文档库 最新最全的文档下载
当前位置:文档库 › 互感电路实验

互感电路实验

互感电路实验
互感电路实验

实验六互感电路实验

一、实验目的

1、掌握测定互感线圈同名端的方法,测量单相变压器原边、副边互感系数和耦合系数

2、了解两耦合线圈的互感系数和耦合系数与哪些因素有关

二、实验设备

l、直流电流表一块

2、交流电流表一块

3、交流电压表一块

4、万用表一块

5、交流单相变压器220V /36 V 容量(50 V A)一台

6、交流单相调压器(0V-250V)0.5KV A 一台

7、直流稳压电源一台0~~30V 一台

8、安全导线若干

9、单刀双位开关一个

三、预习任务

l、预习教科书中讲述的线圈绕组同名端的含义及辨别的方法。

2、了解实验箱和实验用的仪器仪表的功能及使用方法。

3、尝试自己动手绘制电路图。

四、实验原理说明

判别耦合线圈的同名端在理论分析和实际中具有重要意义。例如:电动机、变压器的各项绕组、LC振荡电路中的振荡线圈都要根据同名端进行联接。实际中对于具有耦合关系的线圈若其绕向和相互位置无法判别时可以根据同名端的定义用实验方法加以确定。

1、直流判别法

如图2-1所示,分别将互感线圈与电源E和电流表相联,当开关闭合瞬间,根据互感原理,在L2两端产生一个互感电动势电表指针会偏转。若指针正向摆动,则E正极与直流电流表头正极所连接一端是同名端。

图2-1

2、交流测试法(等效电感法)

2.l 设两个耦合线圈的自感分别为Ll和L2,它们之间的互感为M。若将两个线圈的异名端相连如图(a)所示称为正相串联,其等效电感为:

(a) 图2-2 (b)

若将两个线圈的同名端相连图(b)所示、则成为反向串联,其等效电感为

显然等效电抗

利用这种关系,在两个线圈串联方式不同时,加上相同的正弦电压,则正向串联时电流小,反向串联时电流大。同样若流过的电流相等,则正串联时端口电压高,反向串联时端口电压低。用电流表法如图2-2所示,将电流表串接与两个线圈,按两种不同接法与同一交流电压相接,测得电流分别为I1和I2,若I1>I2连接的两端是异名端。若I1<I2连接的两端是同名端。

2.2 用电压表测定,如图2-3所示,将两个线圈Ll和L2的任意两瑞(如X、x)连在一起在其中的一个线圈(如Ll)两端加一个低压交流电压,另一个线圈开路,用交流电压表分别测出UAa、UAX和Uax。若UAa是两个绕组端电压之差,则A、a是同名瑞:若UAa是两个绕组端电压之和,则A、x是同名端。

图2-3

4、测试互感系数M

如图2-4所示,在L 1侧加低压交流电压U1,L2侧开路测出I1及U20,根据互感电动势可算得互感系数为。

5、耦合系数K的测定

两个互感线圈耦合的松紧度可用耦合系数K来表示,如图2-4 先在Ll

侧加低压交流电压UI,测出L2侧开路时的电流I1,然后再在L2侧加电压U2,测出Ll侧开路时的电流I2,求出各自的自感Ll和L2,即可以算出K值。

图2-4

五、实验步骤

l、同名端测定实验,以单相变压器220/36V原副边做为互感器同名端测定对象,E=l.5V,指针微安表取25mA,S用单刀开关,按直流测定法电路接线。观察指针偏转方向判断同名端并作相应标记。

