文档库 最新最全的文档下载
当前位置:文档库 › 电磁屏蔽玻璃

电磁屏蔽玻璃

电磁屏蔽玻璃

EMI电磁屏蔽玻璃

产品简介:电磁屏蔽玻璃能阻挡电磁波透过玻璃,防止电磁辐射,保护信息不邪路,抗电磁干扰的透光屏蔽材料。广州嘉颢特种玻璃电磁屏蔽玻璃,详细介绍如下:

产品特性:

1.防止电磁辐射污染,有效阻断电磁波对人体的伤害

2.有效屏蔽辐射干扰,保障仪器设备正常工作

3.防信息泄漏及窃密:有效屏蔽抑制通过窗口的电磁信号。

4.对人体有害杂散光,吸收率大于75%

5.具有防爆玻璃特性

6.降低噪音

常用规格厚度:3+3mm,4+4mm,5+5mm,ect (As requested).

最大尺寸:1200*2800mm

最小尺寸:200*300mm

加工类型

(1)钢化夹层屏蔽玻璃

(2)中空屏蔽玻璃

(3)防火屏蔽玻璃

(4)防弹屏蔽玻璃

(5)曲面屏蔽玻璃等。(As requested)

技术参数

屏蔽性能(在10MHz ~3GHz内)≥60db

光学性能(可见光透过率)30%-80%

力学性能(抗震动性)10-17HZ 0.1 mm

抗冲击性加速度15g 11nS 1/2 正弦波不破坏

工作温度-55 ~ +60

储存温度-55 ~ +60

产品色差:本店产品均有我公司100%实物拍摄,但由于拍摄灯光,电脑显示的颜色的色差问题,导致存在小范围的色差,该类问题不属于质量问题,最终于实际商品为准。

定做要点:网店上的产品全部没有现货,须按要求和尺寸定做。

注意事项

1. 我们可以提供具有不同透光率,厚度,颜色和屏蔽效能要求的玻璃,根据不同的用途和对电磁波的不同屏蔽效能的要求。

2.您需要告诉我们,具体的尺寸,厚度,材质,网边,尺寸,屏效,透光率,工作环境。质量保证---环境性能

3.三防:防尘,防盐雾,防霉

4. 产品在超热环境中无气泡,不开胶

5. 意外破裂时玻璃只有裂纹,不飞溅。

电磁屏蔽一般可分为三种

电磁屏蔽一般可分为三种 :静电屏蔽、静磁屏蔽和高频电磁场屏蔽。三种屏蔽的目的都是防止外界的电磁场进入到某个需要保护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。 但是由于所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽效果也就不相同。 一、静电屏蔽 静电屏蔽的目的是防止外界的静电场进入需要保护的某个区域。 静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强处处为零为止。接地的封闭金属壳是一种良好的静电屏蔽装置。如图所示,接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。根据静电场的唯一性定理,可以证明:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。当壳外电荷分布变化时,壳层外表面上的电荷分布随之变化,以保证壳内电场分布不变。因此,金属壳对内部区域具有屏蔽作用。壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。当壳内电荷分布改变时,壳层内表面的电荷分布随之变化,以保证壳外电场分布不变。因此,接地的金属壳对外部区域也具有屏蔽作用。在静电屏蔽中,金属壳接地是十分重要的。当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。从物理图像上看,因为在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电相互作用的效应。 如果金属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作用。在许多实际应用中,静电屏蔽装置常常是用金属丝编织成的金属网代替闭合的金属壳,即使一块金属板,一根金属线,亦有一定的静电屏蔽作用,只是屏蔽的效果不如金属壳。 在外电场的作用下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有足够长的时间来保证内部

电磁屏蔽基本原理

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

电磁屏蔽性结构设计规范

《电磁屏蔽性结构设计规范》摘录 一.定义:在有屏蔽体时,被屏蔽空间内某点的场强与没有屏蔽体时该点场强的比值。以dB为单位表示 ;一般低频段比高频段高10~15,也可写成30~1000MHz:20 dB。

