文档库 最新最全的文档下载
当前位置:文档库 › 第三章 内积空间、正规矩阵、Hermite矩阵

第三章 内积空间、正规矩阵、Hermite矩阵

厦大《高代》讲义第9章+内积空间

第九章内积空间Inner Product Space

§9.1 目的与要求 ?掌握内积、内积空间的概念 ?熟练掌握欧氏空间的度量概念,如长度、距离、夹角、正交等 ?熟练掌握Cauchy-Schwarz不等式、三角不等式的含义及应用 厦门大学数学科学学院 网址: https://www.wendangku.net/doc/f89279535.html,

?定义:设V 是R 上线性空间,存在映射( ,):, 使得对任意x , y , z ∈V, c ∈R,有 (1). ( x , y ) = ( y , x ) (2). ( x + y , z ) = ( x ,z ) + (y , z ) (3). ( cx , y ) = c ( x , y ) (4). ( x , x ) ≥ 0.且等号成立当且仅当x = 0.则称在V 上定义内积( , ). V 称为内积空间. 有限维实内积空间称为Euclid 空间(欧氏空间). R V V →?对称线性非负(实)内积空间

?定义:设V 是C 上线性空间,存在映射( , ):使得对任意x , y , z ∈V, c ∈C,有 (1).(2). (x + y , z ) = (x , z ) + ( y , z ) (3). (cx , y ) = c ( x , y ) (4). (x , x ) ≥ 0.且等号成立当且仅当x = 0. 则称在V 上定义内积( , ). V 称为复内积空间.有限维复内积空间称为酉空间. ?注1:对任意实数a , , 所以复内积空间与实内积空间的定义是一致的, 统称为内积空间. ?注2:在复内积空间中, (,)(,) x y y x =a a =(,)(,) x cy c x y =R V V →?(复)内积空间

第二章 内积空间

第二章 内积空间 目的:在线性空间中引入向量的长度、向量之间夹角等度量概念,深化对线性空间、线性变换等的研究。 §1 内积空间的概念 定义2-1 设V 是实数域R 上的线性空间。如果对于V 中任意两个向量βα,,都有一 个实数(记为()βα,)与它们对应,并且满足下列条件(1)-(4),则实数()βα,称为向量βα,的内积。 (1) ()()αββα,,=; (2)),(),(βαβαk k =,(R k ∈) (3)),(),(),(γβγαγβα+=+,(V ∈γ) (4)()0,≥αα,当且仅当θα=时,等号成立。 此时线性空间V 称为实内积空间,简称为内积空间。 例2-1 对于n R 中的任二向量()n x x x X ,,,21 =,()n y y y Y ,,,21 =,定义内积 ()∑==n i i i y x Y X 1 ,,n R 成为一个内积空间。内积空间n R 称为欧几里得(Euclid )空间,简称 为欧氏空间。由于n 维实内积空间都与n R 同构,所以也称有限维的实内积空间为欧氏空间。 例2-2 如果对于n n R B A ?∈?,,定义内积为()∑== n j i ij ij b a B A 1 ,,,则n n R ?成为一个内积 空间。 例2-3 ],[b a R 定义dx x g x f x g x f b a ? = )()())(),((,则可以验证))(),((x g x f 满足内积 的条件,从而],[b a R 构成内积空间。 内积()βα,具有下列基本性质 (1) ()()βαβα,,k k =,(R k ∈);(2) ()()()γαβαγβα,,,+=+; (3) ()()0,,==βθθα。

酉矩阵

正交矩阵、正规矩阵和酉矩阵 在数学中,正规矩阵是与自己的共轭转置交换的复系数方块矩阵,也就是说,满足 其中是的共轭转置。 如果是实系数矩阵,那么条件简化为其中是的转置矩阵。 矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。 在复系数矩阵中,所有的酉矩阵、埃尔米特矩阵和斜埃尔米特矩阵都是正规的。同理,在实系数矩阵中,所有的正交矩阵、对称矩阵和斜对称矩阵都是正规的。两个正规矩阵的乘积也不一定是正规矩阵 酉矩阵 n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。 一个简单的充分必要判别准则是: 方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。即酉矩阵的逆矩阵与其伴随矩阵相等。 酉方阵在量子力学中有着重要的应用。酉等价是标准正交基到标准正交基的特殊基变换。