2、按图2-2连线,初、次级串联利用交流法(等效电感法)测定同名端,调压器调至180V,按交流电流表上的数值来判断同名端,并与直流法测试结果相比较。

3、利用交流电压法测定同名端,使V ll=220V,交流电压表取400V 量程测试U12的值,判断同名端并与前面实验相比较。

4、在变压器Ll加电压U1=220V,L2加电压时U2=36V。

5、表格自己绘制

六、实验报告

1、总结判定同名端的方法,说明判断意义。

2、除上述的几种判别同名端的方法外,还有没有别的判定方法,举例说明。

3、根据表格中数据,计算互感系数M和耦合系数K。

电路邱关源第六章课后知识题目解析

第6章 角度调制与解调电路 6.1 已知调制信号38cos(2π10)V u t Ω=?,载波输出电压6o ()5cos(2π10)V u t t =?,3f 2π10rad/s V k =?,试求调频信号的调频指数f m 、最大频偏m f ?和有效频谱带宽BW , 写出调频信号表示式 [解] 3m 3m 2π10 8 810Hz 2π2π f k U f Ω???===? 3m 3 3632π1088rad 2π102(1)2(81)1018kHz ()5cos(2π108sin 2π10)(V) f f o k U m BW m F u t t t Ω??===Ω?=+=+?==?+? 6.2 已知调频信号72()3cos[2π105sin(2π10)]V o u t t t =?+?,3f 10πrad/s V k =,试:(1) 求该调频信号的最大相位偏移f m 、最大频偏m f ?和有效频谱带宽BW ;(2) 写出调制信号和载波输出电压表示式。 [解] (1) 5f m = 5100500Hz =2(+1)2(51)1001200Hz m f f m F BW m F ?==?==+?= (2) 因为m f f k U m Ω= Ω ,所以3 52π100 1V π10f m f m U k ΩΩ??= = =?,故 27 ()cos 2π10(V)()3cos 2π10(V) O u t t u t t Ω=?=? 6.3 已知载波信号m c ()cos()o u t U t ω=,调制信号()u t Ω为周期性方波,如图P6.3所示,试画出调频信号、瞬时角频率偏移()t ω?和瞬时相位偏移()t ??的波形。 [解] FM ()u t 、()t ω?和()t ??波形如图P6.3(s)所示。

互感电路实验报告结论

竭诚为您提供优质文档/双击可除互感电路实验报告结论 篇一:互感器实验报告 综合性、设计性实验报告 实验项目名称所属课程名称工厂供电 实验日期20XX年10月31日 班级电气11-14班 学号05姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明 互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互 感器就是一种特殊变压器。电流互感器(currenttransformer,缩写为cT,文字符号为TA),是一种变换电流的互感器,其二次侧额定电流一般为5A。电压互

感器(voltagetransformer,缩写为pT,文字符号为TV),是一种变换电压的互感器,其二次侧额定电压一般为100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只5A量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只100V量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。 (二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构 原理如图3-2-1-1所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组 导体相当粗,而二次绕组匝数很多,导体很细。工作时,一次绕组串联在一次电路中,而二次绕组则与仪表、继电器等电流线圈相串联,形成一个闭合回路。由于这些电流线圈的阻抗很小,因此电流互感器工作时二次回路接近于短路状

第6章 互感耦合电路

第6章互感耦合电路 6.1互感与互感电压 一、填空题 1.由于一个线圈中的电流变化在另外一个线圈中产生感应电压的现象称为______________,产生的感应电压叫做_________。此时若线圈工中电流红变化在线圈I 中产生的互感电压记做____________,其大小的表达式为_______________;;同理线圈中II 电流2i 的变化在线圈I 产生的互感电压记做____________,其大小的表达式为_______________。 2.互感系数简称互感,用______表示,其国际单位是_________。它是线圈之间的固有参数,它取决于两线圈的______、______、______和______。 3.两线圈相互靠近,其耦合程度用耦合系数k 表示,k 的表达式为_________,其取值范围是,当k =1时称为_________。 4.已知两线圈,1L =12mH ,2L =3mH ,若k =0.4,则M =_________,若两线圈为全耦合。则M =____________。 5.有互感的两线圈,1L =0.4H ,2L =0.1H ,耦合系数k =0.5,电压、电流、磁链的参考方向均关 联,且符合右手螺旋定则,已知1i t A ,2i =0,则M =_______________,1 U =____________,2 U =__________________。 二、选择题 1.变压器同名端的含义是( ) (l )变压器的两个输人端 (2)变压器的两个输出端 (3)当分别从一二级的一端输入电流时,一、二级绕组的自感磁通与互感磁通的方向一致,这两端即为同名端 (4)分别从一、二级的一端输人电流时,一、二级绕组的自感磁通与互感磁通的方向相反,这两端即为同名端 2.线圈自感电压的大小与()有关 (l )线圈中电流的大小(2)线圈两端电压的大小 (3)线圈中电流变化的快慢(4)线圈电阻的大小 3.有一线圈,忽略电阻,其电感量L =0.02H ,当线圈中流过电流i =20A 的瞬间,电流增加的速率是2X 310A/s ,此时电感两端的电压是() (1)40V (2)0.4V (3)0V (4)800V 4、与线圈1中电流每秒变化20A ,线圈2中产生的互感电压的大小是0.2V ,则两线圈的互感是( )

