文档库 最新最全的文档下载
当前位置:文档库 › 结合语谱图和神经网络的语音情感识别

结合语谱图和神经网络的语音情感识别

结合语谱图和神经网络的语音情感识别

结合语谱图和神经网络的语音情感识别

语音作为人们日常交流最重要的方式之一,其中蕴含了大量的跟

情感相关的信息。随着近年来人工智能的发展以及技术研究的深入,

使得人机交互成为了当今的研究热点,让机器具备跟人一样能识别和

表达情感的能力成为研究者们的目标,语音情感识别的重要性也日益

凸显出来。语音情感识别是语音处理领域富有挑战性的课题之一,它

的应用非常广泛,因此,这项研究具有重要的理论意义和应用前景。目前,在语音特征提取方面,大多数研究者选择的是韵律特征、音质特征或者是基于谱的特征,而把时域和频域结合在一起的研究则相对较少。而语谱图具有把时域信息和频域信息结合在一起的特点,它本身就包

含了大量跟语音相关的信息,因此本文选用语谱图来提取语音情感特征。本文的主要研究工作如下:1)阐述了语音情感识别的研究背景和

意义,对语音情感识别的研究历史和现状做了简单的归纳总结,研究

情感分类的模型、常用的语音情感数据库。2)对语音情感数据的预处理能够提高分析精确度,本文对语音的预处理包括预加重、分帧加窗

和端点检测,经过预处理之后,提取出语音信号的基音频率、短时能量、短时过零率、共振峰和梅尔倒谱系数等参数组成情感特征矢量。3)

在简单研究人工神经网络的发展、基本的模型、分类的基础上,运用

典型的多层感知器——BP(Back Propagation)网络进行语音情感识

别的实验,并运用增加动量项对BP网络进行优化。实验结果表明,改

进的BP网络的识别率高于普通的BP网络。4)研究典型的深度学习网络结构——卷积神经网络(Convolutional Neural Network,CNN),并

将其与传统的人工神经网络进行了对比,重点研究CNN的基本原理和优势。本文提出将语谱图和CNN结合进行语音情感识别的研究,通过实验找到最佳的网络模型结构,在不同的环境以及不同的信噪比下进行对比实验,并选用softmax和支持向量机(Support Vector Machine,SVM)两种不同分类器做对比。为了更进一步的验证算法的有效性,将实验在不同的语音库上进行。实验结果表明,将语谱图和CNN 相结合的方法大大地提高了语音情感的识别率,并且使用SVM作为分类器效果比softmax的识别效果更好。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

基于BP神经网络的语音识别技术

海事大学 神经网络与语音识别 院系: 物流工程学院 课程名称: 制造与物流决策支持系统学生姓名: 学号: 时间:

目录 一.绪论 (3) 1.1 研究背景及意义 (3) 1.2 语音识别的国外研究现状 (3) 1.3研究容 (4) 二.语音识别技术 (5) 2.1语音信号 (5) 2.2语音信号的数学模型 (5) 2.3 语音识别系统结构 (6) 2.4 语音信号预处理 (7) 2.4.1 语音信号的采样 (8) 2.4.2语音信号的分帧 (8) 2.4.3语音信号的预加重 (9) 2.4.4 基于短时能量和过零率的端点检测 (9) 2.5 特征参数提取 (12) 三.基于BP神经网络语音识别算法实现 (14) 3.1 BP神经网络原理 (14) 3.2 输入层神经元个数的确定 (14) 3.3网络隐含层数的确定 (15) 3.4隐含层神经元个数的确定 (15) 3.5 BP神经网络构造 (15) 3.6 BP神经网络的训练 (16) 3.6.1训练样本集合和目标值集合 (16) 3.6.2 网络训练 (16) 3.7网络训练 (17) 3.8 语音的识别结果 (18) 四.总结 (19) 参考文献 (20) 附录 (21)