若一 n 行 n 列的复矩阵U满足 其中为n阶单位矩阵,为U的共轭转置,为酉矩阵或译幺正矩阵。即,矩阵U为酉矩阵,当且仅当其共轭转置为其逆矩阵: 。 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 幺正矩阵U不改变两个复向量的内积: 若为n阶方阵,则下列条件等价: 1.是酉矩阵 2.是酉矩阵 3.的列向量构成内积空间C n上的一组正交基 4.的行向量构成内积空间C n上的一组正交基 酉矩阵的特征值都是绝对值为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。 酉矩阵是正规矩阵,由谱定理知,幺正酉矩阵U可被分解为 其中V是酉矩阵,Σ是主对角线上元素绝对值为1的对角阵。 对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。

【精品】第三章函数逼近及最小二乘法

第三章函数逼近及最 小二乘法

第三章 函数逼近及最小二乘法 §1 内积空间及函数的范数 定义1 设)(x ρ是定义在(a,b)上的非负函数,且满足: 1)dx x x n b a )(ρ?存在 (n=0,1,2,…) 2)对非负的连续函数g(x),若 0)()(=?dx x x g b a ρ 则在(a,b)上有g(x)=0,则称)(x ρ为(a,b)上的权函数。 定义2 设f(x),g(x)为[a,b]上的连续函数,)(x ρ为(a,b)上的权函数,称 ),(g f = dx x x g x f b a )()()(ρ? 为函数f(x)与g(x)在[a,b]的内积。特别当)(x ρ=1时,上式变为 ),(g f = dx x g x f b a ?)()( 设],[b a C 表示在区间[a,b]上连续函数的全体,那么定义了内积之后,],[b a C 就变成了一个内积空间。显然有 ),(f f = dx x x f b a )()(2ρ? 为一个非负值,因此我们有 定义3 对],[)(b a C x f ∈,称 ),()(2f f x f = 为)(x f 的欧氏范数(又称2-范数)。

其实,我们还经常用到函数的其他范数。比如, ) ( max ) (x f x f b x a≤ ≤ ∞ =dx x x f x f b a ) ( ) ( ) ( 1 ρ ?= n维向量空间中两个向量正交的定义也可以推广到连续内积空间] , [b a C中. 定义4 若] , [ ) ( ), (b a C x g x f∈,满足 ) , (g f = dx x x g x f b a ) ( ) ( ) (ρ ?=0 则称函数f(x)与g(x)在[a,b]上带权) (x ρ正交. 若函数族 ), ( , ), ( ), ( 1 x x x n ? ? ?满足 ? ? ? ? = > ≠ = =b a k k j k j k j A k j dx x x x ) ( ) ( ) ( ) , (? ? ρ ? ? 则称函数族{})(x k?是[a,b]上带权)(x ρ的正交函数族.特别地,若1 = k A ,就称之为标准正交函数族. 由高等数学的知识,我们知道, Foureir级数展开中函数族 1,cosx,sinx,cos2x,sin2x,……即为] , [π π -上带权) (x ρ=1的正交函数族. 如同线性代数中的向量组线性无关概念一样,在此也有函数组的线性无关概念. 定义5设函数组) ( , ), ( ), ( 1 1 x x x n- ? ? ? 在[a,b]上连续,若 ) ( ) ( ) ( 1 1 1 1 = + + + - - x a x a x a n n ? ? ? 当且仅当0 1 1 = = = = - n a a a 时成立,则称函数族 ) ( , ), ( ), ( 1 1 x x x n- ? ? ? 在[a,b]上是线性无关的.否则称为线性相关函数组。

内积空间的基本概念汇总

第四章 Hilbert 空间 一 内积空间的基本概念 设H 是域K 上的线性空间,对任意H y ,x ∈,有一个中K 数 ),(y x 与之对应,使得对任意H z ,y ,x ∈;K ∈α满足 1) 0)y ,x (≥;)y ,x (=0,当且仅当 0x =; 2) )y ,x (=_ __________)x ,y (; 3) )y ,x ()y ,x (αα=; 4) )z ,y x (+=)z ,x (+)z ,y (; 称)(,是H 上的一个内积,H 上定义了内积称为内积空间。 定理1.1设H 是内积空间,则对任意H y x ∈,有: |)y ,x (|2 )y ,y )(x ,x (≤。 设H 是内积空间,对任意H x ∈,命 ),(||||x x x = 则||||?是H 上的一个范数。 例 设H 是区间],[b a 上所有复值连续函数全体构成的线性空间,对任意H y x ∈,,定义 dt t y t x y x b a ?=________ )()(),( 则与],[2b a L 类似,), (y x 是一个内积,由内积产生的范数为 2 12 ) |)(|(||||?=b a dt t x x 上一个内积介不是Hilbert 空间。

