文档库 最新最全的文档下载
当前位置:文档库 › 三角波、方波、正弦波发生电路

三角波、方波、正弦波发生电路

三角波、方波、正弦波发生电路
三角波、方波、正弦波发生电路

精心整理

波形发生电路

要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z 、103H Z 和104Hz ;方波的输出电压峰峰值V PP ≥20V

(1)方案的提出

方案一:

1、由文氏桥振荡产生一个正弦波信号。

2、把文氏桥产生的正弦波通过一个过零比较器 (2f=f 0时,F=1/

3、器。将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制。

综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

1、方波、三角波发生电路原理

该电路由滞回比较器和积分器组成。图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积

分电路的输出电压u02。则U1A 的同相输入端的电位:101202

up=1212

R u R u R R R R +++,令up=un=0,则阀值电

压:1

022

R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,而且不是+Uz ,就是

-Uz,所以输出电压的表达式为:

01(10)

0202(0)

82

u t t

u u t

R C

-

=-+;设初态时u01正好从-Uz跃变到+Uz,

则:

(10)

02

82

Uz t t

u Ut

R C

-

=-+,积分电路反向积分,u02随时间的增长线性下降,一旦u02=-Ut,在稍

减小,u01将从+Uz跃变为-Uz,使式变为:

(21)

02

82

Uz t t

u Ut

R C

-

=-,积分电路正向积分,u02随时间增

长线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz跃变为+Uz,回到初态。电路重复上述过程,因而产生自激振荡。由上分析,u01是方波,且占空比为50%,幅值为Uz

±;u02是三角波,幅值为Ut

±。

取正向积分过程,正向积分的起始值-Ut,终了值+Ut,积分时间为T/2,代入

(21)

02

82

Uz t t

u Ut

R C

-

=-,

Uz T

Ut

+=

1R2

R

2

图中

益为1。,

在ωt=50°时,输入三角波的值为uI=50/90UImax≈0.556UImax,要求输出电压

uO=0.657UImax×sin50°≈0.503UImax,可得在25°~50°段,电路的增益应为

ΔuO/ΔuI=(0.503?0.278)/(0.556?0.278)=0.809。

在ωt=70°时,输入三角波的值为uI=70/90UImax≈0.778UImax,要求输出电压

uO=0.657UImax×sin70°≈0.617UImax,可得在50°~70°段,电路的增益应为

ΔuO/ΔuI=(0617?0.503)/(0.778?0.556)=0.514。

在ωt=90°时,输入三角波的值为uI=UImax,要求输出电压uO≈0.657UImax,可得在70°~90°段,电路的增益应为ΔuO/ΔuI=(0.657?0.617)/(1?0.778)=0.180。

下页图所示是实现上述思路的反相放大电路。

图中二极管D3~D5及相应的电阻用于调节输出电压u03>0时的增益,二极管D6~D8及相应的电阻用于调节输出电压u03<0时的增益。

电压增

益为这一

点,D1

得:Vth-

(4

△T、△Ii0/

压Dz

③电阻为1/4W的金属薄膜电阻,电位器为精密电位器。

④电容为普通瓷片电容与电解电容。

(5)仿真与调试

按如下电路图连接

(5改进:(6(71、童诗白、华成英,《模拟电子技术基础》 2、吴慎山,《电子技术基础实验》

3、周誉昌、蒋力立,《电工电子技术实验》

4、广东工业大学实验教学部,《Multisim 电路与电子技术仿真实验》

基于LM324的方波、三角波、正弦波发生器(含原理图)..

课程设计(论文)说明书 题目:方波、三角波、正弦波发生器院(系): 专业: 学生姓名: 学号: 指导教师: 职称: 2012年12 月 5 日

摘要 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接入电源,并通过在显示器上观察波形及数据,得到结果。 电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。 NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。本设计就是利用Multisim软件进行电路图的绘制并进行仿真。 关键词:电源、波形、比较器、积分器、Multisim Abstract This paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result. A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal. NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulation Key words: power, waveform, comparator, an integrator, a converter circuit, Multisim

方波三角波转换

一方波、三角波发生器 设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 二、 设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V 或±15V 直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 7实现方波和三角波输出电压:方波输出幅值110o p p U V -≤, 28o p p U V -≤。能够输出确定频率的三角波 三、 原理图 四、 设计说明书

1、设计题目 方波、三角波发生器 2设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 3、设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V或±15V直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 4、设计过程 实验器材 1)uA741 2片

三角波正弦波转换电路..