三段电流保护实验报告

BeijingJiaotongUniversity 电力系统继电保护实验报告三段电流保护实验 姓名: 学号: 班级:电气1103 实验指导老师:倪平浩

一、电力系统继电保护实验要求 ①认真预习实验,保证在进实验室前,要掌握继电保护实验基础知识,熟悉继电保护实验环境。 要有一份详细的预习报告,预习报告必须认真写,须包含自己设计的实验电路。不得有相同的或者复印的预习报告。如果没有预习报告、预习报告雷同或者复印预习报告,则报告相同的同学都不得进入实验室做实验,回去重新预习,以后约时间做实验。 ②实验过程中要认真记录数据和实验中出现的问题,积极思考实验中的问题,可以讨论,但不能大声喧哗,不得做与实验无关的事情。 ③实验报告要认真写,要写出调试过程的问题,分析问题原因,和如何解决问题,不得抄袭。 ④保持实验室卫生,不得在实验室里乱丢弃垃圾。实验结束后,把实验桌周围的垃圾打扫干净。 二、电力系统继电保护常用继电器 1、电流继电器 电流继电器装设于电流互感器二次回路中,当电流大于继电器动作电流时动作,经跳闸回路作用于断路器跳闸。 结构图内部接线图 1.电磁铁2.线圈3.Z型舌片 4.弹簧5.动触点6.静触点 7.整定值调整把手8.刻度盘9.舌片行程限制杆 10.轴承 图13-1 DL-11型电流继电器结构图 动作原理: 如图13-1,当继电器线圈回路(图中2)中有电流通过时,产生电磁力矩,使舌片(图中3)向磁极靠近,但由于舌片转动时必须克服弹簧(图中4)的反作用力,因此通过线圈的电流必须足够大,当大于整定的电流值时(图中7、8),产生的电磁力矩使得舌片足以克服弹簧阻力转动,使继电器动作,接点闭合(图中5、6)。 电流继电器动作电流、返回电流、返回系数:

电流互感器试验报告

电流互感器试验报告 电气设备试验报告大唐淮南洛河发电厂一期烟气脱硫工程 电流互感器试验报告 安装环境 安装位置电控楼一楼6KVII段2#脱硫增压风机旁路电流互感器设备名称电流互感器试验性质交接试验日期 2008-06-13 天气睛温度 26.2? 湿度66% 试验标准 GB 50150-1991-8 铭牌 型号 LZZBJ9-10A2G 额定电压 6KV 次级线圈编号准确度级容量,VA, 生产日期 2008.4 电流比 200/5 1S-1S0.5 20 12 生产厂家中国.大连第一互感器有限公司 2S-2S 5P20 15 12 A C 出厂编号 080480448 080480499 绝缘电阻测量:,MΩ, 仪器:2500V兆欧表(PC27-5G) 500兆欧表(PC27-1G) 试验项目 A C 初级对次级及地 2500 2500 次级对地 500 500 直流电阻测量及极性检查仪器:直流电阻快速测试仪、HQ2000互感器特性综合测试仪试验项目 A C 直流电阻(mΩ) 0.154 0.120 极性减极性减极性 励磁特性测量仪器:HQ2000互感器特性综合测试仪、标准电压表(0.5级 D26-V 805.60) 标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 电流(A) 1 2 3 4 5 1 2 3 4 5 1S-1S 23.7 23.9 24.2 24.8 25.2 23.5 23.8 24.9 25.0 25.1 12电压(V) 2S-2S 85.2 88.4 91.8 93.6 95.0 82.6 87.9 92.8 95.7 96.2 12 电流比测量仪器:HQ2000互感器特性综合测试仪标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 初级加电流(A) 40 80 120 160 200 40 80 120 160 200

实验八 互感电路的测量

实验八 互感电路的测量 一.实验目的 1.学会互感电路同名端、互感系数以及耦合系数的测定方法。 2.通过两个耦合线圈顺向串联和反向串联实验,加深理解互感对电路等效参数以及电压、电流的影响。 二.实验基本知识 1.判断互感线圈同名端的方法 (1)直流法 为了正确判断互感电动势的方向,必须首先判断两个具有互感耦合线圈的同名端,判断互感电路同名端的方法是:用一直流电源开关瞬间与互感1接通(图8-1)在线圈2回路中接一直流毫安表,在开关K 闭合的瞬间,线圈1回路中的电流I 1通过互感耦合将在线圈2中产生一互感电势并在线圈2回路中产生一电流I 2使所接毫安表发生偏转,根据愣次定律及图示所假定的电流方向,当毫安表正向偏转时,线圈1与电源正极相接的端点1与线圈2直流毫安表正极相接的端点2′和线圈1与电源正极相接的端1为同名端,(注意上述判定同名端的方法在开关K 闭合的瞬间才成立)。 图8-1 图8-2 (2)交流法 互感电路同名端也可利用交流法来测定,将线圈1的一个端子1`与线圈2的一个端子2′用导线连接(如图8-2中虚线所示)在线圈1两端加以交流电压,用电压表分别测1及1′两端与2、2′两端的电压,设分别为U 11′与U 12,如果U 12>U 11′`,则用导线连接的两个端点(1′与2′)应为异名端(也即1′与2′以及1与2′为同名端),因为如果假定正方向为U 11′,当1与2′为同名端时,线圈2中互 2′ 2 1