定理 1.2 设H 是内积空间,则内积),(y x 是y x ,的连续函数,即时x x n →,y y n →,),(),(y x y x n n →。 定理1.3 设H 是内积空间,对任意H y x ∈,,有以下关系式成立, 1) 平行四边形法则: 2 || ||y x ++2 || ||y x -=2)||||||(||2 2 y x +; 2) 极化恒等式: ),(y x =4 1 (2 || ||y x +- 2 || ||y x -+ 2 || ||iy x i +- )||||2 iy x i - 定理1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数。 二 正交性,正交系 1 正交性 设H 是内积空间,H y x ∈,,如果0),(=y x ,称x 与y 正交,记为y x ⊥。 设M 是H 的任意子集,如果H x ∈与M 中每一元正交,称x 与M 正交,记为M x ⊥;如果N M ,是H 中两个子集, 对于任意 ,M x ∈,N y ∈y x ⊥,称M 与 N 正交,记 N M ⊥。设M 是H 的子集,所有H 中与M 正交的元的全体

24 内积空间中的正交性

2.4 内积空间中的正交性 Inner Product Spaces and Orthogonality 在三维空间中,如右图1所示任取一平面M ,空间中的每一个矢量x 必能分解成两个直交的向量和,其中一个向量0x 在平面M 上,另一个向量z 与平面M 垂直,即0x x z =+, 0x z ⊥.这种向量的分解形式,在一般的内积空间是否成立? 图2.4.1 三维空间向量的分解,向量0x x z =+,其中0x z ⊥ 2.4.1 正交分解 定义2.4.1 正交 设X 是内积空间,,x y X ∈,如果(,)0x y =,则称x 与y 正交或垂直,记为x y ⊥.如果X 的子集A 中的每一个向量都与子集B 中的每一个向量正交,则称A 与B 正交,记为A B ⊥.特别记x A ⊥,即向量x 与A 中的每一个向量垂直. 定理2.4.1 勾股定理 设X 是内积空间,,x y X ∈,若x y ⊥,则2 2 2 x y x y +=+. 证明 2 (,)x y x y x y +=++ (,)(,)(,)(,)x x x y y x y y =+++ (,)(,)x x y y =+ 22 x y =+.□ 注1: 在内积空间中,是否存在222 x y x y +=+ ?x y ⊥?显然由 2 x y +(,)(,)(,)(,)x x x y x y y y =+++22 2Re(,)x y x y =++, 可知在实内积空间中2 2 2 x y x y x y +=+?⊥成立. 定义2.4.2 正交补Orthogonal complement

设X 是内积空间,M X ?,记{|,}M x x M x X ⊥=⊥∈,则称M ⊥为子集M 的正交补.显然有{0}X ⊥=,{0}X ⊥=以及{0}M M ⊥= . 性质2.4.1 设X 是内积空间,M X ?,则M ⊥是X 的闭线性子空间. 证明 (1) M ⊥是X 的线性子空间 ,x y M ⊥?∈,,αβ∈K ,z M ?∈,有 (,)(,)(,)(,)(,)0x y z x z y z x z y z αβαβαβ+=+=+=, 于是x y M αβ⊥+∈,因此M ⊥是X 的线性子空间. (2) M ⊥是X 的闭子空间 设{}n x M ⊥?,且依范数0n x x →()n →∞,于是z M ?∈,有 0(,)(lim ,)lim(,)0n n n n x z x z x z →∞ →∞ ===. 因此0x M ⊥∈,即M ⊥是X 的闭子空间.□ 注2: 由于完备度量空间中的子空间完备的充要条件是子空间闭,因此在Hilbert 空间中(完备的内积空间),任意子集M 的正交补M ⊥是完备的子空间,即Hilbert 空间的正交补M ⊥也是Hilbert 空间. 定义2.4.3 正交分解 设M 是内积空间X 的子空间,x X ∈,如果存在0,x M z M ⊥∈∈,使得0x x z =+,则称0 x 为x 在M 上的正交投影或正交分解. 引理 2.4.1 设X 是内积空间,M 是X 的线性子空间,x X ∈,若存在y M ∈,使得(,)x y d x M -=,那么x y M -⊥. 证明 令z x y =-,若z 不垂直于M ,则存在1y M ∈,使得1(,)0z y ≠,显然10y ≠. 因为α?∈K ,有 2 1 11(,)z y z y z y ααα-=-- 2 1111(,)(,)(,)z y z z y y y αααα=--+ 21111(,)[(,)(,)]z z y y z y y ααα=--- 特别取111(,) (,) y z y y α= ,则可得