一.绪论 计算机的飞速发展,使人们的生活方式发生了根本性的改变,鼠标、键盘,这些传统的人机接口使人们体会到了生活的便利。科学技术日新月异,假如让“机器”能够听懂人的语言,并根据其信息去执行人的意图,那么这无疑是最理想的人机智能接口方式,因此语音识别作为一门极具吸引力的学科应运而生,很多专家都指出语音识别技术将是未来十年信息技术领域十大重要的科技发展技术之一。 语音识别(Speech Recognition)是指,计算机从人类获取语音信息,对语音信息进行分析处理,准确地识别该语音信息的容、含义,并对语音信息响应的过程。语音信号具有非稳定随机特性,这使得语音识别的难度大。目前人类甚至仍没有完全理解自身听觉神经系统的构造与原理,那么要求计算机能像人类一样地识别语音信号很有挑战性。 1.1 研究背景及意义 语言在人类的智能组成中充当着很重要的角色,人与人之间的交流和沟通大部分是通过语言的方式有效的完成。作为人与人之问交流最方便、自然、快捷的手段,人们自然希望它成为人与计算机交流的媒介。随着数字信号处理及计算机科学的飞速发展,人们对实现人机对话产生越来越迫切的要求,使得语音识别技术近年来得到了迅速的发展,语音识别技术的研究进入了一个比较成熟的时期。语音识别是一门交叉科学,它综合了声学、语言学、语音学、生理科学、数字信号处理、通信理论、电子技术、计算机科学、模式识别和人工智能等众多学科。也是人机交互最重要的一步。 1.2 语音识别的国外研究现状 通过语音传递信息是人类最重要,最有效,和最方便的交换信息的形式,语音识别主要指让机器转达人说的话,即在各种情况下,准确的识别出语音的容,

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

神经网络在语音识别上应用

Harbin Institute of Technology 神经网络与智能信号处理 实验报告 神经网络实验报告 1、实验名称: 神经网络在语音识别上的应用 2、实验目的: 进一步了解神经网络在语音识别上的应用,了解神经网络的基本原理,学习神经网络的算法,还可以进一步分析不同的隐节点数以及训练步数对误差性能的影响。 3、实验要求: 1、设计一个标准的BP学习算法网络来对语音信号26个字母进行识别。 2、在训练时采用不同的隐含层神经元个数,分析其对网络性能、语音识别系统的识别率的影响。 3、用所创建的BP神经网络进行26个字母的语音识别,观察并记录结果,并分析其误差。 4、实验步骤: 1、语音识别的基本原理

语音识别的总体流程如下: 语音输入时要先经过预处理,包括预加重、分帧加窗等。然后进行特征提取,该实验中的特征参数为MFCC 参数。语音特征参数的时间序列构成语音的模式,将其与获得的参考模式逐一比较,获得最佳匹配的参考模式便是识别结果。 由于语音信号的复杂性,所以在一开始在语音信号输入语音识别系统时需要进行预处理,预处理包括预加重,分帧加窗,端点检测等。预加重的目的是为了加强语音的高频部分,以便在特征提取阶段进行频谱分析。分帧加窗的目的是为了使帧与帧之间平滑过渡,保持连续性以及保持语音信号的短时平稳性,降低由于不连续而产生的Gibbs 效应。端点检测的目的就是从语音信号序列中截取实际有效的语音信号。 特征提取阶段,是从语音数据中提取能反映语音信号特征和变化规律的参数,以唯一表征语音,这儿选用的语音信号特征参数为MEL 频率倒谱系数,即MFCC 。MEL 频率倒谱的实现过程如下图所示: (1)对语音信号进行预处理,加窗、分帧将其变为短时信号。 (2) 将短时时域信号转变为频域信号,并计算其短时能量,离散傅立叶变换。将时域信号后补若干0形成长为N 的序列,再经过离散傅立叶变换得到线性x(n)频谱,变换公式: X (k ) 0n,k N-1 X (k )=∑N ?1n =0x(n)e ?j2πk n ≤≤(3)在频标内三角带通滤波器个加于坐标得到滤波器组,转化关系为f mel =2595log (1+f hz 700) (4)求对数能量。为了使计算结果对噪声和谱估计噪声有更好的鲁棒性,一般将上述经过Mel 频谱取对数能量。则由线性频谱得到对数频谱的总的X(k)S(m)传递函数为:

语音识别技术文献综述

语音识别技术综述 The summarization of speech recognition 张永双 苏州大学 摘要 本文回顾了语音识别技术的发展历史,综述了语音识别系统的结构、分类及基本方法,分析了语音识别技术面临的问题及发展方向。 关键词:语音识别;特征;匹配 Abstact This article review the courses of speech recognition technology progress ,summarize the structure,classifications and basic methods of speech recognition system and analyze the direction and the issues which speech recognition technology development may confront with. Key words: speech recognition;character;matching 引言 语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科,所涉及的领域有信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等,甚至还涉及到人的体态语言(如人民在说话时的表情手势等行为动作可帮助对方理解)。其应用领域也非常广,例如相对于键盘输入方法的语音输入系统、可用于工业控制的语音控制系统及服务领域的智能对话查询系统,在信息高度化的今天,语音识别技术及其应用已成为信息社会不可或缺的重要组成部分。 1.语音识别技术的发展历史 语音识别技术的研究开始二十世纪50年代。1952年,AT&Tbell实验室的Davis等人成功研制出了世界上第一个能识别十个英文数字发音的实验系统:Audry系统。