感电压的正方向为U 2′2,所以U 12=U 11′+U 2′`2,U 12(因1′与2′相联)必然大于电源电压U 11′,同理,如果1,2两端电压的读数U 12小于电源电压(即U 12

电流互感器的计算公式 图文,民熔

电流互感器的计算公式 我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗,比如大功率开关电源,由于电流过大所以需要使用电流互感线圈来监测电流以减少损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难 基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。

当然,我们可以用一个1V/10A=100mΩ的电阻来测量,但是电阻将造成的损耗为1V×10A=10W,这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图1所示。 图1 用电流检测互感器减小损耗当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。

如果副边匝数为N,由欧姆定律可得 (10/N)R=1V,在电阻中消耗的功率为 P=(1V)^2/R。 我们假设消耗的功率为50mW(也就是说,我们可以使用100mW规格的电阻),这就要求R 不得小于20Ω,如果采用20Ω的电阻,由欧姆定律可得副边匝数N=200。 现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流为10A/200=50mA。互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。250kHz频率工作时,磁芯上的磁感应强度不会超过 其中4us为一个周期的时间,实际肯定是不到一个周期的。由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

互感电路测量

实验八 互感电路测量 一、实验目的 1、学会互感电路同名端、互感系数以及耦合系数的测定方法。 2、理解两个线圈相对位置的改变,以及用不同材料作线圈芯时对互感的影响。 二、实验设备和器材 数字直流电压表 0~200 V 数字直流电流表 0~200 mA 交流电压表 0~500 V 交流电流表 0~5 A 空心互感线圈 N 1为大线圈,N 2为小线圈 自耦调压器 0~250 V 直流稳压电源 0~30 V 电阻器 30Ω/8W ,500Ω/2W 发光二极管 红或绿 粗、细铁棒、铝棒 变压器 36 V/220 V 三、实验原理与说明 1、判断互感线圈同名端的方法 (1)直流法:如实验图8-1所示,当开关K 闭合瞬间,若毫安表的指针正偏,则可断定“1”、“3”为同名端;指针反偏,则“1”、“4”为同名端。 (2)交流法:如实验图8-2所示,将两个绕组N 1和N 2的任意两端(如2、4端)连在一起,在其中一个绕组(如N 1)两端加一个低电压,另一绕组(如N 2)开路。用交流电压表分别测出端电压U 13、U 12和U 34。若U 13是两个绕组端电压之差,则1、3是同名端;若U 13是两绕组端电压之和,则1、4是异名端。 2、两线圈互感系数M 的测定 在实验图8-2的N 1侧施加低压交流电压U 1,测出I 1及U 2。根据互感电势E 2M ≈U 2 = wMI 1,可算得互感系数为:1 2wI U M 。

3、耦合系数k 的测定 两个互感线圈耦合松紧的程度可用耦合系数k 来表示: 21L L M k 如实验图8-2所示,先在N 1侧加低压交流电压U 1,测出N 2侧开路时的电流I 1;然后再在N 2侧加电压U 2,测出N 1侧开路时的电流I 2,求出各自的自感L 1和L 2,即可算得k 值。 四、实验内容与步骤 1、分别用直流法和交流法测定互感线圈的同名端 (1)直流法:实验线路如实验图8-3所示。先将N 1和N 2两线圈的四个接线端子编以1、2和3、4序号。将N 1、N 2同心地套在一起,并放入细铁棒。U 为可调直流稳压电源,调至10 V 。流过N 1侧的电流不可超过0.4 A (选用5 A 量程的数字电流表)。N 2侧直接接入2 mA 量程的毫安表。将铁棒迅速地拔出和插入,观察毫安表读数正、负的变化,来判定N 1和N 2两个线圈的同名端。 (2)交流法:本方法中,由于加在N 1上的电压仅2 V 左右,直接用屏内调压器很难调节,因此采用实验图8-4的线路来扩展调压器的调节范围。图中W 、N 为主屏上的自耦调压器的输出端,B 为升压铁心变压器,此处作降压用。将N 2放入N 1中,并在两线圈中插入铁棒。A 为2.5 A 以上量程的交流电流表,N 2侧开路。 接通电源前,应首先检查自耦调压器是否调至零位,确认后方可接通交流电源,令自耦调压器输出一个很低的电压(约12 V 左右),使流过电流表的电流小于1.4 A ,然后用0~30 V 量程的交流电压表测量u 13、u 12和u 34,然后判定同名端。 拆去2、4连线,并将2、3相接,重复上述步骤,判定同名端。 2、求互感系数M 拆除2、3连线,测u 1、i 1和u 2,计算出M 。 3、测电压和电流 将低压交流加在N2侧,使流过N2侧电流小于1 A ,N1侧开路,按步骤(2)测出u 2、i 2和u 1。 4、求耦合系数k

