文档库 最新最全的文档下载
当前位置:文档库 › 一种构造不等式的方法简析

一种构造不等式的方法简析

一种构造不等式的方法简析
一种构造不等式的方法简析

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

34用构造局部不等式法证明不等式

用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤ 分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。 证明:213321333213233 2a a a a +=+≤++=+···()() 同理,2133 2b b +≤+() ∴212133233223a b a b +++≤ +++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221 12++++≥+-… ++…x n 。 证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121 12222+≥+≥+≥+≥--,,…,,。 将上述n 个同向不等式相加,并整理得: x x x x x x x x x x x n n n n 1222231221 12++++≥+++-……。 例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112 ++++++≥…。 证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214 +++≥,

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

四种构造函数法证明不等式

四种构造函数法证明不等式 利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键. 考点一“比较法”构造函数证明不等式 当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=ln x,进而证明在某个取值范围内不等式f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),进而证明h(x)min≥0或φ(x)max≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可 以类比作商法,构造函数h(x)=f(x) g(x)? ? ? ? ? φ(x)= g(x) f(x),进而证明h(x)min≥1(φ(x)max≤1). 【例题】已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)求证:当x>0时,x2<e x. 【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增.

高中数学解题方法与技巧---构造函数法证明导数不等式的六种方法

高中数学解题方法与技巧 构造函数法证明不等式的六种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的六种方法: 一、移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 2 2)1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 , 即)(x g 在)0,1(?∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞?上的最小值为0)0()(min ==g x g ,

构造函数证明数列不等式

数列不等式求证 题目1:求证2 1+31+41+…+11+n <+<)1ln(n 1+21+31+41+…+n 1 题目2:求证<+) 1(2 n n n ln 4ln 3ln 2ln ?????? 题目3:求证 n n n 1 ln 44ln 33ln 22ln

构造函数法证特殊数列不等式 题目1:求证 2 1+31+41+…+11+n <+<)1ln(n 1+21+31+41+…+n 1 (一)构造函数①)0(1)1ln()(>+-+=x x x x x f 分析:2)1()1(11)(x x x x x f +-+-+= '=2 ) 1(x x +>0,函数)(x f 在(0,+∞)上单调递增。 所以当0>x 时,有)(x f >f(0)=0,即有)0(1)1ln(>+> +x x x x 因而有21111)111ln(=+> +,3121121 )211ln(=+>+,41 3 131)311ln(=+>+, (11) 111)11ln(+= +>+n n n n 故:)111ln(++)211ln(++)311ln(++……+)11ln(n +>21+31+41+……+11 +n 即>+)1ln(n 21+31+41+……+1 1 +n (二)构造函数②)0()1ln()(>-+=x x x x f 分析:111)(-+= 'x x f =x x +-1<0,函数)(x f 在(0,+∞)上单调递减。 所以当0>x 时,有)(x f <+x x x 因而有1)111ln(<+,21)2 11ln(<+,31)311ln(<+,……, n n 1 )11ln(<+ 故:)111ln(++)211ln(++)311ln(++……+)11ln(n +<1+21+31+41+……+n 1 即<+)1ln(n 1+21+31+41+……+n 1 综上有: 2 1+31+41+…+11+n <+<)1ln(n 1+21+31+41+…+n 1 小结:记住函数不等关系㈠x x +1<)0()1ln(><+x x x 题目2:求证 <+) 1(2 n n n ln 4ln 3ln 2ln ??????

用构造局部不等式法证明不等式

用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤ 分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。 证明:213321333213233 2a a a a +=+≤++=+···()() 同理,2133 2b b +≤+() ∴212133233223a b a b +++≤ +++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221 12++++≥+-… ++…x n 。 证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121 12222+≥+≥+≥+≥--,,…,,。 将上述n 个同向不等式相加,并整理得: x x x x x x x x x x x n n n n 1222231221 12++++≥+++-……。 例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112 ++++++≥…。

