色固体产物,mp122~123℃,收率约88%。 修改图:

图14-6 4-甲氧基邻苯二胺的合成工艺流程框图 原图: 文字描述:SnCl2与浓盐酸混合溶解,20℃下加入4-甲氧基-2-硝基苯胺,搅拌反应3h。滴加40%NaOH液至pH=14,控温不超过40℃。用乙酸乙酯萃取2次,水洗有机相,无水Na2SO4干燥。减压脱出溶剂,黄色油状物冷冻结晶,得产物4-甲氧基邻苯二胺,收率约72%。 修改图:

图14-7 5-甲氧基-1H-苯并咪唑-2-硫醇制备工艺流程框图 原图: 文字描述:搅拌下将4-甲氧基邻苯二胺和CS2加到95%EtOH和KOH的混合液中,加热回流3h。加入活性炭回流,趁热过滤。滤液搅拌下滴加乙酸至pH=4~5析出结晶,冷却至4~5℃使析出完全。抽滤,水洗至中性,干燥,得土黄色产物结晶,mp254~256℃,收率约78%。 修改图:

图14-8 2,3,5-三甲基吡啶-N-氧化物的制备工艺流程框图原图: 文字描述:将2,3,5-三甲基吡啶与H2O2、HAc混合,搅拌下缓缓升温至80~90℃,反应24h。减压蒸除溶剂,冷却,用40%的NaOH调节pH =14,用CHCl3萃取3次,无水Na2SO4干燥。减压浓缩,50~60℃真空干燥,得黄色固体产物,收率80.3%。 修改图:

费托合成工艺及研究进展

费托合成 定义 费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,它以合成气(CO和H2)为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为主的液体燃料的工艺过程。1923年由就职于Kaiser Wilhelm 研究院的德国化学家Franz Fischer 和Hans Tropsch开发,第二次世界大战期间投入大规模生产。 其反应过程可以用下式表示:nCO+2nH2─→[-CH2-]n+nH2O 副反应有水煤气变换反应H2O + CO → H2 + CO2 等。 一般来说,烃类生成物满足Anderson-Schulz-Flor分布。 工艺 费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等部分。合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。反应器采用固定床或流化床两种形式。如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。此外,近年来正在开发的浆态反应器,则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与一氧化碳之摩尔比为0.58~0.7的合成气。铁系化合物是费托合成催化剂较好的活性组分。 研究进展 传统费托合成法是以钴为催化剂,所得产品组成复杂,选择性差,轻质液体烃少,重质石蜡烃较多。其主要成分是直链烷烃、烯烃、少量芳烃及副产水和二氧化碳。

50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所需的设计参数。南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床Synthol反应器,并于1980年和1982年相继建成两座年产 1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。此两套装置皆采用氮化熔铁催化剂和流化床反应器。反应温度320~340℃,压力2.0~2.2MPa。产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧化合物6%。产品组成中轻质烃较多,适宜于生产汽油、煤油和柴油等发动机燃料,并可得到醇、酮类等化学品。 目前,以煤为原料通过费托合成法制取的轻质发动机燃料,在经济上尚不能与石油产品相竞争,但对具有丰富廉价煤炭,而石油资源贫缺的国家或地区解决发动机燃料的需要,费托合成法也是可行的。 另外,近年来南非SASOL公司改良费托合成,其创造的巨大经济效益,正在吸引全世界的瞩目。 2006年4月,利用中科院山西煤炭化学研究所自创技术(费托合成、煤基液体燃料合成浆态床技术),由煤化所牵头联合产业界伙伴内蒙古伊泰集团有限公司、神华集团有限责任公司、山西潞安矿业(集团)有限责任公司、徐州矿务集团有限公司等和科研机构共同出资组建成立了中科合成油技术有限公司。实现了中国的煤炭间接液化技术的真正产业化。

耐高温高压云母片

云母片是一种饮食多硅白云母、石英、石榴石和金红石等成分的电工绝缘材料,其色泽呈半金属、金属光泽。下面由安徽锐光电子科技有限公司为您介绍下耐高温高压的云母片,希望能给您带来帮助。 高温高压是个相对概念,在生活中,温度上100度就认为是高温了,压力高于大气压就是高压了,如高压锅相对(大气)压力只有0.8MPa,温度只有117℃。工业上高压锅炉的标准是压力9.8MPa,温度510℃。 所谓材料的耐高温高压,是指所用(选)的材料在相应的温度下,仍能保有需要的机械强度。实际上即使在同样的温度和压力下,材料的受力方式不同,对材料的材质要求也不同。例如:相对压力-0.1MPa 的真空容器,材料的材料机械强度大约相当于1MPa相对压力的容器。

任何材料在不同温度下,机械强度都有所改变。所以选择高温高压材料时,首先确定需要的机械强度,然后选择在工作温度下可以保有较强强度的材料,再根据材料在工作温度下的强度和工作压力设计相应的机械结构(如容器壁厚),这样做出来的东西就能在高温高压下按规定使用。国家标准GB 150.2-2011 《压力容器》第2部分:材料就是针对高温高压容器材料选择的指导。 在我国,白云母加热至100~600℃时,弹性和表面性质均不变;在700~800℃后,在脱水、机械、电气性能上会有所改变,弹性丧失,变脆;在1050℃时,其结构会被破坏。而与此相对的是金云母,在700℃左右时,电气性能较白云母好。

安徽锐光电子科技有限公司是一家集云母产品研发、生产、销售等为一体的高科技现代企业,地处安徽省界首市西城经济开发区。本公司专业生产天然、合成云母制品,云母电容器;主要用于军工;航天;家用电器等作为原辅材料,云母制品近1000吨,高频云母电容器近10万只,云母双色水位计组件5万套,拥有冲床、精雕机等生产设备60多台套。雄厚的技术力量及研发团队,应用国外先进的管理模式,为客户量身定做,多层次,持续满足不同客户的需求。更

相关文档