四.紧固方式 缝隙搭边深度值超过30mm时,作用不明显;推荐缝隙搭边深度:15~25mm。 五.局部开孔 定义:数量不多的开孔 根据经验:开口最大尺寸小于电磁波波长的1/20时,屏蔽效能20 dB;开口最大尺寸小于电磁波波长的1/50时,屏蔽效能30 dB。 例如:屏蔽效能为20 dB/1GHz时,局部开孔的最大尺寸应小于15mm。 一.提高缝隙的屏蔽效能可采取以下几种措施:增加缝隙深度、减小缝隙的最大长度尺寸、减小缝隙中紧固点的间距、增强基材的刚性和表面光洁度。 二.影响穿孔金属板屏蔽效能的最大因素是开孔的最大尺寸,其次是孔深,影响最小的是孔间距。 三.针对电缆穿透问题,可采取:在电缆出屏蔽体时增加滤波,或采用屏蔽电缆,同时屏蔽电缆屏蔽层与屏蔽体之间要良好电接触。 四.屏蔽方案 1.机柜屏蔽:成本较高,由于缺陷较多,屏蔽效能一般不能做到太高。 2.插箱/子架屏蔽:对于屏蔽电缆的接地和增加滤波都比较方便,适合大量出线的产品。 3.单板/模块屏蔽:结构复杂,成本较高,对散热不利。 4.单板局部屏蔽:在无线产品中较常见,主要通过安装屏蔽盒实现,实现较容易。 原则上,最靠近辐射源的屏蔽措施是最有效和最经济的;一般说,屏蔽需求导致结构件成本增加10%~20%左右。 五.缝隙屏蔽设计 1.紧固点连接缝隙 屏蔽效能最主要的影响因素是缝隙的最大尺寸和缝隙深度,减小紧固点间距、增加连接零件刚性。 2.增加缝隙深度 单排紧固时缝隙深度超过30mm后屏蔽效能差别就不明显,一般推荐值为15~25mm。增加缝隙深度可采取一些迷宫或嵌入式结构,或采用双排紧固点方式(最好将两排紧固点错开分布)。 3.紧固点间距 下表是按照DKBA0.460.0031屏蔽效能测试方法得出的单排紧固点缝隙在不同间距下的屏蔽效能,测试样品T=1.5mm,大小600×600mm。在选择紧固点间距时应该参照该表推荐数据,并根据实际结构形式进行一定的调整5~10mm。

电磁屏蔽

电磁屏蔽 该词条缺少基本信息栏,补充相关内容帮助词条更加完善!立刻编辑>> 电磁屏蔽是用导电材料减少交变电磁场向指定区域穿透的屏蔽。电磁屏蔽的作用原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,其与屏蔽结构表面和屏蔽体内部感生的电荷、电流与极化现象密切相关。雷电电磁脉冲以雷击点为中心向周围传播,其影响范围可达2公里外甚至更远,而不仅仅局限于被雷击中的建筑物本身或其内部设备。电磁屏蔽技术主要包括空点电磁屏蔽技术和线路电磁屏蔽技术两部分。 1电磁屏蔽 电磁兼容性(Electromagnetic Compatibility)缩写EMC,就是指某电子设备 既不干扰其它设备,同时也不受其它设备的影响。电磁兼容性和我们所熟悉的安全性一样,是产品质量最重要的指标之一。安全性涉及人身和财产,而电磁兼容性则涉及人身和环境保护。 电子元件对外界的干扰,称为EMI(Electromagnetic Interference);电磁波会与电子元件作用,产生被干扰现象,称为EMS(Electromagnetic Susceptibility)。例如,TV荧光屏上常见的“雪花”,便表示接受到的讯号被干扰。 因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。⑴当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。⑵当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。⑶在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。[1]

不同材质金属板电磁屏蔽效果的对比分析要点

郑州大学毕业设计(论文) 题目:不同材质金属板电磁屏蔽效果的对比分析指导教师:职称:讲师 学生姓名:学号: 专业: 院(系): 完成时间: 2013年5月20 日

不同材质金属板电磁屏蔽效果的对比分析 摘要高导电性材料在电磁波的作用下将产生较大的感应电流。这些电流按照楞次定律将削弱电磁波的透入。采用的金属网孔愈密,直到采用整体的金属板(壳),屏蔽的效果愈好,但所费材料愈多。 本文主要使用XFDTD仿真软件编写基于FDTD算法的计算机仿真程序,计算出了喇叭天线工作时在铜金属板以及与铁,铝金属板屏蔽下电场强度分布,重点记录了距离端口60cm 平面的电磁参数,以此观察分析不同材质金属板的屏蔽效能,为金属板的电磁屏蔽应用提供科学的理论依据和定量的数据。 关键词屏蔽效能金属板时域有限差分算法喇叭天线电磁波传播模型 Abstact Shielding effectiveness is characterized the attenuation of electromagnetic waves on shield。Because of the high conductive material will be generated a large induction current under the action of electromagnetic waves。These currents according to Lenz's law will weaken the penetration of electromagnetic waves。The metal mesh is more dense, he better the shielding effectt, until the the overall metal shell, but the more charge material used. The this thesis make use of XFdtd simulation of copper metal plate, as well as iron, aluminum metal plate in an electromagnetic field environment。Through the comparison of different materials, thickness, and the source distance parameter, analysis the performance impact of metal shielding. Key Words:Shielding effectiveness Metal plate Finite difference time domain algorithm Horn antenna electromagnetic wave propagation model