第二章内积空间

第二章 内积空间 在以前学习的线性代数中,我们知道在n R 中向量的长度、夹角和正交等性 质是用内积刻划的,在本章中将内积的概念推广到一般线性空间,从而讨论一般线性空间中向量的度量性质。定义了内积的线性空间称为内积空间,常用的内积空间有欧氏空间与酉空间。 §2.1欧氏空间与酉空间 一、欧氏空间与酉空间 定义1 设V 是R 上的线性空间,如果V 中每对向量,x y ,按某一对应法则都有唯一确定的实数(,)x y 与之对应且满足: ),(),(.1x y y x = ),(),(.2y x y x λ=λ,λ?∈R ),(),(),(.3z y z x z y x +=+,z V ?∈ 0),(.4≥x x 等号成立当且仅当x θ= 则称(,)x y 为V 的内积。称定义了上述内积的有限维线性空间()V R 为欧几里得空间,简称欧氏空间,称21 ),(x x x =为x 的长度或模。 例1 在[]n P x 中定义1 0((),())()()f x g x f x g x dx =?,(),()[]n f x g x P x ∈,则[]n P x 构成一个欧氏空间。 例2 在n n ?R 中对,n n A B ??∈R 定义T (,)tr()A B AB =,则n n ?R 为欧氏空间。 证明 因为,,,n n A B C λ??∈∈R R (1) T T T T (,)tr tr[()]tr (,)A B AB AB BA B A ==== (2) T T (,)tr tr (,)A B AB AB A B λλλλ=== (3) T T T (,)tr[()]tr[](,)(,)A B C A B C AC BC A C B C +=+=+=+

酉矩阵和正交矩阵的性质和应用

正交矩阵与酉矩阵的性质和应用 0 前言 (1) 1 欧式空间和正交矩阵 (2) 1.1 欧式空间 (2) 1.2 正交矩阵的定义和性质 (2) 1.2.1 正交矩阵的定义和判定 (2) 1.2.2 正交矩阵的性质 (3) 2正交变换的定义和性质 (12) 2.1正交变换定义的探讨 (12) 2.2正交变换的判定 (14) 2.3正交变换的性质 (15) 3正交矩阵的应用 (17) 3.1正交矩阵在线性代数中的应用 (17) 3.2利用正交矩阵化二次型为标准形 (22) 3.2.1 对称矩阵可对角化的相关理论证明 (22) 3.2.2 对称矩阵对角化的具体方法及应用举例 (23) 3.2.3利用正交矩阵化简直角坐标系下的二次曲面方程 (25) 3.3正交矩阵在矩阵分解中的作用 (26) 3.4正交矩阵在方程组的求解中的应用 (35) 4 酉空间和酉矩阵 (38) 4.1 酉空间 (38) 4.1.1 酉空间的定义 (38) 4.1.2 酉空间的重要结论 (38) 4.2 酉矩阵 (40) 4.2.1 酉矩阵的定义 (40) 4.2.2 酉矩阵的性质 (40) 5酉矩阵的应用 (48) 5.1酉矩阵在矩阵的分解中的应用 (48) 5.2 利用酉矩阵化正规矩阵为对角形矩阵 (54) 6 正交矩阵与酉矩阵 (57) 7结论 (60) 参考文献 (62) 致谢 (63)

0前言 正交矩阵是一类特殊的实方阵,酉矩阵是一类重要的复矩阵,它们的一些特殊性质,使得它在不同的领域都有着广泛的应用,也推动了其它学科的发展. 随着科学技术的迅速发展,特别是计算机的广泛应用,矩阵问题特别是特殊矩阵的性质及其构造越来越受到科学工作者以及工程人员的重视.它不仅局限于一个数学分支,而且许多理工方法和技术的发展就是矩阵理论的创造的应用与推广的结果. 在矩阵理论的研究中,正交矩阵与酉矩阵在线性代数、优化理论、计算方法等方法都占有重要的地位.戴立辉等(2002)对正交矩阵进行了详细的研究,得到了正交矩阵的若干性质;2005年,雷纪刚在《矩阵理论与应用》中给出了正交矩阵和酉矩阵的关系并证明了酉矩阵就是等距变换;2006年,苏育才在《矩阵理论》中介绍了酉矩阵的概念的推广和酉矩阵的一系列性质;2008年,吴险峰在《正交矩阵的进一步探究》中给出了正交矩阵和酉矩阵的一些性质定理,这些都为正交矩阵和酉矩阵的应用奠定了基础. 在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域──酉矩阵.下面将通过矩阵理论的深入研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果.

