文档库 最新最全的文档下载
当前位置:文档库 › 施笃兹(Stolz)定理的推广及应用

施笃兹(Stolz)定理的推广及应用

施笃兹(Stolz)定理的推广及应用
施笃兹(Stolz)定理的推广及应用

等效电源定理

实验二等效电源定理 一、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。 三、实验设备

四、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。

高二楞次定律专题

专题1 楞次定律 一、基本概念 1、内容 2、对楞次定律的理解 ①谁阻碍谁——感应电流的磁通量阻碍产生感应电流的磁通量; ②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身; ③如何阻碍——原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”; ④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少。 3、楞次定律的另一种表述: 感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动(来时拒,去时留); ③阻碍原电流的变化(自感)。 4、感应电动势方向与电势高低的判断 楞次定律提示了判断感应电流方向的规律,即“感应电流的磁场总要阻碍引起感应电流磁通量的变化”。它的核心思想是“阻碍”,只有深刻理解了“阻碍”的含义,才能准确的把握定律的实质。 5、楞次定律与右手定则的关系是什么? 楞次定律与右手定则是一般与特殊的关系。一切电磁感应现象都符合楞次定律,而右手定则只适用于单纯由于部分导体做切割磁感线所产生的电磁感应现象。对于由磁感应强度B随时间变化所产生的电磁感应现象,只能由楞次定律进行分析。对于单纯是导体做切割磁感线所产生的电磁感应现象,既可运用右手定则判断,也可运用楞次定律判断,一般情况下,运用右手定则判断会更方便一些。 6、楞次定律的等价表述是什么? 楞次定律还有另一种等价的表述,即感应电流所产生的效果,总要反抗产生感应电流的原因。这里的原因可以是原磁通量的变化,也可以是引起磁通量变化的机械效应(如相对运动或使回路发生形变等);感应电流的效果,既可以是感应电流所产生的磁场,也可以是因为感应电流而导致的机械作用(如安培力等)。对于不需要判断感应电流方向,只需要判定由于电磁感应现象所产生的机械作用的问题,运用楞次定律的这一种表述进行判断通常比较简便。这时也可简化为“来拒去留”来判断。 7、楞次定律的实质是什么? 楞次定律是能量的转化和守恒定律在电磁感应现象中的具体表现。感应电

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

等效电源定理

等效电源定理 戴维南定理和诺顿定理分别能把含源二端网络等效成为一个实际电压源支路和实际电流源支路,故统称等效电源定理。 1、戴维南定理 任一线性含源二端网络,对外电路讲,可以等效为一个电压源和电阻串联的组合,电压源的电压为该网络的开路电压u oc,串联电阻等于该网络中所有独立源为零时的入端等效电阻R o。 2、诺顿定理 任一线性含源二端网络,对外电路讲,可以等效为一个电流源和电阻并联的组合,电流源的电流为该网络的短路电流isc,并联电阻等于该网络中所有独立源为零值时的入端等效电阻R o。 图(a)所示为一接有外电路的含源二端网络,根据替代定律,把R L 支路分别用流过它的电流i和两端电压u作为电压源等效替代,然后运用叠加定理分别得到 u=u oc-R o i=i sc-u/R o 等效电源电路如图(b)所示。 这两条定律所得到的电压源支路和电流源支路可以互相等效,所以人们多应用戴维南等效电压源定律,然后变化为诺顿等效电流源电路,如图(b)上、下图所示。戴维南定律对求解电路中某一支路的电压、电流和功率,特别是负载吸收的最大功率最为方便。求解时含源二端网络必须是线性的,待求支是线性的或非线性、有源或无源均可。

应用这两条定律,一般分三个步骤: (1)断开待求支路或将待求支路短路,分别求得开路电压u oc和短路电流i sc; (2)让全部独立源为零,求入端等效电阻R o。 (3)画出等效电源电路,接上待求支路,求解待求量。 3、用戴维南定律分析含受控源电路 根据受控源的性质和等效电源定律的要求,当用戴维南定律和诺顿定律分析受控源电路时,必须掌握: (1)当控制量在端口上时,它要随端口开路或短路变化,必须用变化了的控制量来表示受控源的电压或电流。 (2)当控制量在网络内,则在短路或开路时,必须保证受控源及其控制量同在含源二端网络内。 (3)受控源不能充当激励,具有电阻性。 在求戴维南等效电阻时,独立源为零,受控源和电阻一样要保留,故