电磁屏蔽原理

利用这个特性,可以达到屏蔽电磁波,同时实现一定实体连通的目的。方法是,将波导管的截止频率设计成远高于要屏蔽的电磁波的频率,使要屏蔽的电磁波在通过波导管时产生很大的衰减。由于这种应用中主要是利用波导管的频率截止区,因此成为截止波导管。截止波导管的概念是屏蔽结构设计中的基本概念之一。常用的波导管有圆形、矩形、六角形等,它们的截止频率如下: 矩形波导管的截止频率:f c=15×109 /l式中:l是矩形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 圆形波导管的截止频率:f c=17.6×109 /d式中:d是圆形波导管的内直径,单位是cm,f c的单位是Hz。 六角形波导管的截止频率:f c=15×109 /w式中:w是六角形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 截止波导管的吸收损耗:落在波导管频率截止区内的电磁波穿过波导管时,会发生衰减,这种衰减称为截止波导管的吸收损耗,截止波导管的吸收损耗计算公式如下 A=1.8×f c×t×10-9(1-(f/f c)2)1/2(dB) 式中:t是截止波导管的长度,单位是cm,f 是所关心信号的频率(Hz),f c是截止波导管截止频率(Hz)。如果所关心的频率f远低于截止波导管截止频率(f﹤f c/5),则公式化简为:A=1.8×f c×l×10-9 (dB) 圆形截止波导管:A=32t/d(dB) 矩形(六角形)截止波导管: A=27t/l (dB) 从公式中可以看出,当干扰的频率远低于波导管的截止频率使,若波导管的长度增加一个截面最大尺寸,则损耗增加将近30分贝。 截止波导管的总屏蔽效能:截止波导管的屏蔽效能由吸收损耗部分加上前面所讨论的孔洞的屏蔽效能不能满足屏蔽要求时,就可以考虑使用截止波导管,利用截止波导管的深度提供的额外的损耗增加屏蔽效能。 16. 截止波导管的注意事项与设计步骤 1)绝对不能使导体穿过截止波导管,否则会造成严重的电磁泄漏,这是一个常见的错误。 2)一定要确保波导管相对于要屏蔽的频率处于截止状态,并且截止频率要远高于(5倍以上)需要屏蔽的频率。设计截止波导管的步骤如下所示: A) 确定需要屏蔽的最高频率F max和屏蔽效能SE B) 确定截止波导管的截止频率F c,使f c≥5F max C) 根据F c,利用计算F c的方程计算波导管的截面尺寸d D) 根据d和SE,利用波导管吸收损耗公式计算波导管长度t 说明: 在屏蔽体上,不同部分的结合处形成的缝隙会导致电磁泄漏。因此,在结构设计中,可以通过增加不同部分的重叠宽度来形成一系列“截止波导”,减小缝隙的电磁泄露。这时,截止波导的截面最大尺寸可

EMC电磁屏蔽材料设计者指南

1、EMC设计的紧迫性 本章讲解EMC设计的紧迫性,为本书重点介绍实际技术提供背景。首先简单介绍EMC符合性测试的要求,然后介绍相关的法规和标准。最后复习一下电磁屏蔽的理论,以为读者提供足够的知识来选择适当的屏蔽技术。 什么是电磁兼容性? 电磁兼容是一台设备在所处的环境中能满意地工作的能力,它既不对其它设备造成干扰,也不受其它干扰源的影响。干扰的定义是能引起误动作或性能下降的电磁能量,今后我们称为EMI。 图1-1电磁场 任何一个电磁能量会产生扩散的球面波,这种波在所有方向上传播。在任何一点,这种波包含相互垂直的电场分量和磁场分量,这两种分量都垂直于波的传播方向。这种情况如图1-1所示。虽然如图1-2所示的频谱中的任何频率的都能引起干扰,但主要问题是由10KHz~1GHz范围内的射频能量引起的。射频干扰(RFI)是电磁干扰的一种特殊形式,光、热和X射线是电磁能量的其它特殊形式。 图1-2 电磁谱 电磁干扰需要两个基本条件:电磁能量源和对这个源产生的特定幅度、频率的能量敏感的器件,称为敏感器。表1-1给出了一些常见的源和敏感器。另外,在源和敏感器之间还需要传播路径来传输能量。电磁干扰屏蔽通常改变电磁能量传播路径来达到的。 表1.1电磁干扰源和敏感器 电磁干扰分为两类:辐射干扰和传导干扰,这是由传播路径的类型来定的。 当一个器件发射的能量,通常是射频能量,通过空间到达敏感器时,称为辐射干扰。干扰源既可以是受干扰系统中的一部分,也可以是完全电气隔离的单元。传导干扰的产生是因为源与敏感器之间有电磁线或信号电缆连接,干扰沿着电缆从一个单元传到另一个单元。传导干扰经常会影响设备的电源,这可以通过滤波器来控制。辐射干扰能影响设备中的任何信号路径,其屏蔽有较大难度。 辐射电磁能量成为电磁干扰的机理可以由法拉第定律来解释。这个定律表明当一个变化的电场作用于一个导体时,在这个导体上会感应出电流。这个电流与工作电流无关,但是电路会象与工作电流一样来接收这个电流并发生响应。换句话说,随机的射频信号能够向计算机发出指令,使程序发生变化。 技术驱动力 有许多因素使EMC成为电子设备设计中重要的内容。