第三章 内积空间,正规矩阵,Hermite矩阵

复矩阵(向量)的4个一元运算 ()?A=(a ij )∈C m ×n , 复矩阵(向量)的一元运算的性质 11221122k A k A k A k A +=+ ; T T T A k A k A k A k 22112211)(+=+方阵A=(a ij )∈C n ×n 的迹定义为其所有对角元之和: 行列式的性质 方阵乘积的行列式公式 重要特殊矩阵 A=(a ij )∈C n ×n 称为对角矩阵,如果?i ≠j,a ij =0; A称为上(下)三角矩阵,如果?i>(<)j,a =0.

特征值,特征向量 λ∈C称为A=(a ij )∈C n×n的一个特征值,如果存在0≠x∈C n,使得Ax=λx.此时,x称为A的特征向量. 特征值、特征向量续 三角矩阵A的所有对角元组成A的谱: σ(A)={a,…,a}. 线性相关与线性无关 定义1.1.3 (p.5): F上线性空间V中的向量组{α,…,α}是线性相关的充要条件是:在数域F 线性映射与线性变换 关于线性映射与线性变换的定义,请看教本第24页§3.1: 欧式空间,酉空间 §3.2: 标准正交基,Schmidt方法 第三章内积空间,正规矩阵,Hermite矩阵

§3.1: 欧式空间,酉空间 从解析几何知二平面向量 内积的概念 定义3.1.1:设V是实数域R 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着欧式空间的概念 例3.1.1:?α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈R n ,定义标准内积:(α,β)=a b +…+a b , 欧氏空间例1 例3.1.2:?α=(a 1,a 2)T ,β=(b 1,b 2)T ∈R 2,定义内积(R 2×R 2到R的映射): 欧氏空间例2 在R 2中至少可定义两个不同的内积. 今后讨论R n 时都用例3.1.1中定义的内积. 关于例1和例2的注

泛函分析第4章 内积空间

第四章 内积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋范线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋范线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的内积描述的,因此在本章我们引入了一般的内积空间的概念。 4.1 内积空间的基本概念 首先回忆几何空间3R 中向量内积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 2 2 1 ()k k x t ==∑,13 22 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的内积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 内积我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的内积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

矩阵分析

I. QUESTION I Summarize the known constructions of orthogonal matrices and unitary matrices. Give some numerical examples for each construction. 1》正交矩阵:是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这 里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵不一定是实矩阵。实正交矩阵可以看做是一种特殊的酉矩阵,但存在一种复正交矩阵,复正交矩阵不是酉矩阵。 正交矩阵有以下几种等价定义及其判定 (满足的结构性质) 定义1.1 A 为n 阶实矩阵,若E AA =',则称A 为正交矩阵. 定义1.2 A 为n 阶实矩阵,若E A A =',则称A 为正交矩阵. 定义1.3 A 为n 阶实矩阵,若1-=A A ,则称A 为正交矩阵. 定义1.4 A 为n 阶实矩阵,若A 的n 个行(列)向量是两两正交的单位向量,则称A 为正交矩阵. 实例: ??? ???-θθθθ c o s s i n s i n c o s ?? ????1001 2》酉矩阵:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基, 则U 是酉矩阵。酉矩阵是正交矩阵往复数域上的推广。 酉矩阵的相关性质: 设有矩阵 ,则 (1)若是酉矩阵,则的逆矩阵也是酉矩阵; (2)若是酉矩阵,则也是酉矩阵; (3)是酉矩阵的充分必要条件是,它的个列向量是两两正交的单位向量。

一个简单的充分必要判别准则是: 酉矩阵的共轭转置和它的逆矩阵相等 酉矩阵基本性质:(A 是酉矩阵) 1.A 的行列式的模等于1 2.H A A =-1,11)()(--=H H A A 3.1-A 也是酉矩阵,两个n 阶酉矩阵的乘积也是酉矩阵 4.A 的每个(列)行向量(看作酉空间n C 的向量)是单位向量;不同的两个(列)行向量是酉矩阵正交的。 实例: ?? ? ? ??++ββαα s i n c o s 00s i n c o s i i (βα,为任意角度) II. QUESTION II A Hadamard matrix of order n is an n n ?matrix with elements in {}1,1+- such that T n n HH nE ?=where T H is the transpose of H and n E is the identity matrix of order n .This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for any order? Please list a Hadarmard matrix of order n with 20n ≤ if such a matrix exists. Q2 Design two Hadamard matrices []12 ;;; n H h h h =and 12; ; [; ]n G g g g = of order 2m n = (where m is odd) such that: 12/2; ;{}; n h h h is orthogonal to 12/2 ; ;{}; n g g g ;and