耦合电感的等效电路

6.5.2 耦合电感的等效电路 1. 耦合电感的去耦等效电路 (1)串联电路去耦 图6-41(a )和图6-42(a )即为耦合电感的串联电路。图6-41(a )中1L 和2L 的异名端联接在一起,该联接方式称为同向串联(顺接);图6-42(a )中1L 和2L 的同名端连接在一起,该连接方式称为反向串联(反接)。 1 +- 2 u M L +i M L +1 +- 2 u (a ) (b ) M L L 2++- + u (c ) 图6-41 串联耦合电路的去耦 顺接时,支路的电压电流关系为 dt di M L L dt di M L dt di M L dt di M dt di L dt di M dt di L u ) 2() ()() ()(21212 1 ++=+++=+++= 根据等效变换的概念,该顺接耦合电感可用一个)(1M L +的电感和一个)(2M L +的电感相串联的电路等效替代,或用一个)2(21M L L ++的电感等效替代。如图6-41(b )所示。 反接时,支路的电压电流关系为 dt di M L L dt di M L dt di M L dt di M dt di L dt di M dt di L u ) 2()()() ()(21212 1 -+=-+-=-+-= 根据等效变换的定义,该反接耦合电感可用一个)(1M L -的电感和一个)(2M L -的电感相串联的电路等效替代,或用一个)2(21M L L -+的电感等效替代。如图6-42(b )所示。 1 +- 2 u M L -i M L -1+- 2 u

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

电子器件实验报告

电子科技大学 实验报告 学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称:电磁性能综合测试室 二、实验项目名称:电感磁性参数测试、计算及直流偏置影响实验 三、实验原理: 一个绕线电感,在电路上可等效成一个电感L和一个电阻R的串联,利用交流电桥测试设备,如TH2828、Agilent4284等,设定好测试频率和测试电压,可直接读出在频率点绕线电感的等效电感值和损耗电阻值来。在不同的频率点下测试,则可得到该电感器磁性参数的频率特性来。而电感L与磁芯磁导率的实部之间满足一定的计算关系,串连损耗电阻R与磁芯磁导率的虚部满足一定的计算关系,根据L和R的频率特性,通过计算可得到磁导率的磁谱特性。在直流偏置条件下,绕线电感的等效电感值和损耗电阻值都会发生变化,通过测试在不同直流偏置下等效电感值和损耗电阻值的变化,可确定直流偏置和电感器性能的影响大小,并各通过计算得到了直流偏置对磁芯材料磁导率的影响大小来。

四、实验目的: 通过对绕线电感器各相关磁性参数的测试,掌握电感器的电感量、损耗电阻等参数的测试方法以及这些参数随测试频率的变化趋势。通过进行电感器直流偏置的实验,了解直流偏置磁场对电感器电磁参数性能的影响及影响程度的大小。通过相应的计算,知道如何将电感值、损耗电阻值与磁芯的磁导率之间建立关联。 五、实验内容: 1、利用TH2828LCR阻抗测试仪测试绕制的电感器在不同测试频率下的主要磁性参数。 2、利用TH2828LCR阻抗测试仪测试绕制的电感器在不同直流偏置条件下其主要磁性参数的变化。 3、根据测试的等效电感值和损耗电阻值,推算相应磁导率实部和虚部的大小,以及随频率和偏置场的变化。 六、实验器材(设备、元器件): 本实验主要采用TH2828LCR阻抗测试仪和熔锡炉。 七、实验步骤: 1、开启焊锡炉,设置工作温度为430℃; 2、开启TH2828LCR阻抗测试仪,预热20分钟; 3、选用φ5×2.5×2mm的铁氧体磁芯,用漆包线在磁芯上均匀绕线

11-2含互感电路的计算

第十一章耦合电感和变压器 讲授板书1.掌握具有耦合电感的电路计算方法; 具有耦合电感的电路计算方法; 具有耦合电感的电路计算方法; 1. 组织教学 5分钟 3. 讲授新课70分钟1)电路35 2)例题35 2. 复习旧课5分钟 互感 4.巩固新课5分钟 5.布置作业5分钟