楞次定律的推广

For personal use only in study and research; not for commercial use 楞次定律的内容:---------------------------------------------- 一.就磁通量而言,总是阻碍引起感应电流的磁通量(原磁通量)的变化 当原磁通量增加时,感应电流的效果就是阻碍原磁通量的增加, 当原磁通量减少时,感应电流的效果就是阻碍原磁通量的减少。 例1. 如图2所示,ab是一个可绕垂直于纸面的轴O转动的闭合矩形导线框,当滑动变阻器R的滑片P 自左向右滑行时,线框ab将() A.保持静止不动 B.逆时针转动 C.顺时针转动 D.发生转动,但因电源极性不明,无法确定转动方向 二.就相对运动而言,阻碍所有的相对运动,简称口诀“来据去留” 当磁铁插入线圈时,线圈中感应电流的磁场对磁铁产生斥力,阻碍其插入; 当磁铁拔出线圈时,线圈中感应电流的磁场对磁铁产生吸引力,阻碍其远离; 例1. 如图所示,当条形磁铁突然向闭合铜环运动时,铜环里产生的感应电流的方向怎样?铜环运动情况怎样? 解析:磁铁右端的磁感线分布如图16-3-9所示,当磁铁向环运动时,环中磁通量变大,由楞次定律可判断出感应电流磁场方向,再由安培定则判断出感应电流方向如图16-3-9所示.把铜环等效为多段直线电流元,取上、下两对称的小段研究,由左手定则可知其受安培力如图16-3-9,由此推想整个铜环受合力向右,故铜环将向右摆动.

图16-3-9 由于磁铁的靠近引起环中感应电流的产生,而电流(通电导体)在磁场中受到力作用. 巧妙变式巧解提示一:磁铁向右运动,使铜环产生感应电流如图16-3-10所示.此环形电流可等效为图 16-3-10中所示的小磁针.显然,由于两磁体间的推斥作用铜环将向右运动. 图16-3-10 巧解提示二:由于磁铁向右运动而使铜环中产生感应电流,根据楞次定律的另一种表述可知铜环将向右躲避以阻碍这种相对运动. 三.就闭合回路而言,致使回路的面积有收缩或扩张的趋势 四.收缩或扩张是为了阻碍闭合回路磁通量的变化。若穿过闭合回路的磁感线皆朝同一个方向,则磁通量增大时,面积有收缩趋势,磁通量减小时,面积有增大的趋势,简称口诀“增缩减扩”; 若穿过闭合回路的磁感线朝两个相反的方向都有,以上结论可能完全相反。当螺线管B中的电流减小时,穿过闭合金属圆环A的磁通量减小,这时A环有收缩的趋势,对这类问题特别要注意圆环面积对其合磁通量的影响(圆环面积越小,穿过圆环的磁通量越大) 五.就感应电流而言,感应电流总是阻碍原电流的变化,简称口诀“增反减同” 六.

(答案)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用答

第六章西姆松定理及应用 习题A 1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有() sin sin sin B C B C PL PM PN ∠+∠∠∠= + ,即 sin sin sin mn A ln B lm C ?∠=?∠+?∠再应用正弦定理,得mn a ln b lm c ?=?+?. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=?,90BFP CFP ∠=∠=?,90CEP AEP ∠=∠=?,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线. 又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线. 3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的 内心.由12CAI BAC ∠=∠,而()11 909022 CKI CIK B C BAC ∠=?-∠=?-∠+∠=∠,从而A ,I ,C , K 四点共圆. 又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线. 4.设正ABC △外接圆弧?AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为 D , E , F ,正三角形边长为a .由面积等式可得a b c h h h +-= .此式两边平方,得 ()2222324 a b c a b b c a c h h h h h h h h h a +++--=. 由 sin sin b a h h PAC PBD PA PB =∠=∠=,有a b h PA h PB ?=?. 同理,a c h PA h PC ?=?,故a b h PA h PB k PC ?=?=?. 又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF = ?,同理,a h PB a DE =?,b h PC a EF =?,即 a c b a c b h h h h h h k EF DE EF ???===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ? ---=--=?, 故222234 a b c h h h a ++=. 5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A e 与B e 另交于D ,A e 与C e 另交于E ,B e 与C e 另交于F . 注意到A e 与B e 中,公共弦MD ⊥连心线AB ;A e 与C e 中,公共弦ME ⊥连心线AC ;B e 与C e 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线. 习题B 1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.