目录 1.设计要求 (2) 2.设计方案与论证 (2) 3.设计原理 (4) 3.1硬件分析 (4) 3.1.1总体电路图 (4) 3.1.2三角波产生电路 (4) 3.1.3 门限电压的估算 (5) 3.1.4矩形波产生电路 (6) 3.1.5工作原理 (6) 3.1.6三角波整流电路 (7) 3.1.7调幅电路 (8) 3.1.8偏置电路 (10) 3.2 multisim软件简介 (11) 4.元器件清单 (12) 5.元器件识别与检测 (13) 6.硬件制作与调试 (13) 7.设计心得 (14) 8.参考文献 (14)

1.设计要求 在研制、生产、使用、测试和维修各种电子元器件、部件以及整机设备时,都需要有信号源,由它产生不同频率、不同波形的电压、电流信号并加到被测器件、设备上,用其他测量仪器观察、测量被测者的输出响应,以分析和确定它们的性能参数。 而波形发生器是它们中一种更为常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本次课程设计应用所学电路设计构成可产生三角波形,并在此基础上应用二极管整流网络对所产生的三角波整流为正弦波,再对正弦波进行进一步的处理。 使用模拟或者数字的方法设计一个频率可调的三角波发生器,并利用二极管网络将三角波整成正弦波。对正弦波作进一步处理: 1) 使正弦波峰峰值可变 2) 使正弦波可叠加直流偏置 3) 频率调节范围50Hz~100KHz 分析原理,设计电路,正确选择参数,在实现电路仿真的基础上搭建和调试硬件电路。 2.设计方案与论证 本次课程设计应用多谐振荡电路产生方波,再应用积分电路对所产生的方波进行一次积分产生三角波,用二极管整形网络对三角波进行整流使之产生不失真的正弦波。对正弦波进一步处理:用反相放大器对产生的波形进行放大,后跟反相加法器对正弦波进行直流偏置。用multisim软件对电路仿真。 总体框图如下:

正弦波与方波的相互转换

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录 一.设计要求 (3) 二.总体设计 (3) 三.设计方案 (4) ㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡将正弦波转换为方波 (4) ㈢将方波转换为正弦波 (4) ㈣还原波形 (4) 四.设计步骤及参数的确定 (4)

㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡正弦波转换为方波 (5) ㈢方波转换为正弦波 (5) ㈣还原波形 (5) ㈤整体电路原理图 (5) 五.实验仿真结果 (5) ㈠正弦波产生且换为方波再换为正弦波的波形 (5) ㈡用放大器放大振幅还原后的波形 (6) 六.电路板的制作 (6) ㈠画图 (6) ㈡元器件清单 (6) ㈢实物焊接 (7) 七.电路的调试 (7) ㈠电路连接 (7) ㈡波形测量 (8) ㈢数据的记录 (8)

八.总结 (9) ㈠设计过程中遇到的问题 (9) ㈡心得体会 (10) 正弦函数发生器 一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。 四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ 的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。

三角波、方波、正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。 因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比 例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率 围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

设计制作一个产生正弦波—方波—三角波函数转换器

模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波函数 转换器 专业班级:电信本 学生姓名: 学号:46 指导教师: 设计时间: 01/05 设计制作一个产生正弦波-方波-锯齿波函数转换器 一、设计任务与要求 1、?输出波形频率范围为~20kHz且连续可调; 2、?正弦波幅值为±2V; 3、?方波幅值为2V; 4、?三角波峰-峰值为2V,占空比可调; 5、?分别用三个发光二极管显示三种波形输出;?? 6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证

设计要求产生三种不同的波形分别为正弦波、方波、三角波。正弦波可以通过RC 桥式正弦波振荡电路产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。各个芯片的电源可用直流电源提供。 方案一 1、直流电源部分 电路图如图1所示 图1 直流电源 2、波形产生部分 方案一: LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选 频网络采用LC 电路。在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其 余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。 方案二 1、 直流电源部分同上 2、电路图如图2所示 正、反积分时间 常数可调的积分 电路 滞回比较器 LC 正弦波振荡 电路