03 矩阵的对角化与Jordan标准形

第三讲矩阵的对角化与Jordan标准形 对任何线性空间,给定基后,我们对元素进行线性变换或线性运算时,只需用元素的坐标向量以及线性变换的矩阵即可,因此,在后面的内容中着重研究矩阵和向量。 对角矩阵的形式比较简单,处理起来较方便,比如求解矩阵方程=时,将矩阵A对角化后很容易得到方程的解。对角化的过程实Ax b 际上是一个去耦的过程。以前我们学习过相似变化对角化。那么,一个方阵是否总可以通过相似变化将其对角化呢?或者对角化需要什么样的条件呢?如果不能对角化,我们还可以做哪些处理使问题变得简单呢? 一、特征值与特征向量 1. 定义:对m阶方阵A,若存在数λ,及非零向量(列向量)x,使 =λ,则称λ为A的特征值,x为A的属于特征值λ的得Ax x 特征向量。 ?特征向量不唯一 ?特征向量非零

?(I A)x 0λ-=有非零解,则det(I A)0λ-=,称det(I A)λ-为A 的多项式。 [例1]122A 212221?? ??=??????,求其特征值和特征向量。 [解] 122 det(I A)2120221 λ---λ-=-λ--=--λ- 2(1)(5)0λ+λ-= 121λ=λ=- 35λ= 属于特征值1λ=-的特征向量 (I A)x 0--= 1232222220222ξ???? ????ξ=???? ξ???????? 1230ξ+ξ+ξ= 11 223 12ξ=ξ?? ξ=ξ??ξ=-ξ-ξ ? 可取基础解系为 11x 01????=??-???? 20x 11?? ??=??-???? 属于5λ=的特征向量 (5I A)x 0-= 1234222420224--ξ???? ????--ξ=???? --ξ???????? 123ξ=ξ=ξ 可取基础解系为 31x 11????=?????? 2. 矩阵的迹与行列式

泛函分析题1.6内积空间答案

泛函分析题1_6内积空间p75 1.6.1 (极化恒等式) 设a是复线性空间X上的共轭双线性函数,q是由a诱导的二次型,求证:?x, y∈X,有 a(x, y) = (1/4) · ( q(x + y) -q(x-y) + i q(x + i y) -i q(x-i y)). 证明:?x, y∈X, q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y)) = 2 (a(x, y) + a(y, x)), 将i y代替上式中的y,有 q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x)) = 2 (-i a(x, y) + i a( y, x)), 将上式两边乘以i,得到 i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)), 将它与第一式相加即可得到极化恒等式. 1.6.2 求证在C[a, b]中不可能引进一种内积( · , · ),使其满足 ( f, f )1/2 = max a ≤x≤b| f (x) |(?f∈C[a, b] ). 证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的, 则范数|| · ||应满足平行四边形等式. 而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的, 因此,不能引进内积( · , · )使其适合上述关系. 范数|| · ||是不满足平行四边形等式的具体例子如下: 设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a), 则|| f || = || g || = || f + g || = || f –g || = 1, 显然不满足平行四边形等式. 1.6.3 在L2[0, T]中,求证函数x# | ?[0, T]e- ( T-τ)x(τ) dτ| ( ?x∈L2[0, T] )在单位球面上达到最大值,并求出此最大值和达到最大值的元素x. 证明:?x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有 | ?[0, T]e- ( T-τ)x(τ) dτ|2≤ (?[0, T] (e- ( T-τ))2dτ) (?[0, T] ( x(τ))2dτ) = ?[0, T] (e- ( T-τ))2dτ = e- 2T ?[0, T]e 2τdτ= (1-e- 2T )/2. 因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2. 前面的不等号成为等号的充要条件是存在λ∈ ,使得x(τ) = λ e- ( T-τ). 再注意|| x || = 1,就有?[0, T] (λ e- ( T-τ))2dτ= 1. 解出λ= ±((1-e- 2T )/2)- 1/2. 故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时, 该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2. 1.6.4 设M, N是内积空间中的两个子集,求证:M?N ?N⊥?M⊥. 证明:若x∈N⊥,则?y∈N,(x, y) = 0. 而M?N,故?y∈M,也有(x, y) = 0. 因此x∈M⊥.所以,N⊥?M⊥.