楞次定律的应用·典型例题解析

楞次定律的应用·典型例题解析 【例1】如图17-50所示,通电直导线L和平行导轨在同一平面内,金属棒ab静止在导轨上并与导轨组成闭合回路,ab可沿导轨自由滑动.当通电导线L向左运动时 [ ] A.ab棒将向左滑动 B.ab棒将向右滑动 C.ab棒仍保持静止 D.ab棒的运动方向与通电导线上电流方向有关 解析:当L向左运动时,闭合回路中磁通量变小,ab的运动必将阻碍回路中磁通量变小,可知ab棒将向右运动,故应选B. 点拨:ab棒的运动效果应阻碍回路磁通量的减少. 【例2】如图17-51所示,A、B为两个相同的环形线圈,共轴并靠近放置,A线圈中通有如图(a)所示的交流电i,则 [ ] A.在t1到t2时间内A、B两线圈相吸 B.在t2到t3时间内A、B两线圈相斥 C.t1时刻两线圈间作用力为零 D.t2时刻两线圈间作用力最大 解析:从t1到t2时间内,电流方向不变,强度变小,磁场变弱,ΦA↓,B线圈中感应电流磁场与A线圈电流磁场同向,A、B相吸.从t2到t3时间内,

I A反向增强,B中感应电流磁场与A中电流磁场反向,互相排斥.t1时刻,I A 达到最大,变化率为零,ΦB最大,变化率为零,I B=0,A、B之间无相互作用力.t2时刻,I A=0,通过B的磁通量变化率最大,在B中的感应电流最大, 但A在B处无磁场,A线圈对线圈无作用力.选:A、B、C. 点拨:A线圈中的电流产生的磁场通过B线圈,A中电流变化要在B线圈中感应出电流,判定出B中的电流是关键. 【例3】如图17-52所示,MN是一根固定的通电长导线,电流方向向上,今将一金属线框abcd放在导线上,让线圈的位置偏向导线左边,两者彼此绝缘,当导线中电流突然增大时,线框整体受力情况 [ ] A.受力向右 B.受力向左 C.受力向上 D.受力为零 点拨:用楞次定律分析求解,要注意线圈内“净”磁通量变化. 参考答案:A 【例4】如图17-53所示,导体圆环面积10cm2,电容器的电容C=2μ F(电容器体积很小),垂直穿过圆环的匀强磁场的磁感强度B随时间变化的图线如图,则1s末电容器带电量为________,4s末电容器带电量为________,带正电的是极板________. 点拨:当回路不闭合时,要判断感应电动势的方向,可假想回路闭合,由楞次定律判断出感应电流的方向,感应电动势的方向与感应电流方向一致. 参考答案:0、2×10-11C;a;

电路分析-等效电源定理-实验报告

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效阻R0的测量 Uoc R0=── Isc 如果二端网络的阻很小,若将其输出端口短路,则易损坏其部元件,因此不宜用此法。 四、实验设备

五、实验容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/定理”线路。 (a) (b) 图 5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为定理中R0,然后令其

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

实验三 等效电源定理的应用

实验三等效电源定理的应用 一、实验目的 进一步学习MULTISIM的使用方法,学习测量有源二端线性网络的开路电压和短路电流及其除源网络的电阻的方法,验证戴维宁定理和诺顿定理的正确性,并加深对他们的理解和灵活运用。 二、实验原理 等效电源(戴维南定理)内容:任何一个有源二端线性网络都可用一个理想电压源和内阻为R0串联的电压源来等效代替,理想电压源的电压等于二端网络的开路电压U0,即将负载断开后两端的电压,内阻R0为将电源去除后的无源网络负载两端的等效电阻。 等效电源(诺顿定理)内容:任何一个有源二端线性网络都可用一个理想电流源和内阻为R0并联的电流源来等效代替,理想电流源的电流值等于二端网络的短路电流ISC,即将负载短路后的电流,内阻R0为将电源去除后的无源网络负载两端的等效电阻。 当电路中含有受控源时,电路的等效电阻可以用两种方法计算: (1)实验法:R0=U OC I SC (2)外加电源法:先除去电路中的独立电源,外加电源U T,R0=U T I T 所谓受控源,是指电压或电流受电路中其它部分的电压或电流控制的电压源或电流源。受控源是一种四端元件,它含有两条支路,一条是控制支路,另一条是受控支路。受控支路为一个电压源或为一个电流源,它的输出电压或输出电流(称为受控量),受另外一条支路的电压或电流(称为控制量)的控制,该电压源,电流源分别称为受控电压源和受控电流源,统称为受控源。 (a)(b)