一、学时:2 二、班级:06电气工程(本)/06数控技术(本) 三、教学内容: [讲授新课]: §11.2 含有耦合电感电路的计算 含有耦合电感(简称互感)电路的计算要注意: (1) 在正弦稳态情况下,有互感的电路的计算仍可应用前面介绍的相量分析方法。 (2) 注意互感线圈上的电压除自感电压外,还应包含互感电压。 (3) 一般采用支路法和回路法计算。因为耦合电感支路的电压不仅与本支路电流有关,还与其他某些支路电流有关,若列结点电压方程会遇到困难,要另行处理。 1. 耦合电感的串联 (1)顺向串联 图 10.5 所示电路为耦合电感的串联电路,由于互感起“增助”作用,称为顺向串联。 图 10.5 图 10.6 按图示电压、电流的参考方向, KVL 方程为: 根据上述方程可以给出图 10.6 所示的无互感等效电路。等效电路的参数为: (2)反向串联

图 10.7 所示的耦合电感的串联电路,由于互感起“削弱”作用,称为反向串联。 图 10.7 按图示电压、电流的参考方向, KVL 方程为: 根据上述方程也可以给出图10.6所示的无互感(去耦)等效电路。但等效电路的参数为: 在正弦稳态激励下,应用相量分析,图 10.5 和图 10.7 的相量模型如图 10.8 所示。 图 10.8 ( a )图 10.8( b )图(a)的 KVL 方程为: 输入阻抗为: 可以看出耦合电感顺向串联时,等效阻抗大于无互感时的阻抗。顺向串联时的相量图如图 10.9 所示。

实验十五 互感电路观测

实验十五互感电路观测 执笔人:zht 实验成员: 班级:自动化二班

实验十五 互感电路观测 一、实验目的 1、学会互感电路同名端、互感系数以及耦合系数的测定方法。 2、观察两个线圈相对位置的改变,以及用不同材料作线圈芯时对互感的影响。 二、原理说明 1、判断互感线圈同名端的方法 (1)直流法 如图15-1所示,当开关S 闭合瞬间,若毫安表的指针正偏,则可断定“1”,“3”为同名端;指针反偏,则 “1”,“4”为同名端。 (2)交流法 如图15-2所示,将两个线圈N 1和N 2的任意两端(如2,4端)联在一起,在其中的一个线圈(如N 1)两端加一个低压交流电压,另一线圈开路,(如N 2),用交流电压表分别测 出端电压U 13、U 12和U 34。若U 13是两个绕组端压之差,则1,3是同名端;若U 13是两个绕组端压之和,则1,4是同名端。 2、两线圈互感系数M 的测定。 如图15-2,在N 1侧施加低压交流电压U 1,N 2侧开路,测出I 1及 U 2 。根据互感电势122MI U E O M ω=≈;可算得互感系数为 图 15-1 图15-2 i 1

1 2I U M ω= 3、耦合系数k 的测定 两个互感线圈耦合松紧的程度可用耦合系数k 来表示 21/k L L M = 如图15-2,先在N 1侧加低压交流电压U 1,测出N 2侧开路时的电流I 1;然后再在N 2侧加电压U 2,测出N 1侧开路时的电流I 2,求出各自的自感L 1和L 2,即可算得k 值。 三、实验设备 四、实验内容及步骤 1、分别用直流法和交流法测定互感线圈的同名端。

互感电路的计算

第六章互感电路 第一节互感及互感电压 学习目标 1 .了解电磁场的基本知识和电感的概念 2 .理解自感和互感现象 重点互感对电流的阻碍作用 难点自感和互感电动势的判断 一、互感 图 6-1 1. 互感现象 : 如图6-1所示表示两个有磁耦合的线圈(简称耦合电感),电流i 1在线圈1和2中产生的磁通分别为Φ11和Φ21,则Φ21≤Φ11。称为互感现象。电流i 1 称为施感电流。Φ11 称为线圈 1 的自感磁通,Φ21 称为耦合磁通或互感磁通。 如果线圈2的匝数为N 2,并假设互感磁通Φ21与线圈2的每一匝都交链,则互感磁链为Ψ21=N 2Φ21。 图 6-2

同理,如图 6-2 所示,电流i 2在线圈2和l中产生的磁通分别为Φ22和Φ12,且Φ12 ≤Φ22。Φ22称为线圈2的自感磁通,Φ12称为耦合磁通或互感磁通。如果线圈1的匝数为N 1,并假设互感磁通Φ12与线圈1的每一匝都交链,则互感磁链为Ψ12=N 1Φ12 2.互感线圈:上述线圈称为互感线圈。 3.互感系数:上述系数和称互感系数。对线性电感和相等,记为。 4 .自感系数:对于线性非时变电感元件,当电流的参考方向与磁通的参考方向符合右螺旋定则时,磁链Ψ电流i成正比,即Ψ=Li ,式中L为与时间无关的正实常数,即为自感系数。根据电磁感应定律和线圈的绕向,如果电压的参考正极性指向参考负极性的方向与产生它的磁通的参考方向符合右螺旋定则时,也就是在电压和电流关联参考方向下,则 在此电感元件中,磁链Ψ和感应电压u 均由流经本电感元件的电流所产生,此磁链感应电压分别称为自感磁链和自感电压,如图6-3。 图6-3 自感磁链 : , 为自感系数 . 5 .耦合系数:上述一个线圈的磁通交链于另一线圈的现象,称为磁耦合,用耦合系数 K 来 反应其耦合程度。,则 (“ + ”号表示互感的增强作用;“—”表示互感的削弱作用) 第二节互感线圈的同名端 学习目标:掌握同名端的几种判断方法。