基于安卓的语音情感识别系统设计与实现

基于安卓的语音情感识别系统设计与实现 语音情感识别技术是当前情感计算与语音信号领域的热点问题。作为人机交互之中的一个重要组成部分,在疾病诊断、刑侦破案、远程教育等领域也有日趋广泛的应用。作为人机交互之中的一个重要组成部分,语音情感识别技术却由于情感本身的定义不确定性与表征情感的特征的模糊性,使得语音情感识别技术成为了一个难题。为了解决语音情感识别技术中识别率不高且还不能做到人机交互应用的难题,本文主要进行了以下几点研究:1.引入非线性特征Teager能量算子,并将Teager能量算子与MFCC(Mel-Frequency Cepstral Coefficients,梅尔频域倒谱系数)相结合提取NFD_Mel(Nonlinear Frequency Domain Mel,非线性梅尔频域参数),实验结果表明该特征可以从非线性的角度提取特征,并与传统特征相结合可以有效提高识别率,在德国柏林情感数据库识别率达到了82.02%,相比不采用 NFD_Mel的传统方法,识别率提高了3.24%。2.我们创新性地提出了一种基于倒谱分离信号的非特定人语音情感识别方法:声门与声道信号都包含了丰富的情感信息,由于个人声道的差异,通常声道信息则更 多的包含了个人特征,这对于我们非特定人的情感识别工作产生了很多的干扰。基于非特定人的情感识别效果则不如特定人。为了克服现有技术的不足,我们创新性地提出了一种基于倒谱分离信号的非特定人语音情感识别方法,该方法利用倒谱分离信号,保留全部的声带信 息并摒弃一部分的声道信息,同时寻找最佳分离点,最后对处理后的 信号在复倒谱重构并提取特征,可以有效提高非特定人语音情感识别

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

基于BP神经网络的语音识别技术

上海海事大学神经网络与语音识别 院系: 物流工程学院 课程名称: 制造与物流决策支持系统学生姓名: 学号: 时间: 目录

一.绪论 计算机的飞速发展,使人们的生活方式发生了根本性的改变,鼠标、键盘,这些传统的人机接口使人们体会到了生活的便利。科学技术日新月异,假如让“机器”能够听懂人的语言,并根据其信息去执行人的意图,那么这无疑是最理想的人机智能接口方式,因此语音识别作为一门极具吸引力的学科应运而生,很多专家都指出语音识别技术将是未来十年信息技术领域十大重要的科技发展技术之一。 语音识别(Speech Recognition)是指,计算机从人类获取语音信息,对语音信息进行分析处理,准确地识别该语音信息的内容、含义,并对语音信息响应的过程。语音信号具有非稳定随机特性,这使得语音识别的难度大。目前人类甚至仍没有完全理解自身听觉神经系统的构造与原理,那么要求计算机能像人类一样地识别语音信号很有挑战性。 研究背景及意义 语言在人类的智能组成中充当着很重要的角色,人与人之间的交流和沟通大部分是通过语言的方式有效的完成。作为人与人之问交流最方便、自然、快捷的手段,人们自然希望它成为人与计算机交流的媒介。随着数字信号处理及计算机科学的飞速发展,人们对实现人机对话产生越来越迫切的要求,使得语音识别技术近年来得到了迅速的发展,语音识别技术的研究进入了一个比较成熟的时期。语音识别是一门交叉科学,它综合了声学、语言学、语音学、生理科学、数字信号处理、通信理论、电子技术、计算机科学、模式识别和人工智能等众多学科。也是人机交互最重要的一步。 语音识别的国内外研究现状 通过语音传递信息是人类最重要,最有效,和最方便的交换信息的形式,语