电磁屏蔽技术基础知识

Thalez Group 电磁屏蔽技术基础知识

目录 1.电磁屏蔽的目的 2.区分不同的电磁波 3.度量屏蔽性能的物理量——屏蔽效能 4.屏蔽材料的屏蔽效能估算 5.影响屏蔽材料的屏蔽效能的因素 6.实用屏蔽体设计的关键 7.孔洞电磁泄漏的估算 8.减少缝隙电磁泄漏的措施 9.电磁密封衬垫的原理 10.电磁密封衬垫的选用 11.常用电磁密封衬垫的比较 12.电磁密封衬垫使用的注意事项 13.电磁密封衬垫的电化学腐蚀问题 14.与衬垫性能相关的其它环境问题 15.截止波导管的概念与应用 16.截止波导管的注意事项与设计步骤 17.面板上的显示器件的处理 18.面板上的操作器件的处理 19.通风口的处理 20.线路板的局部屏蔽 21.屏蔽胶带的作用和使用方法

电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 一.电磁屏蔽的目的 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。 电磁波的波阻抗ZW 定义为: 电磁波中的电场分量E与磁场分量H的比值: ZW = E / H 电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 二. 区分不同的电磁波

2019-2020学年鲁教五四版九年级物理下册 第17章 电磁波单元测试题(解析版)

2019-2020学年鲁教五四版九年级物理下册第17章电磁波单元测试 题 一.选择题(共8小题,每小题2分,共16分) 1.我国自行研制的北斗卫星导航系统具有定位、导航和通信等功能,它传递信息是利用()A.微波B.次声波C.超声波D.红外线 2.如图所示是动圈式话筒的原理图。图所示的四幅图与动圈式话筒工作原理相同的是() A. B. C. D. 3.2019年3月19日,在临工科技中心展厅内,一名驾驶员坐在大厅的驾驶座上,通过5G网络轻松遥控远在100km以外的平邑矿山上的一台挖掘机(如图)。5G网络传递信息靠的是()

A.电磁波B.超声波C.次声波D.红外线 4.2017年的巴塞罗那世界移动通信大会上,中国企业代表﹣﹣中国移动面向世界演示了5G医疗应用场景和联网无人机场景,受到瞩目。5G支持下的超高清传输、远距离视频传输利用了()A.电磁波B.超声波C.次声波D.以上三者 5.Wifi是一种可以将个人电脑、手机等终端设备以无线方式互相连接的技术,常见的连接方式是通过一个无线路由器来实现的。以下有关说法正确的是() A.无线路由器是通过电磁波向四周有效范围内的终端传送信息的 B.无线路由器是通过红外线向四周有效范围内的终端传送信息的 C.无线路由器向四周传送信息的速度大于光速 D.无线路由器向四周传送信息的速度小于光速 6.以下关于电磁波的说法中,正确的是() A.电磁波可以在真空中传播 B.电磁波的传播离不开介质 C.不可见光是电磁波,可见光不是电磁波 D.频率较高的电磁波在真空中传播速度较大 7.下列说法正确的有() ①太空中至少需要3颗地球同步卫星才能实现全球卫星通信 ②微波炉是应用电流的热效应来工作的 ③与煤炭、石油、天然气等能源相比,风能、水能、太阳能具有清洁环保的优点 ④能量的转移与转化具有方向性,因此要注意节约能源 ⑤随着科学技术的快速发展,我国已建立了利用核聚变能量发电的核电站 ⑥超导体材料应用在远距离输电上可有效节约能源;铜是磁性材料,可以被磁化。 A.①④⑥B.①③⑤C.①③④D.②③④ 8.下列设备或实验原理与图相同的是()

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率

电磁屏蔽技术.

《电磁屏蔽技术》 1.电磁屏蔽的目的 电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改 2. 区分不同的电磁波 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波、和平面波 电磁波的波阻抗Z W 定义为:电磁波中的电场分量E与磁场分量H的比值: Z W = E / H 电磁波的波阻抗电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关 距离辐射源较近时,波阻抗取决于辐射源特性若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω 电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高 注意:近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽 3. 度量屏蔽性能的物理量——屏蔽效能 屏蔽体的有效性用屏蔽效能(SE)来度量屏蔽效能的定义如下: SE=20lg(E1/E2) (dB) 式中:E1=没有屏蔽时的场强E2 =有屏蔽时的场强

我国电磁屏蔽材料行业概况研究

我国电磁屏蔽材料行业概况研究 1、行业概况研究 (1)电磁屏蔽技术的基本原理和发展历程 电子设备在工作时,会向外辐射电磁波,对临近的其他电路或设备产生电磁干扰(EMI)或电磁兼容(EMI),导致信息传输失真、控制失灵。此外,由于电磁脉冲武器可以对敌国的电子设备、电力系统直接打击,造成敌国信息系统暂时或永久性损伤,所以电磁屏蔽材料也被广泛用于国防军工领域。 电磁屏蔽基本功能是通过吸收或反射来阻断或衰减电磁波能量来实现的。屏蔽材料的三个基本因素是电导率、磁导率及材料厚度。一般而言,电磁屏蔽材料必须是导电的,因此直接选择金属材料,可以对不导电的基材(例如普通的纺织物)进行电镀处理,或者在基材中添加一定的导电材料。 20世纪40年代,铁磁材料例如纯铁、硅钢、铁镍合金等被广泛应用于电磁屏蔽领域。20世纪60 年代,信息自动化技术以及橡塑高分子材料技术的快速发展极大得推动了电磁屏蔽技术的发展,表面敷层屏蔽材料开始被广泛应用,这类材料在塑料橡胶等绝缘体表面附着一层导电层,以反射损耗为主,具有屏蔽频率宽的优点。