正交矩阵和酉矩阵对比

在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域上就是酉矩阵.本文通过矩阵理论的研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果. 正交矩阵是一类重要的实矩阵,由于它的一些特殊性质,使得它在不同的领域都有着广泛的作用,也推动了其它学科的发展.本文从矩阵理论的角度,探讨正交矩阵的常用性质以及正交矩阵在数学方面的一些应用。 以酉矩阵的定义为基础,对酉矩阵的性质等进行研究,通过对这些问题的研讨,为酉矩阵的构造奠定了基础.在实际应用方面,若要应用酉矩阵解决实际问题,快速地构造一个酉矩阵就显得及其重要. 本文对酉矩阵的性质及构造展开研究. 根据矩阵理论, 通过查阅图书、电子书库, 以及对以前的知识进行归纳总结, 深入理解, 进行深入的研究, 从而对酉矩阵有了新的认识, 总结一些结论. 在代数性质方面包括:酉矩阵的特征根、对角化、判断方法及酉矩阵的等价条件等. 在运算性质方面包括:酉矩阵的逆、转置矩阵、方幂、数乘、矩阵乘、伴随矩阵等是否仍为酉矩阵. 在酉矩阵的构造方面:以酉矩阵的定义为基础, 对酉矩阵的性质等进行研究, 通过对这些问题的探讨, 为酉矩阵的构造奠定了基础. 在实际应用方面, 若要应用酉矩阵解决实际问题, 快速地构造出一个酉矩阵就显得极其重要, 本文给出了构建酉矩阵的五种方法, 并对应相应的构造方法给出证明. 通过本文的研究对酉矩阵的构造有了进一步的认识.

内积空间与希尔伯特空间

2.3 内积空间与希尔伯特空间 通过前面的学习,知道n 维欧氏空间就是n 维线性赋范空间的“模型”,范数相当于向量的模,表明了线性赋范空间的代数结构.对于三维向量空间,我们知道向量不仅有模,而且两个向量有夹角,例如θ为向量α和β的夹角时有:cos αβ θαβ ?= 或者cos αβαβθ?=,其中αβ?表示两个向量的数量积(或点积或内积),α表示向量的模.于是便有了直交性、直交投影以及向量的分解等概念,这些均反映了空间的“几何结构”.通过在线性空间上定义内积,可得到内积空间,由内积可导出范数,若完备则为Hilbert 空间. 2.3.1 内积空间 定义1.1 设U 是数域K 上的线性空间,若存在映射( , )??:U U ?→K ,使得,,x y z U ?∈, α∈K ,它满足以下内积公理: (1) (,)0x x ≥;(,)00x x x =?=; 正定性(或非负性) (2) (,)(,)x y y x =; 共轭对称性 (3) (,)(,)(,)x z y x y z y αβαβ+=+, 线性性 则称在U 上定义了内积( , )??,称(,)x y 为x 与y 的内积,U 为K 上的内积空间(Inner product spaces ).当=K R 时,称U 为实内积空间;当=K C 时,称U 为复内积空间.称有限维的实内积空间为欧几里德(Euclid spaces )空间,即为欧氏空间;称有限维的复内积空间为酉(Unitary spaces )空间. 注1:关于复数:设z a bi =+∈C ,那么z oz =;(cos sin )z r i θθ=+其中θ为辐射角、r z =;2 z z z ?=;z z =;对于12,z z ∈C ,有1212z z z z ?=?. 注2:在实内积空间中,第二条内积公理共轭对称性变为对称性. 注3:在复内积空间中,第三条内积公理为第一变元是线性的,第二变元是共轭线性的. 因为(,)(,)(,)(,)(,)x y y x y x y x x y ααααα===?=,所以有 (,)(,)(,)x y z x y x z αβαβ+=+, 即对于第二变元是共轭线性的.在实内积空间中,第三条内积公理为第一变元、第二变元均为

第3讲 实内积空间

第3讲 实内积空间 内容:1. 实内积空间 2. 正交基及正交补与正交投影 3. 内积空间的同构 4. 正交变换与对称变换 在线性空间中,元素(向量)之间的运算仅限于元素(向量)的线性运算.但是,如果以向量作为线性空间的一个模型,则会发现向量的度量(即长度)与向量间的位置关系在线性空间的理论中没有得到反映,而这些性质在许多实际问题中却是很关键的.因此,将在抽象的线性空间中引进内积运算,导出内积空间,并讨论正交变换与正交矩阵及对称变换与对称矩阵. §1 内积空间 在解析几何中,向量的长度与夹角等度量性质都可以通过向量的数量积来表示,而向量的数量积具有以下的代数性质:对称性),(),(αββα=;可加性 ),(),(),(γβγαγβα+=+;齐次性R k k k ∈?=),,(),(βαβα;非负性0),(≥αα,当且仅当0=α时,0),(=αα.以数量积为基础,向量的长度与夹角可表示为: ),(ααα=,β αβαβα?>=<),(,cos .可见数量积的概念蕴涵着长度与夹角的概念,将该概念推广至抽象的线性空间.