基于深度学习的语音情感识别建模研究

基于深度学习的语音情感识别建模研究 随着计算机技术的发展和人工智能的普及,语音情感识别研究收到学界和工业届的广泛关注。目前的情感识别任务大多采用人工提取多种声学特征并物理降维,构建特征工程的方法,提升识别结果。本文旨在探究语音中情感信息的表达,了解语音中情感信息的变与不变, 从语音中提炼出情感的本质特征,并搭建最合适的表征情感信息的网络结构。基于以上研究重点,本文内容包括以下几个部分:1.研究了基于传统声学特征的情感识别网络在大量的声学特征中,对现有数据做统计分析筛选出声学特征及其统计特征,搭建有效且完备的情感特征工程。从物理意义上出发,筛选合理的表达情感的特征并验证它们的有效性;从数学统计层面考虑,使用卡方检验做特征选择,去除特征集合的冗余信息,提高网络训练效率,构建完备的特征工程。2.研究了基于语谱图的深度学习情感识别网络语谱图几乎包含了所有的语音特征,二维频谱结构既可以体现谐波等激励源特征,又可以分析倒谱、共振峰等声道特性。深度神经网络引入非线性信息,具有自主学习输入数据特征的优点。搭建基于语谱图的深度学习情感识别网络,选用局部感知和跳跃连接的ResNet网络,并基于卷积核权重系数做出改进。再此基础上,搭建ResNet-LSTM网络,对ResNet网络学出的高层情感特征进行时序建模。3.引入了注意力机制,研究了低级描述符和高层语义信息的特征融合将经过验证的可以表征情感信息的声学特征集 合作,与ResNet-LSTM网络学习到的语音信号的高层语义信息进行融合,将融合后的特征经过DN-N网络分类输出,增加深度学习的解释性

和人工辅助。此外,引入注意力机制,探索语音中的关键帧信息。将学习到的注意力作为权重系数加入到人工提取的低级描述符特征中,并将它应用于特征融合实验。本文主要从情感的产生和感知层面出发,落实到特征和网络两个研究重点上展开工作,产生上探究如何构建具有情感表征意义的完备的特征集合,感知上从网络结构入手,尝试搭建具有情感认知的网络结构,并通过注意力机制讨论语音情感的局部关键性,结合产生、感知、和局部特性探讨语音情感的表达。

语音信号的频域分析

实验二:语音信号的频域分析 实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。 实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。 实验内容: 1、 语音信号的频谱分析 1.1加载“ma1_1”语音数据。基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。 load ma1_1; x = ma1_1 (4161:4460); plot (x) N = 1024; k = - N/2:N/2-1; X = fftshift (fft (x.*hann (length (x)),N)); plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ]) 已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。 问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别? 问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期? 问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度? 1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱: ∏ ==R r r X HPSx 1)()(ωω 式中,R 一般取为5。在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

神经网络在语音识别上的应用

H a r b i n I n s t i t u t e o f T e c h n o l o g y 神经网络与智能信号处理 实验报告 神经网络实验报告 1、实验名称: 神经网络在语音识别上的应用 2、实验目的: 进一步了解神经网络在语音识别上的应用,了解神经网络的基本原理,学习神经网络的算法,还可以进一步分析不同的隐节点数以及训练步数对误差性能的影响。 3、实验要求: 1、设计一个标准的BP学习算法网络来对语音信号26个字母进行识别。 2、在训练时采用不同的隐含层神经元个数,分析其对网络性能、语音识别系统的识别率的影响。 3、用所创建的BP神经网络进行26个字母的语音识别,观察并记录结果,并分析其误差。 4、实验步骤: 1、语音识别的基本原理

语音识别的总体流程如下: 语音输入时要先经过预处理,包括预加重、分帧加窗等。然后进行特征提取,该实验中的特征参数为MFCC 参数。语音特征参数的时间序列构成语音的模式,将其与获得的参考模式逐一比较,获得最佳匹配的参考模式便是识别结果。 由于语音信号的复杂性,所以在一开始在语音信号输入语音识别系统时需要进行预处理,预处理包括预加重,分帧加窗,端点检测等。预加重的目的是为了加强语音的高频部分,以便在特征提取阶段进行频谱分析。分帧加窗的目的是为了使帧与帧之间平滑过渡,保持连续性以及保持语音信号的短时平稳性,降低由于不连续而产生的Gibbs 效应。端点检测的目的就是从语音信号序列中截取实际有效的语音信号。 特征提取阶段,是从语音数据中提取能反映语音信号特征和变化规律的参数,以唯一表征语音,这儿选用的语音信号特征参数为MEL 频率倒谱系数,即MFCC 。MEL 频率倒谱的实现过程如下图所示: (1)对语音信号进行预处理,加窗、分帧将其变为短时信号。 (2) 将短时时域信号转变为频域信号,并计算其短时能量,离散傅立叶变换。将时域信号 后补若干0形成长为N 的序列,再经过离散傅立叶变换得到线性频谱,变换公式: 0n,k N-1 (3)在频标内三角带通滤波器个加于坐标得到滤波器组,转化关系为