进入上世纪80 年代以来,通讯、自动化、电子技术的突飞猛进对电磁屏蔽材料提出了更高的要求,填充复合型屏蔽材料开始在欧美等发达国家等国得到广泛应用,这类材料由导电填料(例如金属纤维、金属合金粉、超细炭黑等)与聚苯醚、聚碳酸酯等合作树脂等成型材料填充复合而成,具有一次加工成型、便于批量生产的优势。 本世纪以来,由于电子信息产品不断推陈出新,特别是智能手机等消费电子的迅猛发展,结构要求更加紧凑轻薄,对电磁屏蔽材料的各项技术要求也越来越高。 (2)电磁屏蔽材料的种类和技术发展趋势 电磁屏蔽材料的种类较多,大体可以分为金属类电磁屏蔽材料、电磁屏蔽塑料、导电织物、导电涂料、填充类复合屏蔽材料和其他类。金属屏蔽器件材料通常为铍铜、或不锈钢,具有良好的机械性能和重复使用性,使用于存在EMI/RFI 或者ESD 问题的广泛的电子设备,但也存在重量大、易腐蚀等缺点。电磁屏蔽塑料即利用真空渡金属法、阴极溅射法等方法在塑料表层生成较薄的金属层,具有导电性好的特点,但附着力较弱,容易剥落,结构稳定性差,使用周期短的缺点。 导电织物在一般纺织品表面涂覆金属物质,或采用金属纤维与纺织前卫相互包覆的方式,具有金属光泽,柔软性、耐折叠等优点;而导电布衬垫则采用聚氨酯或热塑性橡胶(TPE)材料作为海绵芯,外层包覆金属织物,具有较好的弹性、阻燃性和良好的屏蔽性能,性价比较高。 导电涂料屏蔽材料指采用碳素系导电粉或镍铜金属系等材料与丙烯酸树脂、氯乙烯树脂等成

电磁屏蔽机房技术方案

电磁屏蔽机房设计方案 一、工程概述 用途:该机房用于无线电设备的检测。 本方案是根据工程招标文件,设计研究确定的屏蔽工程设计方案。 二、设计依据 1.《招标文件》 2.《处理涉密信息的电磁屏蔽室的技术要求和测试方法》BMB3-1999 3.《电磁屏蔽室屏蔽效能的检测方法》GB12190-2006 4.《电磁屏蔽室工程施工及验收规范》SJ31470-2002 5.《电子信息系统机房设计规范》GB50174-2008 6.《电子计算机场地通用规范》GB/T-2887-2000 7.《电子信息系统机房施工和验收规范》GB50462-2008 8.《电子计算机机房施工及验收规范》SJ/T30003-93 9.《计算站场地安全要求》GB9361-88 10.《计算机房用活动地板技术条件》GB6650-86 11.《计算机机房工程设计与施工》人民邮电出版社1997.2 12.《计算机机房配电系统设计要求》ZY1997-99 13.《高层民用建筑设计防火规范》GB50045-95(2005版) 14.《建筑内部装修设计防火规范》GB50222-95 15.《室内装饰工程质量规范》QB1838-93 16.《民用建筑电气设计规范》JGJ/T16-92 17.《低压配电设计规范》GB50054 18.《建筑防雷设计规范》GB50057-94 19.《通风与空调工程施工及验收规范》GB50243-97 20.《供配电系统设计规范》GB50052-92 21.《火灾自动报警系统设计规范》GB50116-98 其他国家、行业相关标准、规范

三、屏蔽室总体结构 本项目工程建设面积为32m2,屏蔽室面积为28m2.。建造规模为8m(长)x4m(宽)x2.6(高)。屏蔽室安装1樘1500X2000mm屏蔽门。 四、屏蔽工程 1.屏蔽效能指标: 磁场 14kHZ>=63dB 200kHZ>=93dB 平面波450MHz>=100dB 平面波1-10GHz>=100dB 屏蔽室为多点接地,接地电阻不大于1欧姆。 2屏蔽工程主要内容: 1).屏蔽工程主要包括屏蔽主体和屏蔽设备。 屏蔽主体包括:屏蔽壳体、屏蔽门、通风截止波导窗。 屏蔽设备包括:电源滤波器、信号滤波器、光电转换设备、空调信号转换设备、空调进出风、光纤截止波导管。 2).系统设计中充分利用金属板材对电磁波的吸收和反射的作 用,并结合滤波、隔离、接地等屏蔽技术,满足屏蔽效能指标要求。 屏蔽壳体材料 ①.屏蔽指标的计算: 对屏蔽指标的设计计算如下: 环境场强 透射R(屏效)=20lg屏蔽后场强 ②.屏蔽材料的选择: 当电磁波E垂直穿过金属屏蔽体时,屏蔽体的屏蔽效能与屏蔽体的结构、屏蔽材料的电导率、磁导率、电磁场频率、场源性质和距场源距离等有关,如下图所示:

电磁屏蔽玻璃

电磁屏蔽玻璃 摘要:由于电子技术和设备的大量运用,随之而来的各种干扰和泄露问题迫切需要解决,电磁屏蔽玻璃也就因此应运而生。电磁屏蔽玻璃因其可透光性良好等特点,一直是电磁屏蔽材料中的研究热点。本文主要从电磁屏蔽玻璃的应用范围、主要特点、屏蔽原理、生产过程等方面对其进行介绍。 1前言 电磁波被广泛应用,为军事、工业、民用等带来莫大的方便,同时也带来了严重的危害。一是由于电子线路和元件的集成化、微型化,所使用的电流为弱电流,其控制讯号的功率与外部电磁波噪音的功率接近,容易造成误动、声音及图像障碍等;二是这些电子产品本身也向外发射不同频率的电磁波,同样会给附近运行的电子计算机以及其他通讯或电气设备等造成干扰;三是对于军工电子设备,除了防止外界电磁波对其工作产生干扰外,还要防止其本身的电磁波向外泄露。国际较为先进的技术和设备可以准确地接受几十公里外泄露出的电磁波,进行放大还原,从而导致泄密;四是电磁波通过辐射也给生物体造成伤害,如在中短电磁波辐射下,人体的神经中枢系统会出现功能失调。所以,在当今社会,不论是军用电子设备,还是民用电子设备,从环保角度出发,都应进行电磁屏蔽。电磁屏蔽材料中最常见的是电磁屏蔽玻璃。本文主要从电磁屏蔽玻璃的定义、应用、分类、原理及方法、新进展等方面对其进行介绍。

2 电磁屏蔽玻璃的定义 电磁屏蔽玻璃是经过特殊工艺处理,在玻璃表面涂覆导电涂层或在玻璃中夹入特殊介质而实现对电磁波的阻挡和衰减,达到阻挡电磁波透过、防止电磁辐射、保护信息不泄露以及抗电磁干扰的屏蔽玻璃器件。 4 电磁屏蔽玻璃的特点 电磁屏蔽比例具有良好的透光性能和高解图像,可视效果好,无网感,使图像更加清晰。电磁屏蔽玻璃主要解决电子系统与电子设备之间的电磁干扰,防止电磁信息泄露,防护电磁辐射污染;有效保障仪器设备正常工作,保障机密信息的安全,保障工作人员身体健康。因此,电磁屏蔽玻璃必须满足两个条件:一是良好的抗电磁波干扰和防信息泄漏性能;二是良好的透视性能。[1] 5 电磁屏蔽玻璃的应用 电磁屏蔽玻璃是结合电磁屏蔽技术而研制出来的特种玻璃,它主要使用在既有电磁屏蔽要求,又有一定可视要求的部位,如:特种飞机的座舱、风挡、国家安全保卫部办公室的可视窗口,军队指挥操作仪的可视面板,大使馆、外交部等部门通信室的玻璃窗,电子计算机室、医院、广播大厦的玻璃窗,商业写字楼办公室的玻璃隔墙,各种仪器设备的电磁屏蔽外壳等。 6电磁屏蔽玻璃的生产 我国生产的电磁屏蔽玻璃从性能上大致分为三类:夹金属丝网电磁屏蔽玻璃、镀膜电磁

电磁屏蔽原理及应用

电磁屏蔽的原理及应用 摘要:阐述了电磁屏蔽材料的屏蔽原理。介绍了电磁屏蔽材料的发展现状,其中较为详细地介绍了表层导电型屏蔽材料以及填充复合型屏蔽材料。 关键词:电磁屏蔽,危害,屏蔽原理,研究现状 AbStraCt The harms of electromagnetic radiation to electric equipment, fuel, animals and human were intoduced, andthe mechanism of electromagnetic shielding materials and its development was summarized. Key words electromagnetic radiation, shielding, harm, mechanism, development 近几十年来,随着各种电器的普及,电子计算机、通讯卫星、高压输电网和一些医用设备等的广泛应用,由此带来的电磁辐射污染也越来越严重。为此,必须进行电磁屏蔽。 1、电磁屏蔽原理 电磁屏蔽,实际上是为了限制从屏蔽材料的一侧空间向另一侧空间传递电磁能量。电磁波传播到达屏蔽材料表面时,通常有3种不同机理进行衰减:一是在入射表面的反射衰减;二是未被反射而进入屏蔽体的电磁波被材料吸收的衰减;三是在屏蔽体部的多次反射衰减。电磁波通过屏蔽材料的总屏蔽效果可按下式计算: SE=R+A+B (1) 式中:SE为电磁屏蔽效果,dB; R为表面单次反射衰减;A为吸收衰减;B为部多次