图2 正弦波—方波—三角波函数转换电路 方案论证 LC正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。另外由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。因此对于器材的选择及焊接的要求提高了。 相反,RC正弦波振荡电路的振荡频率较低,一般在1MHz以下,它是以RC串并联网络为选频网络和正反馈网络,以电压串联负反馈放大电路为放大环节,具有振荡频率稳定,带负载能力强,输出电压失真小等优点,因此获得相当广泛的应用。另外对于器材的要求也不高,都是写常见的的集成块、电容、电位器等。在布局方面,简单,清晰! 综合对比两种方案,我选择第二种方案。 三、单元电路设计与参数计算 1、直流电源 (1)、整流电路 设变压器副边电压U2=wt U sin 2 2, U 2 为其有效值。 则:输出电压的平均值

方波三角波产生电路方案

方波-三角波产生电路的设计 1 技术指标 设计一个方波- 三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6- 6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生 器。构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位由和决定。利用叠加定理可得: 当时,U1输出为正,即 当时,U1输出为负,即 构成反相积分器,为负时,正向变化。为正时,负向变化。 当时,可得: 当上升使略高于0v时,U1的输出翻转到 同样,时,当下降使略低于0时,。 这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。 积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:

方波转正弦波

很多微控制器(MCU)或PIC都有用于产生正弦波但是效果却不甚理想的数模转换器(DAC)输出。一般来说它们的分辨率都比较低(8到10比特),总谐波失真率(THD)在1%内。或者,MCU或PIC使用一个带方波输出的五阶或七阶开关电容滤波器,并连接到MCU的两个I/O引脚上。一个输出被用作滤波器输入,另一个输出被用作滤波器时钟。此外,这两个输出必须是方波,并以100:1的比率跟随。 因为MCU不仅要产生一个正弦波,它还进行更多处理,所以将两个定时器或一个定时器绑定至固件通常需要很多系统开销。因此系统设计工程师不得不使用更快或更加昂贵的MCU。 这里有一个更好的办法,即利用RDD104可选的4各十进制CMOS除法器和一个MSFS5 开关电容滤波器来构建一个双芯片、失真率为0.2%的正弦波源。RDD104有两个引脚,可以从四个除法器divide-by-10、divide-by-100、divide-by-1000和divide-by-10k中选择一个。在引脚5连接外部时钟或带一个晶振,该器件就可使用。最大频率在5V直流电压下为1.5 MHz。 文中给出了方波-正弦波转换示意图。RDD104的引脚5和引脚6连接一个晶振以及一个10MΩ的电阻。引脚5还接有一个100pF的电容(C5)。MSFS5的输入电容,以及RDD104引脚6与MSF S5引脚4之间的连接具有与晶振引脚2相等的电容。由于DIV_SEL_1电平低,DIV_SEL_2电平高,所以选择100:1除法器。 MSFS5 是一个引脚可选的、七阶、低通/6端带通开关电容滤波器。这个具有8个引脚的IC可以用在Butterworth、Bessel或椭圆低通滤波器上,还可用于倍频程、1/3和1/6倍频程带通滤波器上。RDD104的Clock_Out交流耦合到MSFS5的时钟输入。设置MSFS5为1/6倍频程带通操作以实现在基频无衰减情况下方波谐波的最大衰减。可通过将FSEL和TYPE连接到VDD获得带通和1/6倍频程配置。设置滤波器为单电源运行,VDD为5V,VSS为0,GND通过2个电阻(R4和R5)连接到中间电源。用一个0.1μF的电容作为输入去耦。RDD104的输出通过两个10kΩ的电阻衰减,并交流耦合到MSFS5的滤波器输入端。有了这样的配置,我们就可以得到一个10kHz、1Vrms的正弦波输出。在5V直流下的总电流消耗少于2mA,这使该解决方案很适用于便携式应用,在400 Hz~30 0k Hz带宽之间,THD等于0.2%(在AP Portable One Plus Access测试条件下测试)。

用集成运放组成的正弦波、方波、三角波产生电路

物理与电子工程学院《模拟电路》课程设计 题目:用集成运放组成的正弦波、方波、三 角波产生电路 专业电子信息工程专业 班级 14级电信1班 学号 1430140227 学生姓名邓清凤 指导教师黄川