(c)(d) 图2.12 受控源的电路符号上图中(a)、(b)为受控电压源,(c)、(d)为受控电流源。 三、实验内容 1.连接电路如图 2.13,将RL支路当作有源二端网络的负载电阻。 图2.13 等效电源定理验证电路模型1 图2.14 选择可变电阻器

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

高中物理 第四章 习题课一 楞次定律的应用练习(含解析)新人教版选修3-2

习题课一楞次定律的应用 1. 如图所示,老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是( B ) A.磁铁插向左环,横杆发生转动 B.磁铁插向右环,横杆发生转动 C.无论磁铁插向左环还是右环,横杆都不发生转动 D.无论磁铁插向左环还是右环,横杆都发生转动 解析:左环没有闭合,在磁铁插入过程中,不产生感应电流,故横杆不发生转动.右环闭合,在磁铁插入过程中,产生感应电流,小环受安培力,横杆将发生转动,故B正确. 2.(2019·甘肃兰州四中期中)(多选)如图所示,在光滑水平面上固定一条形磁铁,有一小球以一定的初速度向磁铁方向运动,如果发现小球做减速运动,则小球的材料可能是( CD ) A.铁 B.木 C.铜 D.铝 解析:铁球被磁化后受到引力做加速运动,选项A错误;磁场对木块无任何作用,木块做匀速运动,选项B错误.铜、铝是金属,金属小球可看做由许多线圈构成,在向磁铁方向运动过程中,由于条形磁铁周围的磁场是非匀强磁场,穿过金属线圈中的磁通量会发生改变,会产生感应电流,根据楞次定律的推论,来拒去留,它们的速度会减小,选项C,D正确. 3.(2019·江西龙南中学月考)(多选)如图所示,虚线矩形abcd为匀强磁场区域,磁场方向竖直向下,圆形金属环以一定的速度沿光滑绝缘水平面向磁场区域运动.图中给出的是圆环的四个可能到达的位置,则圆环速度可能为零的位置是( AD ) 解析:当圆形金属环进入磁场时,会受到磁场对它的阻力,所以A中圆环的位置的速度可能是零,选项A正确;圆环完全进入磁场后,圆环中不再产生感应电流,故它也不再受到安培力的作用,所以圆环在磁场中一旦进入后,其速度不可能为零,故选项B,C错误;在圆环运动出磁场时,磁场也会对圆环有一个吸引力阻碍它的离开,故D的位置速度可能为零,选项D正确. 4.如图所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行.当开关S接通瞬间,两铜环的运动情况是( A )

积分第一中值定理及其推广证明

积分第一中值定理及其推 广证明 Prepared on 22 November 2020

积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间 [,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成 立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在 [,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 成立。 推广的第一积分中值定理很重要,在这里给出两种证明方法。 证法1:由于函数()f x 在闭区间[,]a b 上是可积的,()g x 在[,]a b 上可积且不变号,令()()()x a F x f t g t dt =?,()()x a G x g t dt =?,很显然(),()F x G x 在[,]a b 上连续。并且

第6章 西姆松定理及应用(含答案)

第六章西姆松定理及应用 【基础知识】 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线). 证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有 β α γ βL M A P B N C 图6-1 PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠. 又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法: 如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则 PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=?,cos LC PC β=?,cos CM PC γ=?, cos MA PA α=?,cos AN PA β=?,cos NB PB γ=?.对ABC △,有 cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ ?????=??=???.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线. 西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略). 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】 1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键 例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作P E A C ⊥于E ,作P F B C ⊥于F .求证: 111 PF PD PE += .