反射衰减(只在A<15dB情况下才有意义)。 一般来说,电屏蔽材料衰减的是高阻抗的电场,屏蔽作用主要由表面反射R 来决定,吸收衰减A则不是主要的。所以,电屏蔽可以用比较薄的金属材料制作;而磁屏蔽体的衰减主要由吸收衰减A决定,反射衰减R不是主要的。根据电磁学的有关知识,可分别得出A, R, B的计算公式: (2) A与电磁波的类型(电场或磁场)无关,只要电磁波通过屏蔽材料就有吸收,它与材料厚度成线性增加,并与材料的电导率及磁导率有关。 反射衰减R不仅与材料的表面阻抗有关,同时也与辐射源的类型及屏蔽体到辐射源的距离有关。对于远场源(平面波辐射源): (3) 对于近场源: 磁场: (4) 电场 (5) 金属屏蔽材料一般都比较薄,A也比较小,通常考虑部多次反射衰减B。在此情况下,部多次反射衰减B。在此情况下,部反射甚至可以发生多次, 形成多次反射。用“多次反射修正项”B来表示这种衰减。 对于近场源:

EMI电磁屏蔽原理-导论

在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。 屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。 屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效 能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏 蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。 图1 屏蔽效能定义示意图 屏蔽效能表达式为(dB) 或(dB)

工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。 图2 两类基本源在空间所产生的叠加场 远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的, 为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。 表1 两类源的场与传播特性 波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗 也有所不同,表2与图3分别用图表给出了的波阻抗特性。

电磁屏蔽分析和应用

电磁兼容课程论文 题目名称:电磁屏蔽技术 院系名称:电子信息学院 班级:测控112 学号:201100454217 学生姓名:白凡 指导教师:魏平俊 2014年5月

摘要:随着电子产品的广泛应用以及电磁环境污染的加重,对电磁兼容性设 计的要求也越来越高,作为电磁兼容设计的主要技术之一——屏蔽技术的 研究也就愈显得重要。本文从电磁屏蔽技术原理出发,讨论了屏蔽体结构、 屏蔽技术分类、屏蔽材料的选择以及所要遵循的原则,在电子设备实施具 体的电磁屏蔽时提供了重要的依据。同时分析了电磁干扰形成的危害,介 绍了工程上解决电磁干扰问题的几种常用方法。 关键词:电磁屏蔽电磁干扰屏蔽技术 Abstract:With the wide application of electronic products as well as the electromagnetic environment pollution is aggravating, more and more is also high to the requirement of electromagnetic compatibility design, as one of the main technology of emc design - shielding technology research is more important.Based on principle of electromagnetic shielding technology, this paper discusses the structure of the shield, shielding the technical classification, the selection of shielding materials and to follow the principle of the electronic equipment to implement specific provides an important basis for electromagnetic shielding.At the same time analyzes the harm of electromagnetic interference, this paper introduces the engineering several commonly used methods to solve the problem of electromagnetic interference. Keywords: Electromagnetic shielding, Electromagnetic interference, Shielding technology

金属网屏蔽电磁波原理

金属网可以屏蔽电磁波传播的原理是什么? 首先,不是衍射。 我们都做过直流电路实验,导线就是金属,也就谈不上屏蔽(静电屏蔽是指接地 金属罩,屏蔽静电场)。电磁波辐射,是关于时变电磁场的问题,导体对其影响大不相同 如果利用趋肤效应,解释的实际上是金属板屏蔽电磁场原理。 ?对于一个金属板(良导体),电磁波从一面辐射而来,大部分能量被反射,小部分能量进入金属,该电磁波会随进入金属的深度成e指数衰减(能量转化为表面电流),当金属层过薄时,电磁波就会穿透金属层继续传播。对于同一频率电磁波,电导率越高,衰减越快。对于相同金属材料,电磁波频率越高,衰减越快。 ?定义:趋肤深度,电磁波传输一个趋肤深度的距离后,振幅衰减到原来的 36.8%,能量衰减到13.5%。对于相同金属材料,电磁波频率越高,趋肤深度越 小。 ?例:10GHz电磁波。银,电导率 6.173e7(S/m),趋肤深度6.4e-7(m),即0.64微米;1GHz电磁波,趋肤深度20.24e-7(m),即2.24微米。【1】 那么,同材料的金属板,频率越高,趋肤深度越小,对辐射防御能力是越强

回归正题,金属网屏蔽电磁场原理,(趋肤效应解释波导也有用到,不是重点)先说矩形波导,四壁是金属,电磁波在波导中的介质中传播。金属网实际上就是下图中许许多多的矩形波导叠放组合在一起,z方向长度再缩短些就 是了。 为何电磁波不会从金属网的窟窿中穿透呢?对于金属网,每一个网孔都是一个波导。借用光的粒子说,电磁波像弹球一样,进入网孔波导后,来回在金属壁上反弹,曲折前进。【2】 ?为满足金属壁这一边界条件下的Maxwell方程,对于相同规格的矩形波导,频率越低(波长越大),theta越大;当波长大于等于截止波长时,theta=90。,电磁波只上下弹跳,不前进了。 ?截止波长=2a (a为上上图中的矩形波导长边),若孔径指半径,孑L径=a/2,则波长大于4倍孔径的电磁波就会被屏蔽。“金属网孔形式若为矩形整齐排列,金属网孔径小于电磁波波长的1/4时,则电磁波不能透过金属网”有相当