完成日期: 2015 年 12 月 目录 1 设计任务与要求 (3) 2 设计方案 (3) 3设计原理分析 (5) 4实验设备与器件 (8) 4.1元器件的引脚及其个数 (8) 4.2其它器件与设备 (8) 5实验内容 (9) 5.1 RC正弦波振荡器 (9) 5.2方波发生器 (11) 5.3三角波发生器 (13) 6 总结思考 (14) 7 参考文献 (15)

用集成运放组成的正弦波、方波、三角波产生电路 姓名:邓清凤 电子信息工程专业 [摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。 [关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器 1 设计任务与要求 (1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。 (2)在面包板上搭建电路,并完成电路的测试。 (3)撰写课程设计报告。 (4)答辩、并提交课程设计报告书 2 设计方案 方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。 缺点:设计、调试难度太大,周期太长,精确度不是太高。

正弦波-方波-三角波产生电路

正弦波-方波-三角波 产生电路 -CAL-FENGHAI.-(YICAI)-Company One1

模拟电子技术 课程设计报告 一、设计课题: 设计正弦波-方波-三角波产生电路,满足以下要求: (1)正弦波-方波-三角波的频率在100HZ~20KHZ范围内连续可调; (2)正弦波-方波的输出信号幅值为6V,三角波输出信号幅值为0~2V连续可调; (3)正弦波失真度≦5% 二、课程设计目的: (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计; (4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)学会撰写课程设计报告; (6)培养实事求是,严谨的工作态度和严肃的工作作风。. 三、电路方案与系统、参数设计 (1)电路系统设计及功能框图 设计要求为实现正弦波-方波-三角波之间的转换。正弦波可以通过文氏桥RC振荡电路产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,三角波的幅值要求可调。各个芯片的电源可用±12V

(2)单元电路设计 1.正弦波发生器实验原理 常见的RC 正弦波振荡电路是RC 串并联式正弦波振荡电路,它又被称为文氏桥正弦波振荡电路。串并联网络在此作为选频和反馈网络。 产生正弦振荡的条件: 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。 正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。 振荡频率与起振条件 1)振荡频率: 01 2f RC = π 2)起振条件: 当f = f0 时, 31=F 由振荡条件知:1AF >,所以起振条件为: 3>A 同相比例运放的电压放大倍数为: F 41u R A R =+ ,即要F 4 2R R > 正弦波产生电路一般包括: 放大电路、反馈网络、选频网络、稳幅电路个部分。

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

正弦波与方波的相互转换

正弦波与方波的相互转 换 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录

正弦函数发生器一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦 波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。

四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。 参数选择中最重要的是R6和C2的值选择,因为它们是选频电路。f=1/2ΠRC 。 f=1000HZ,所以可以确定RC的值。 ㈡正弦波转换为方波 用一个运放接成过零比较器如下图,通向端接信号输入,反向端接地。只要输入信号电压大于或小于零,信号就发生跳变,可以把正弦波转换为方波。 ㈢方波转换为正弦波 用电阻和电容接成RC滤波电路。在R2和C3过后的节点处波形是三角波,最后输出是正弦波。 ㈣还原波形 1.在RC滤波电路输出的正弦波,幅度变小了约9倍的样子,用一个同向放大器放大它的幅度。 2.因为同向放大器的放大倍数为:A=1+R12/R11 。所以确定R11=8k欧姆,R12=1k欧姆。

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

正弦波-方波-三角波函数转换器

课程设计名称:电子课程设计 课程设计题目:设计制作一个产生正弦波-方波-三角波函数转换器学院名称:信息工程学院 专业:班级: 学号:: 评分:教师:

20 13 -20 14 学年第 1 学期第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。 摘要 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。用三角波,方波发生电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。因此,本设计意在用LM324放大器设计一个产生正弦波-方波-三角波的函数转换器。为了使这三种波形实现转换,正弦波可以通过RC振荡电路

产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,三角波的占空比只要求可调即可。从而实现转换器的设计。 关键字:放大器、波形转换、同相滞回比较、电路积分电路、滤波电路 目录 前言 (1) 第一章设计要求 (2) 1.1 设计容及要求 (2) 第二章系统组成及原理 (3)