定义1.1 设V 是实线性空间,若对于V 中任意两个元素(向量)α和β,总能对应唯一的实数,记作),(βα,且满足以下的性质: (1) 对称性 ),(),(αββα= (2) 可加性 ),(),(),(γβγαγβα+=+ (3) 齐次性 R k k k ∈?=),,(),(βαβα (4) 非负性 0),(≥αα,当且仅当0=α时,0),(=αα. 则称该实数是V 中向量α和β的内积. 称内积为实数的实线性空间V 为欧几里得(Euclid)空间,简称为欧氏空间.称定义了内积的线性空间为内积空间. 例 1.1 在n 维向量空间n R 中,任意两个向量:T n x x x ),,,(21 =α,T n y y y ),,,(21 =β,若规定: βαβαT n k k k n n y x y x y x y x ==+++=∑=12211),( , 则容易验证,这符合内积的定义,是n R 中向量α和β的内积.另外,若规定:∑==n k k k y kx 1),(βα,0>k ,同样可验证,这也 是n R 中向量α和β的内积. 由此可见,在同一个实线性空间的元素之间,可以定义不同的内积,即内积不是唯一的.从而,同一个实线性空间在不同内积下构成不同的欧氏空间. 例 1.2 在[]b a ,上连续的实函数的实线性空间[]b a C ,中,

泛函分析第4章内积空间

第四章 积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的积描述的,因此在本章我们引入了一般的积空间的概念。 4.1 积空间的基本概念 首先回忆几何空间3R 中向量积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 2 2 1 ()k k x t ==∑,13 22 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

内积空间

内积空间 (2012-06-17 20:13:58) ▼ 内积空间 内积的几何解释 在数学上,内积空间是增添了一个额外的结构的矢量空间。这个额外的结构叫做内积或标量积。这个增添的结构将一对矢量与一个纯量连接起来,允许我们严格地谈论矢量的“夹角”和“长度”,并进一步谈论矢量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 关于内积空间的例子,请参看希尔伯特空间。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert Space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作酉空间,但这个词现在已经被淘汰了。在将内积空间称为酉空间的著作中,“内积空间”常指任意维(可数/不可数)的欧几里德空间。 定义 下文中的数量域F是实数域或复数域。 域F上的一个内积空间V备有一个正定、非退化以及共轭双线性形式,称作内积(F是[[实数域]]时,内积是一个正定、对称、非退化以及双线性形式): 满足以下公理: 共轭对称; 这个设定蕴含着对于所有, 因为. (共轭也写成加星号:,如同共轭转臵。)

?对第一个元素是线性算子; 由前两条可以得到: 因此实际上是一个半双线性形式。 ?非负性: (这样就定义了对于所有。说明内积是从点积抽象而来。) ?非退化: 从V到对偶空间V*的映射:是同构映射。 在有限维的矢量空间中,只需要验证它是单射。 当且仅当。 因此,内积空间是一个Hermitian形式。 V满足可加性: 对所有的,, 如果F是实数域R那么共轭对称性质就是对称性。 共轭双线性变成了一般的双线性。 备注。多数数学家要求内积在第一个参数上是线性的而在第二个参数上是共轭线性的,本文接受这种约定。很多物理学家接受相反的约定。这种改变是非实质性的,但是相反的定义提供了与量子力学中的狄拉克符号更平滑的连接,现在也偶尔被数学家使用。某些作者接受约定 < , > 在第一个分量是线性的而 < | > 在第二个分量上是线性的,尽管不普遍。 选择R或C作为内积空间的基域是有原因的。首先,这个域要包含一个有序关系的子域,否则就无法谈论“非负性”,因此它的特征必须是零。这样就排除了所有的有限域。基础域必须有额外的结构,比如有显著的自同构。 在某些情况下,必须考虑非负半定半双线性形式。这意味着 是只要求非负性,下面会展示如何处理它们。 例子 内积的一个简单的例子是实数的乘法 欧几里德空间R n和点积构成一个内积空间:

泛函分析第4章-内积空间

泛函分析第4章-内积空间

第四章 内积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋范线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋范线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的内积描述的,因此在本章我们引入了一般的内积空间的概念。 4.1 内积空间的基本概念 首先回忆几何空间3R 中向量内积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 22 1 () k k x t ==∑, 13 2 2 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的内积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 内积我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的内积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

相关文档
相关文档 最新文档