电磁屏蔽机柜及其工作原理

电磁屏蔽机柜及其工作原理 一、引言 随着人们对涉密信息系统电磁泄漏发射危害性认识的逐步加深,在建设涉密信息网络时开始大量采用 各种防电磁泄漏发射的手段,包括建设电磁屏蔽室、铺设光缆和屏蔽双绞线、使用低辐射设备、红黑电源 隔离插座、屏蔽机柜和干扰器等。其中屏蔽机柜具有体积小、安装方便、使用灵活的特点,非常适合在那 些不适宜安装电磁屏蔽室又需要对信息设备提供保护的场合使用。但是实际检测中发现,通过了实验室严 格测试的屏蔽机柜在实际使用环境的使用效果往往达不到设计要求,这使许多用户产生了屏蔽机柜并不能 有效防护电磁泄漏发射的印象。经过认真分析,发现许多用户在对屏蔽机柜中的设备进行通信线连接时, 往往出于对成本的考虑不使用光纤,而是直接使用屏蔽双绞线进行连接,连接时仅仅将屏蔽双绞线的屏蔽 层与柜体进行简单的处理,更有甚者将非屏蔽双绞线直接接入屏蔽机柜中。这些做法都会导致屏蔽机柜的 屏蔽效能大大降低,甚至不仅不能提供保护,反而变成信息泄漏发射的发射源。随着屏蔽机柜使用得越来 越广泛,错误使用的情况也越来越多,问题日益突出,存在泄密隐患。 二、屏蔽机柜连接电缆后的辐射发射 1.使用现场屏蔽机柜屏蔽效能降低的原因电缆是系统中导致电磁兼容问题的最主要因素。在电磁兼容试验中经常出现这样的情况:设备无论如何改进都无法通过电磁兼容试验,但在将设备的外拖电缆取下时 设备就能顺利地通过试验;在实际使用电子设备时也经常遇到这样的情况:设备无法正常工作甚至经常死机,但将连接电缆拔下来之后就一切正常了。事实上,我们在现实中遇到的电磁兼容问题,大部分是由电缆引 起的。 屏蔽机柜在实验室中不连接任何电缆时能够满足标准的严格要求,但在使用现场却经常只有50dB左右的屏蔽效能甚至完全无效。这是因为在使用现场将电缆与机柜进行了不正确的连接,在将连接电缆拔掉 后机柜的屏蔽效能又恢复正常。这说明电缆是导致系统屏蔽效能降低的直接原因。事实上,电缆就是一根 高效的接收和发射天线,若连接不当会直接将机柜中的电磁泄漏发射信号发射出去。在将非屏蔽双绞线直 接接入屏蔽机柜这种情况下,相当于直接为屏蔽机柜连入了一根发射天线,这会使屏蔽机柜完全失去屏蔽 作用,因此实际使用时要绝对杜绝这种错误。 2.屏蔽机柜连接电缆的辐射模型 电缆产生的辐射主要包括差模电流回路产生的差模辐射和共模电流回路产生的共模辐射,差模电流回 路就是电缆中的信号电流回路,而共模电流回路则是由电缆与大地形成的。 在很多电磁兼容书籍中都可以找到关于这个模型的数学分析,在此就不再做该部分工作,仅仅是将其 结论拿来使用。该模型相当于两个电流环天线,其发射能力与环路面积和环路中电流的大小成正比。实际 在涉密网络中使用的都是屏蔽双绞线,电缆中包含了信号线和信号地线,两者之间的距离很小,由此形成 的差模电流环路的面积也非常小,因此其差模辐射并不强。另外,由于相邻绞节中的电流方向相反,其产 生的磁场方向也相反,则在空间中抵消。因此实际产生的辐射主要来自共模辐射。 共模辐射由共模电流产生,共模电流的环路由电缆与大地形成,具有较大的环路面积,会产生较强的 辐射。共模电流由共模电压产生,共模电压是电缆与大地之间的电压,产生该电压的原因很多,在我们讨 论的使用屏蔽机柜的情况下,共模电压的产生主要来自于机柜内设备的电磁泄漏发射在电缆上感应生成及 电路中的电容性耦合和电感性耦合。无论是否使用屏蔽电缆,都会产生共模电压,继而生成共模电流。若 该共模电压中携带涉密信息,势必会带来信息泄漏。 三、电缆共模辐射发射的抑制 1.抑制电缆共模辐射的方法控制电缆共模辐射通常采用如下手段: (1)控制电缆长度。在满足使用要求的前提下,让电缆尽可能短。

相关文档