证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214 +++≥, a a a a a a a a a a a a n n n n 222323221144 +++≥+++≥,…,。 又∵a a a a a a a a a n n 12231124441212 ++++++=+++=……(), ∴把以上各个同向不等式相加,整理得: a a a a a a a a a a a a n n n 12122223211212 1+++++++≥+++=…… 故a a a a a a a a a n n 121222232112 ++++++≥…。 例4. 设a b c R ,,∈*,且abc =1,求证: 111333a b c b c a c a b ()()()+++++≥32。 (第36届IMO ) 证明:由a ,b ,c 在条件中的对称性知,只有当a b c ===1时,才有可能达到最小值32,此时刚好1412 3a b c b c bc ()+=+=。所以,可构造如下局部不等式。 ∵14214133a b c b c bc a bc a ()+++≥=, 14214133b a c a c ac b ac b ()+++≥=, 14214133c a b a b ab c ab c ()+++≥=, ∴ 11111114333a b c b c a c a b a b c b c bc a c ac a b ab ()()()()()+++++≥++-+++++ =++≥=1211132132 3()a b c abc 例5. 设a b c R ,,∈*,且a b c ++=2,求证:a b c b c a c a b 222 1+++++≥。

基本不等式及恒成立问题 - 解析版

基本不等式以及恒成立 【教学目标】 一、基本不等式 基本不等式:如果,a b R ∈,那么2 22 22a b a b ab ++??≤≤ ??? (当且仅当a b =时取“=”号) 当0,0a b >>时,2 2 +≥即a b +≥a b =时取“=”号) 【例题讲解】 二、基本不等式的构造 (一)分式分离 【知识点】 分式函数求最值,二次比一次型,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,()g x 恒正或恒负的形式,然后运用均值不等式来求最值。 【例题讲解】

★☆☆例题1.已知0x >,求函数254x x y x ++= 的最小值; 答案:9 ★☆☆练习1.函数241 x x y x ?+= ?在1x >的条件下的最小值为_________;此时x =_________. 答案:5,3 ★☆☆练习2.已知0x >,则 24 x x x ?+的最小值是 答案:3 解:由于0x >, 41213x x ?=,当且仅当2x =时取等号,此时取得最小值3. ★★☆练习3. 求2 710(1)1 x x y x x ++=>?+的最小值。 答案:9 解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(1)x +的项,再将其分离。 知识点要点总结:

关键点在于对分式不等式的分离,明确对于分式不等式以低次幂的为主导来进行配凑,并且注意对于正负的讨论。 (二)整式凑分式分母形式 【知识点】 对整式加分式的形式求最值,使用配凑法。需要调整项的符号,配凑项的系数,使其积为定值,从而利用基本不等式求解最值。 【例题讲解】 ★☆☆例题1.已知54 x < ,求函数14245y x x =?+?的最大值。 答案:1 1 2)45 x ?不是常数,所以对拆、凑项, 5,4x <∴1?当且仅当5备注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 ★☆☆练习1.若1 1,1 a a a >+ ?则的最小值是( ) A .2 B .a C. 1 a ? D .3 答案:D 解析:由题意知10a ?>, ★☆☆练习2.若5x >?,则4 5 x x + +的最小值为( )

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 1.移项法构造函数 2、作差法构造函数证明 3、换元法构造函数证明 4、从条件特征入手构造函数证明 5、主元法构造函数 6、构造二阶导数函数证明导数的单调性 7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数 1.移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 22) 1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 ,

高中数学基本不等式的解法十例

高中数学基本不等式的 解法十例 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2 .a b +≥[),0,a b ∈+∞,当且仅当a b =时等号成立。 3 .常考不等式:2 222 1122a b a b ab ++??≥≥≥ ???+ ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若ab 是定值,那么当且仅当a b =时,( )min a b +=。其中 [),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 max 2a b ab +?? = ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析: 很明显,和为定,根据和定积最大法则可得: 1a b ==-时取等号。 变式:函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1mx ny +=上,则mn 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1mx ny +=中可得 1m n +=,明显,和为定,根据和定积最大法则可得:1 2 m n == 时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________.