服务机器人的语音情感识别与交互技术研究

万方数据

万方数据

1468 小型微型计算机系统2010年 4技术应用 4.1机器人平台介绍 本文将语音情感识别技术应用在国家”八六三“高技术 研究发展计划项目”家庭生活支援多机器人系统”的语音子 系统中,验证了语音情感特征提取和情感识别方法的有效性.该机器人的头部能够实现眼球的转动、眼睑的闭合、嘴的闭合、头部的转动等并能做出基本的表情.机器人的结构设计和系统设计完全根据生理学人体结构来设计,控制系统采用上下位机结构.机器人的移动部分使用两轮差动机构进行驱动,并且配有两个6自由度的手臂,可以进行复杂操作.上位机采 电源L 毪。 -——z==一 —包QQ翻 麦克风卜上位监控PC -—====—??J 摄像头卜 ............一 ———1—一I 工业现场总线 l 自囱审豳豳囱囱 图2机器人平台构成 Fig.2 Theslructureofrobot p/afform 用工业PC机,主要负责导航、身体的协调控制、语音情感的识别、语音识别和语音合成等工作;下位机是基于现场总线的集散式控制模块,主要负责传感器信息接收及初级处理、电机驱动和运动控制等工作.监控模块与各执行机构之间通过传感系统进行联系,上位机和下位机通过局域网进行连接和通信.用户可以通过网络、手机、无线麦克风等方式实现对该机器人的控制,以此满足各种家庭信息的需求.通过下位监控模块的感知,机器人上位监控程序针对不同的语音输人识别出不同的情感状态,从而做出不同的情感表达和交互.如图2为机器入平台构成. 图3实验系统主界面 Hg.3 Themaininterfaceofexperimentalsystem 4.2机器人语音情感识别系统实验过程 本实验主要完成机器人对语音信号的情感的识别,使人 与机器人之间可以完成情感和语音的交互,同时可使机器人听从人的指挥完成一定的任务.如图3为语音情感识别实验系统主界面. 在语音情感识别实验中,首先邀请8名大学生参加录音。 录音者均为表演专业学生.所录制语料经过4名非录音者进行听辨实验,去除了其中30%左右情感类型不明显的语料, 挑选出共计550条语料用于测试,其中包含高兴,伤心,生气, 害怕,惊讶5类情感语料各110句左右,组成了录制情感语音数据库,录制格式为llKHz,16bit的单声道WAV音频格式;然后进行语音信号的特征提取并通过本文隐马尔可夫模型识别方法对语音中的情感进行识别和计算;同时语音识别模块会识别出语音中包含的文字信息,这样机器人可以根据文字和情感信息来与用户进行更人性化的交流.4.3实验结果分析与比较 表l实验结果表明,伤心的识别率为86.4%,生气的识 别率为73.6%,其他三种情感的识别率略低,平均识别率为69.8%,还是比较理想的. 表1语音情感识别实验结果 Table1 Theresultof experiment 文献[14]研究了基音频率、振幅能量和共振峰等目前常 用的情感特征在语音情感识别中的作用,重点研究了加1。C 和AMFCC,将处理后的频谱特征参数同原有的BP人工神经网络模型有效地结合起来,形成完整的语音情感识别系统。取得了64.4%的平均识别率.该方法对于生气、高兴、伤心、害怕的识别率分别达到了64.5%、54.9%、83.3%、55.0%。而本 图4语音交互模块框图 Fig.4 The diagramofspeechinteractionmodule 文中的识别方法对这几种情感的识别率都有所提高,平均识 别率也提高了5.4%.文献[15]利用模糊熵理论来分析语音信号情感特征参数相对于识别情感模式的不确定度,提出了 一种利用模糊熵对情感参数有效性进行度量的方法,并将参 数有效性分析结合模糊综合判别对情感语音信号作情感识 万方数据