实验四 含有耦合电感的电路 互感电路仿真

实验四 含有耦合电感的电路——互感消去法 一、实验目的 1、通过理论分析,搭建仿真的互感电路进行仿真实验,验证互感消去法的正确性。 2、学习用Multisim 软件平台进行仿真实验的基本方法,通过仿真实验掌握互感消去法的基本概念和理论分析原理。 二、实验原理 (1)理论分析 当互感线圈既非串联又非并联,但两线圈有公共端时,去耦后可用一个T 形等效电路来代替。如下图: 图1 互感线圈的T 形等效电路 (a)同侧端耦合电路 (b)T 形等效电路 (c)异侧端耦合电路 (d)T 形等效电路 (2)实例 下图图二所示具有互感电路中,已知耦合系数5.0=k ,V U ?∠=01001 , Ω=4R ,Ω=161l X ,Ω=42l X ,Ω=8c X ,求:输出电压的大小和相位。 · · - + 1U - + 2U 1L 2L 1 I 2I I - + 2U M L -1 M L -2 I · · - + 2U 1L 2L I M M - + 1U - +1U M + - + 2U M L +1 M L +2 I - +1U M - 1 I 2I (a) (b) 1I 2I (c) (d)

图二 耦合电路 图三 去耦等效电路 理论解: 120.51644M k L L ωωω=?=??=Ω 去耦后等效电路如图3所示, Ω ?∠=-+=-+-?+=69.782622212) 84(4) 84(412j j j j j j j Z A Z U I ?-∠=?∠?∠==69.7813 262569.7826201001 V j j U ?-∠=??-∠?--=69.123735.27469.7813 26254442 三、 仿真试验 用Multisim11搭建仿真电路,进行仿真实验。如下图: 图四 仿真电路图 · · 2U 1L 2 L C M R - +1U 12j Ω Ω0j Ω -8j Ω4 2U Ω4j I

互感3实验

实验9、互感电路 (研究性实验) 一、学时分配 3学时。 二、实验目的 1. 掌握互感线圈同名端的测量方法。 2. 掌握互感线圈互感系数和耦合系数的测量方法。 三、实验原理 1、互感线圈同名端的测定 两个或两个以上具有互感的线圈中,感应电压极性相同的端钮定义为同名端。在电路中,常用“”或“*”等符号标明互感耦合线圈的同名端。同名端可以用实验方法来测定,常用的有直流法和交流法。 (1) 直流通断法 图9-1所示电路中,线圈L1通过开关K接到直流电压源,直流电压表接到线圈L2的两端。在开关K闭合瞬间,线圈L2的两端会产生一个互感电压,电压表上就会有电压显示。若电压表显示为正值,则与直流电压源正极相连的端钮a和与电压表正极相连的端钮c为同名端;反之,则a、c为异名端。实际上,当开关K断开或闭合瞬间,电位同时升高或降低的端钮即为同名端。 图9-1 直流通断法图9-2 交流电压法 (2) 交流电压法 图9-2所示电路中,将两线圈的b端和d端短接,在a、b端加交流电源,用交流电压表分别 测量有效值、、。若,则a端和c端为同名端;若,则a端与d端为同名端。 (3)交流电流法 设两个耦合线圈的自感系数分别为、,它们之间的互感系数为。若将两个线圈的异 名端相联,称为顺接串联,顺接串联后的等效电感为;若将两个线圈的同名端 相联,则称反接串联,其等效电感是。显然,在串联线圈两端加上正弦交流电