(完整版)楞次定律练习题及详解

… … … 内 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … … … … 1.如图所示,固定长直导线A中通有恒定电流。一个闭合矩形导线框abcd与导线A在同一平面内,并且保持ab边与通电导线平行,线圈从图中位置1匀速向右移动到达位置2。关于线圈中感应电流的方向,下面的说法正确的是 A.先顺时针,再逆时针 B.先逆时针,再顺时针 C.先顺时针,然后逆时针,最后顺时针 D.先逆时针,然后顺时针,最后逆时针 【答案】C 【解析】 试题分析:由安培定则可得导线左侧有垂直纸面向外的磁场,右侧有垂直纸面向里的磁场,且越靠近导线此场越强,线框在导线左侧向右运动时,向外的磁通量增大,由楞次定律可知产生顺时针方向的感应电流;线框跨越导线的过程中,先是向外的磁通量减小,后是向里的磁通量增大,由楞次定律可得线框中有逆时针方向的电流;线框在导线右侧向右运动的过程中,向里的磁通量减小,由楞次定律可知产生顺时针方向的感应电流;综上可得线圈中感应电流的方向为:先顺时针,然后逆时针,最后顺时针。 故选C 考点:楞次定律的应用 点评:弄清楚导线两侧磁场强弱和方向的变化的特点,线框在导线两侧运动和跨越导线的过程中磁通量的变化情况是解决本题关键。 2.如图所示,在两根平行长直导线M、N中,通入同方向同大小的电流,导线框abcd和两导线在同一平面内,线框沿着与两导线垂直的方向,自左向右在两导线间匀速移动,在移动过程中,线框中感应电流的方向为 A.沿adcba不变 B.沿abcda不变 C.由abcda变成adcba D.由adcba变成abcda 【答案】B 【解析】 试题分析:线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动,在移动过程中,线框的磁通量先垂直纸面向外减小,后垂直纸面向里增大,由楞次定律可知,感应电流的磁场方向一直垂直纸面向外,由安培定则知感应电流一直沿adcba不变;故B正确 考点:楞次定律的应用 点评:难度中等,弄清楚两导线中间磁场强弱和方向的变化的特点是解决本题关键,应用楞次定律判断感应电流方向的关键是确定原磁场的方向及磁通量的变化情况 3.如图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与线框平面平行的水平直导线,导线中通以图示方向的恒定电流。释放线框,它由实线位置下落到虚线位置未发生转动,在此过程中: …

楞次定律的第二种表述与应用

楞次定律的第二种表述及应用 滦县二中(063700) 希海 现行高中物理课本中,没有专门指出楞次定律的第二种表述,但第二种表述的思想却给予了充分的渗透。教师在授课时一般也都补充这种表述并由实例让学生看到其解题的优越性:直接将原因与结果对应。这种表述是:感应电流的效果,总要反抗引起感应电流的原因。引起感应电流的原因当然最终都归结为穿过闭合电路的磁通量的变化,但我们可以理解得更直接一些:可以是机械运动、可以是磁场的变化、可能是线圈位置或形状的改变、可能是引起原磁场的电流的变化,等等。下面举几个小例题予以说明。 例1 如图1所示,四根同样的光滑的细铝杆a 、b 、c 、d 放在同一水平桌面上,其中c 、d 固定,a 、b 静止 地放在c 、d 杆上,接触良好,o 为回路的中 心,当条形磁铁的一端从o 点正上方向下方 迅速插向回路时,a 、b 杆将 A 、保持不动 B 、分别远离o 点 C 、分别向o 点靠近 D 、因不知磁铁的极性而无法判定 解析 答案为C 。原因是磁铁迅速插入,穿过a 、b 和c 、d 组成的回路的磁通量增加,所以a 、b 要靠近以减小回路的面积来达到“反抗”磁通量增加的目的。若分别讨论插入端是N 极或S 极,再由楞次定律的第一种表述也可以得到相同的结论。 例2 如图2所示,一闭合的铜环从静止 由高处下落通过条形磁铁后继续下落,空气阻 力不计,则在圆环的运动过程中,下列说确的 是 A 、圆环在磁铁的上方时,圆环的加速度小 于g ,在下方时大于g ; B 、圆环在磁铁的上方时,圆环的加速度小 于g ,在下方时也小于g ;

C、圆环在磁铁的上方时,圆环的加速度大于g,在下方时也大于 g; D、圆环在磁铁的上方时,圆环的加速度大于g,在下方时小于g; 解析在此题中,我们可以把环中产生电流的原因直接归为环的 下落,于是当环在磁铁上方时,必然受到一个向上的斥力而反抗其下 落,从而使加速度a

四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)