构造函数法解决导数不等式问题教学设计公开课

构造函数法解决导数不等式问题 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x = ,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。 构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥ 构造''[()][()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造''[()]()()xf x xf x f x =+ (3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)' ()()0f x f x -≥ 构造'''2()()()()()[]()x x x x x f x f x e f x e f x f x e e e --== (2)' ()()0xf x f x -≥ 构造''2()()()[]f x xf x f x x x -= (3)' ()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论)

基本不等式常考解题技巧

基本不等式 一、基础知识 1.(1)若R b a ∈,,则ab b a 222≥+; (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”). 2.(1)若00a ,b >>,则ab b a ≥+2 ; (2)若00a ,b >>,则ab b a 2≥+(当且仅当b a =时取“=”); (3)若00a ,b >>,则22?? ? ??+≤b a ab (当且仅当b a =时取“=”). 3.若0x >,则12x x + ≥(当且仅当1x =时取“=”); ! 若0x <,则12x x +≤-(当且仅当1x =-时取“=”); 若0x ≠,则12x x +≥,即12x x +≥或12x x +≤-(当且仅当b a =时取“=”). 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”); 若0ab ≠,则2a b b a +≥,即2a b b a +≥或2a b b a +≤-(当且仅当b a =时取“=”). 5.若R b a ∈,,则22222b a b a +≤?? ? ??+(当且仅当b a =时取“=”). 二、拓展 1.一个重要的不等式链:22 2 1122a b a b ab a b ++≤≤≤+. 2.函数()()0,0b f x ax a b x =+ >>图象及性质 ¥ (1)函数()0)(>+=b a x b ax x f 、图象如右图所示: (2)函数()0)(>+ =b a x b ax x f 、性质:

①值域:()22,ab ab,??-∞-+∞?? ; ②单调递增区间:,,,b b a a ????-∞- +∞ ??? ?? ???;单调递减区间:0,,,0b b a a ????- ??? ?????. 注: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的 最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”; 《 (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 三、基本类型 对称性: “1”的代换: 四、利用基本不等式求最值常用技巧 技巧一:凑项 ( 已知54x < ,求函数14245 y x x =-+-的最大值. 技巧二:凑系数 当04x <<时,求()82y x x =-的最大值. } 技巧三: 分离 求2710(1)1 x x y x x ++=>-+的值域.

基本不等式的构造问题

基本不等式的构造问题 安阳市第二中学 赵拥军 【关键词】基本不等式 构造 在高中数学的教学活动中,随着导数工具的广泛应用,利用基本不等式证明不等关系、解决函数最值问题的初等方法已经下降至次要地位. 但是对于教师而言,在这一方面进行适当研究和交流,不仅有助于举重若轻地组织基本不等式部分的教学,准确诊断学生认知结构上的病灶和病理,而且可以推动教师思维的深刻性、批判性品质进一步发展. 笔者一向认为运用基本不等式的主要困难在于创造取等条件,曾就此进行过一些探讨,略有心得. 不久前某同事提出如下问题,再次引起了笔者的兴趣. 【问题】已知0,0a b >>,且91a +=,求22a b +的最小值. 客观地说,代入消元,转化为单变量目标函数,而后求导研究单调性,是一条通途;且思路清晰,推理严谨,不失为良方妙法. 但笔者总觉得在其背后依稀可见基本不等式的影子,与多年前探究过的某些问题似有千丝万缕的联系. 本文将再现认知历程,希望能和诸位同仁共享,发挥一点儿抛砖引玉的作用.

【问题1】已知正数,,a b c 满足1a b c ++=,求证1119a b c ++≥. 这个不等关系的证明方法很多,笔者无意逐一列举,仅呈现一种最能体现构造特色的思路. 由于变量a 、b 、c 对称轮换,地位均等,所以有理由猜想三者都等于13时目标表达式的值取到最小. 这时应有19a a =,19b b =,19c c =同时成立. 于是可以做如下推理: 因为0a >,所以196a a +≥= 同理196b b +≥,196c c +≥ ()111918a b c a b c ∴+++++≥,1111899a b c ∴++≥-=. 这样的构造手段之所以能发挥奇效,得益于添加的项兼顾了“定值”与“相等”两方面要求,尤其是系数的设置,为把合理的猜想落实到操作层面提供了值得借鉴的范例. 遵循此原则,还可以解决另一类问题. 【问题2】已知0>x ,0>y ,0>z ,并且满足1=++z y x ,试求函数()121212,,+++++=z y x z y x f 的最大值. 因为()()235125335125312++?≤?+?=+x x x ??? ??+?=3453x ; 同理??? ??+?≤+345312y y ;?? ? ??+?≤+345312z z . 所以()()1555 3453,,=?=+++?≤z y x z y x f 当且仅当31===z y x 时,取最大值 15.

相关文档
相关文档 最新文档