压时,其等效电抗的关系为,这时测出各自的电流。如果测得的电流小,则是顺接串联,两线圈相连接的端子是异名端;如果测得的电流大,则是反接串联,两线圈相连接的端子是同名端。 2 互感系数的测定 (1) 利用感应电压测量互感系数 图9-3所示的两个互感耦合线圈的电路,耦合线圈的互感系数为。当线圈a、b端接角频率为 的正弦交流电压源,线圈c、d端开路时,则c、d两端的开路电压有效值为, 其中是线圈ab的电流有效值。这样,可得耦合线圈的互感系数为 (9-1) 需要指出的是,为了减少测量误差,应尽量选用内阻较大的电压表和内阻较小的电流表。 图9-3 互感系数的测定 (2) 利用两个互感耦合线圈串联测量互感系数 两线圈顺接串联后,两端接角频率为的正弦电压源,用电流表测量电流为,则顺接串 联后的等效电感为;两线圈反接串联后,两端也接角频率为的正弦电压源,用 电流表测量电流为,则反接串联后的等效电感为。设两线圈的自感系数分别为、,根据两线圈顺接串联、反接串联的等效电感的关系,有 解上述方程组,得耦合线圈的互感系数为

电压电流互感器的试验方法(完整资料).doc

【最新整理,下载后即可编辑】 电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中

的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。

电工基础最新版习题详解第六章互感电路习题详解

第六章 互感电路习题解答 6-1解:因为两个互感线圈顺向串联时的等效电感s L 大于反向串联时的等效电感f L ,在同 样端电压下,顺串时的电流小于反串时的电流。所以第一次串联是顺向串联。 两线圈内阻之`和为R ,2 P I R =; 262.5 2.5R =, 10R =Ω 根据反向串联时的功率,可得反串时的电路电流为5f I A = = 22 2 22010()2.5Ls X += 得87.420.278Ls s X L H ==, 22222010()5 Lf X += 得42.850.136Lf f X L H ==, 则两线圈的互感系数0.0354 s f L L M H -= =。 6-2 122(L π= + 化简可得 123310L L M +=,代入数据3M H =。 6-3解:根据KCL 、KVL 列写具有互感电路的方程: 1212112122()()L M L M I I I U I R jX I jX U I R jX I jX ? =+?? ?=++?? ?=++?? 式中111003300L X L ω==?=Ω 221001010001005500L M X L X M ωω==?=Ω==?=Ω 代入数据: 1212212200(100300)5002200(1001000)500I I I I j I j I j I j ? =+?? ∠=++??? ∠=++??? 解之可得:

12 0.8229.4 ;0.36170.5;0.5852 I A I A I A =∠-=∠-=∠- 功率222211220.821000.3610080.2P I R I R W =+=?+?= 6-4解:各图的去耦等效电路如习题6-4解图a 、b 、c 所示,等效复阻抗分别为 图a 中 58//82231eq Z j j j j j =++=Ω 图b 中 55//(55)18eq Z j j j j =++=+Ω 图c 中 515//(515) 1.2 2.7eq Z j j j j =-++=+Ω 6-5解:在习题6-5解图中,因为B 、Y 端钮开路,10I =,则2I I =, 2111()L U I R jX =+ 即 22100(34) 100 25334 I j I A j ∠=+∠==∠- + 开路电压 21253210013.410.3oc M U I jX U j V =?+=∠-?+∠=∠

电工电子设计性实验报告

广东石油化工学院电工电子实验中心 题目家庭照明电路设计 班级 学号 姓名 指导教师张锋 时间 2013.3.10

电工电子技术课程设计任务书姓名:班级:指导老师:张锋 设计课题: 设计任务与要求根据应用电路的功能,确定封面上的题目,然后完成以下任务: 1、分析电路由几个部分组成,并用方框图对它进行整体描述; 2、对电路(不可以复制或截屏!)的每个部分分别进行单独说明,画出 对应的单元电路,分析电路原理、元件参数、所起的作用、以及与其他部分电路的关系等等; 3、用简单的电路图绘图软件绘出整体电路图,在电路图中加上自己的学 号或姓名等信息; 4、对整体电路原理进行完整功能描述; 5、列出标准的元件清单; 6 制作电路实物(成功者可给优秀)或对进行电路仿真,演示并记录其实际效果;写出设计心得体会。(注意:设计如果与同学或网络作品雷同大于50%,则此设计作废) 设计步骤(请同学们认真在宿舍抓紧时间完成,无故拖延者扣分处理) 1、查阅相关资料,开始撰写设计说明书; 2、先给出总体方案并对工作原理进行大致的说明; 3、依次对各部分分别给出单元电路,并进行相应的原理、参数分析计算、 功能以及与其他部分电路的关系等等说明; 4、列出标准的元件清单; 5、总体电路的绘制及总体电路原理相关说明; 6、列出设计中所涉及的所有参考文献资料。 参考文献 参考文献:参考文献在说明书中按出现的顺序在设计说明书中,采用上标标注。

目录 一、设计目的 二、家庭照明电路组成部分的功能和安装要求 三、设计的总体思路 四、电路功能框图 五、安装用电路元器件以及预算 六、施工要求 七、设计总结

相关文档