2.1 方案一 (3) 2.2 方案二 (3) 第三章单元电路设计与计算 (5) 3.1 单元电路设计 (5) 3.1.1 正弦波发生器实验原理 (5) 3.1.2 正弦波—方波转换器实验原理 (6) 3.1.3 方波—三角波转换器实验原理 (8) 3.1.4 直流电源电路原理 (9) 3.2 三角波正弦波转换电路 (11) 3.2.1 直流电源的参数设计 (11) 3.2.2 RC正弦波振荡电路的参数设计 (11) 3.2.3 方波电路的参数设计 (11) 3.2.4 三角波电路的参数设计 (11) 第四章安装与调试 (12) 第五章性能测试及分析 (13) 第六章结论与心得 (14) 6.1 实验结论 (14) 6.2 心得体会 (14) 参考文献 (15) 附录 (16) 1 总原理图 (16) 2 芯片管脚图 (17)

方波正弦波三角波转换器

毕业论文综合实践报告 第一章、系统的组成及工作原理 1.1系统组成 本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。 图1—1 方波三角波发生电路 三角波正弦波转换电路由滤波电路完成。 题目 设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为0.02Hz~20kHz 且连续可调; 2 正弦波幅值为±2V ; 3 方波幅值为2V ; 4 三角波峰-峰值为2V ,占空比可调; 5 设计电路所需的直流电源可用实验室电源。 摘要 波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。 同相滞回比较电路 积分电路 三角波

图1—2 正弦波发生电路 1.2工作原理 本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。 角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波 的峰峰值R 5调节三角波的占空比。 三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节. 第二章、电路方案设计 方案一: 方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。 2.1、方波—三角波转换电路如图 3.1所示。 该电路由同相滞回比较电路和积分电路组成。滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。此后,积分电路进行正向积分,u 0呈线性上升,当u 0上升到滞回比较器的阈值电压+U T 时即t 2时刻,u 01从-Uz 又跃变回到+Uz ,即返回第一暂态,电路又开始反向积分。如此周而复始,产生振荡。 三角波 滤波电路 正弦波

三角波发生电路设计

三角波发生器设计 制作人:朱立超 西安建筑科技大学

一、工作原理: 1. 基本原理图: 2.工作原理: 1)如图1,三角波发生器电路,有两部分组成。其中集成运放A1组成滞回比较器,A2组成积分电路。滞回比较器可以产生稳定的方波信号,再通过积分电路积分产生所需要的三角波。 由积分电路2031(z)dt T U R C --? 可知积分电路输出电压同u o1 反向。 设t=0时积分电路电容上的初始电压为零,而滞回比较器输出端u o1=+Uz 。又有电路图可以看出,两级电路分别都引入了反馈, A 1同相输入端的电压u p1同时与u o1和u o 有关,根据叠加定理 可得 121o1o 1212 u u u p R R R R R R =+++ 由积分回路同向和反向输入端“虚短”“虚断”u p2= u n2=0,从而可 图1 三角波发生电路图

知u o =u p2.由于t 0时电容两端电压为了零,所以 u o =0,而u 01=+Uz ,故u p1也为正。而当u o1=+Uz 时,经反向积分,输出电压u o 将随着时间往负方向线性增长,则u p1将随之逐渐减小,当减小至u p1=u n1=0时,滞回比较器的输出端电压发生跳变,使u o1由+Uz 跳变为-Uz ,此时u p1也将跳变成为一个负值。当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,u p1将又逐渐增大,当增大至u p1= u n1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。 滞回比较器和积分电路特性: 2)输出幅度: 在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此时u p1也随着增长,当增长至u p1= u n1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。将条图3 电路的波形图 图2 电压输出特性

方波正弦波三角波转换器

方波正弦波三角波转换器 The Standardization Office was revised on the afternoon of December 13, 2020

毕业论文综合实践报告 第一章、系统的组成及工作原理 系统组成 本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。 图1—1 方波三角波发生电路 三角波正弦波转换电路由滤波电路完成。 题目 设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为~20kHz 且连续可调; 2 正弦波幅值为±2V ; 3 方波幅值为2V ; 4 三角波峰-峰值为2V ,占空比可调; 5 设计电路所需的直流电源可用实验室电源。 摘要 波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。

图1—2 正弦波发生电路 工作原理 本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。 角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波 的峰峰值R 5调节三角波的占空比。 三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节. 第二章、电路方案设计 方案一: 方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。 、方波—三角波转换电路如图所示。 该电路由同相滞回比较电路和积分电路组成。滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。此后,积分电路进行正向积分,u 0 呈线性上升,

相关文档
相关文档 最新文档