平面几何中的四个重要定理 梅涅劳斯(Menelaus ) 定理(梅氏线) △ ABC 的三边BC 、CA 、AB 或其延长线上有点 P 、Q 、R ,贝U P 、Q 、R 共线的充 塞瓦(Ceva )定理(塞瓦点) △ ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,贝U AP 、BQ 、CR 共点的充要条件 西姆松(Simson )定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 要条件是 BP CQ AR 1 PC QA RB 是BP 殂塑1。 PC QA RB P 圆 。

-可编辑- 圆上。 例题: 1、设AD 是厶ABC 的边BC 上的中线,直线CF 交AD 于F 。求 、 AE 2AF 证:—— ED FB AE DC BF 【分析】CEF 截厶ABD T -------------------------- 1 (梅氏定理) ED CB FA 【评注】也可以添加辅助线证明:过 A 、B 、D 之一作CF 的平 行线。 【分析】连结并延长 AG 交BC 于M ,贝U M 为BC 的中点。 BE CF GM (DB DC) = GM 2MD EA FA = AG MD 2GM MD AB 、AC 于 E 、F ,交 CB 于 D 。 求证: BE CF 1。 EA FA DEG 截厶 ABM T DGF 截厶 ACM T BE AG MD EA GM DB CF AG MD FA GM DC 1 (梅氏定理) 1 (梅氏定理) A 2、过△ ABC 的重心G 的直线分别交

5、已知△ ABC 中,/ B=2 / C 。求证: 【评注】梅氏定理 【评注】梅氏定理 CG 相交于一点。 【分析】 【评注】塞瓦定理 3、D 、E 、F 分别在△ ABC 的 BC 、 匹圧些,AD 、BE 、 DC FB EA 【分析】 4、以△ ABC 各边为底边向外作相似的等腰厶 BCE 、△ CAF 、△ ABG 。求证: AE 、BF 、

微分中值定理的推广

微分中值定理的简单推广 刘威 20101101904 数学科学学院 数学与应用数 10级汉一班 指导教师 苏雅拉图 摘要:微分中值定理是数学分析中的基本定理,包括罗尔定理拉格朗日定理柯西中值定理。在本文所做的推广是改变或减弱原定理的条件,得到与原定理类似的结论。 关键词:连续;可导;可微;区间 一 微分中值定理 1.1罗尔中值定理 若函数)(x f 满足: )(I 在区间],[b a 上连续; )(II 在区间),(b a 内可导; )(III )()(b f a f =, 则在),(b a 内至少存在一点ξ使0)('=ζf . 1.2拉格朗日中值定理 若函数)(x f 满足: )(I 在区间],[b a 上连续; )(II 在区间),(b a 内可导, 则在),(b a 内至少存在一点ξ使a b a f b f f --=) ()()('ζ. 1.3柯西中值定理 若函数)(x f 与)(x g 满足: )(I 在区间],[b a 上连续; )(II 在区间),(b a 内可导,并且在区间),(b a 内0)('≠x g , 则在),(b a 内至少存在一点ξ使)()() ()()(') ('a g b g a f b f g f --=ξξ. 二 微分中值定理的推广 2.1罗尔中值定理的推广

定理1 若函数)(x f 满足: )(I 在区间),(b a 内连续; )(II 在区间),(b a 上可导; )(III )(lim 0x f a x +→与)(lim 0x f b x -→存在且相等, 则在),(b a 内至少存在一点ξ使0)('=ξf . 证明. 令 ?????=-=+∈=b x b f a x a f b a x x f x F )0()0() ,() ()( )(x F 满足罗尔定理条件 ∴ ),(b a ∈?ξ t s . 0)('=ξF 即0)('=ξf 定理2 若函数)(x f 满足: )(I 在区间),[+∞a 上连续; )(II 在区间),(+∞a 上可导; )(III )()(lim a f x f x =+∞→ , 则在),(+∞a 内至少存在一点ξ使0)('=ξf . 证明.令 11 +-=a x t , ),(+∞∈a x , )1,0(∈t , 则 )(11 t a t x ψ=-+= , )1,0(∈t ,),()(+∞∈ψa t 。 于是 )())(()(t g t f x f =ψ=, )1())1(()()(lim ))((lim )(lim )00(00g f a f x f t f t g g x t t =ψ===ψ==++∞→→→++. 因)(t g 在区间)1,0(内连续且可导, ∴)1,0(∈?η ,使 0)('=ηg .

相关文档
相关文档 最新文档