第二章 语音信号处理基础知识

第二章语音信号处理基础知识 1、语音信号处理? 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。 2、语音信号处理的目的? 1)如何有效地,精确地表示、存储、传递语音信号及其特征信息;2)如何用机器来模仿人类,通过处理某种运算以达到某种用途的要求,例如人工合成出语音,辨识出说话人、识别出说话内容等。 因此,在研究各种语音信号处理技术之前,需要了解语音信号的基本特性,同时,要根据语音的产生过程建立实用及便于分析的语音信号模型。 本章主要包括三方面内容:语音的产生过程、语音信号的特性分析以及语音信号生成的数学模型。 第一部分内容语音的产生过程,我们要弄清两个问题:1)什么是语音?2)语音的产生过程? 3、什么是语音? 语音是带有语言的声音。人们讲话时发出的话语叫语音,它是一种声音,由人的发音器官发出且具有一定的语法和意义。语音是声音和语言的组合体,所以对于语音的研究包括:1)语音中各个音的排列由一些规则控制,对这些规则及其含义的研究成为语言学;2)对语音中各个音的物理特征和分类的研究称为语音学。 4、语音的产生 语音的产生依赖于人类的发声器官。人的发音器官包括:肺、气管、喉、咽、鼻、口等。 ◆喉以上的部分称为声道,其形状随发出声音的不同而变化; ◆喉的部分称为声门。 ◆喉部的声带是对发音影响很大的器官。声带振动产生声音。 ◆声带开启和闭合使气流形成一系列脉冲。

每开启和闭合一次的时间即振动周期称为基音周期,其倒数为基音频率,简称基频。基频决定了声音频率的高低,频率快则音调高,频率慢则音调低。 基音的范围约为70 -- 350Hz,与说话人的性别、年龄等情况有关。 人的说话过程可以分为五个阶段:(1)想说阶段(2)说出阶段(3)传送阶段(4)理解阶段(5)接收阶段。 人的说话的过程: 1)想说阶段:人的说话首先是客观事实在大脑中的反映,经大脑的决策产生了说话的动机; 接着说话神经中枢选择适当的单词、短语以及按照语法规则的组合,以表达想说的内容和情感。 2)说出阶段:由想说阶段大脑中枢的决策,以脉冲形式向发音器官发出指令,使得舌、唇、鄂、声带、肺等部分的肌肉协调地动作,发出声音。与此同时,大脑也发出一些指令给其他有关器官,使之产生各种动作来配合言语的效果,如表情、手势、身体姿态等。经常有些人说话时会手舞足蹈。另外,还会开动“反馈”系统来帮助修正语音。 3)传送阶段:说出的话语是一连串声波,凭借空气为媒介传送到听者的耳朵。有时遇到某种阻碍或其他声响的干扰,使声音产生损耗或失真。 4)接收阶段:从外耳收集的声波信息,经过中耳的放大作用,达到内耳。经过内耳基底膜的振动,激发器官内的神经元使之产生脉冲,将信息以脉冲形式传送给大脑。 5)理解阶段:听觉神经中枢收到脉冲信息后,经过一种至今尚未完全了解的方式,辨认说话人及听到的信息,从而听懂说话人的话。 再开始介绍语音信号的特性之前,我们先了解一下语音和语言的定义。 5、语言 是从人们的话语中概括总结出来的规律性的符号系统。包括构成语言的语素、词、短语和句子等不同层次的单位,以及词法、句法、文脉等语法和语义内容。语言学是语音信号处理的基础。例如,可以利用句法和语义信息减少语音识别中搜索匹配范围,提高正确识别率。 6、语音学 Phonetics是研究言语过程的一门科学。它考虑的是语音产生、语音感知等的过程以及语音中各个音的特征和分类问题。现代语音学发展成为三个分支:发音语音学、声学语音学以

基于BP神经网络的语音识别技术

上海海事大学 神经网络与语音识别 院系: 物流工程学院 课程名称: 制造与物流决策支持系统学生姓名: 学号: 时间:

目录 一.绪论 (3) 1.1 研究背景及意义 (3) 1.2 语音识别的国内外研究现状 (3) 1.3研究内容 (4) 二.语音识别技术 (5) 2.1语音信号 (5) 2.2语音信号的数学模型 (5) 2.3语音识别系统结构 (6) 2.4语音信号预处理 (7) 2.4.1 语音信号的采样 (8) 2.4.2语音信号的分帧 (8) 2.4.3语音信号的预加重 (9) 2.4.4 基于短时能量和过零率的端点检测 (9) 2.5 特征参数提取 (13) 三.基于BP神经网络语音识别算法实现 (16) 3.1 BP神经网络原理 (16) 3.2 输入层神经元个数的确定 (16) 3.3网络隐含层数的确定 (17) 3.4隐含层神经元个数的确定 (17) 3.5 BP神经网络构造 (17) 3.6 BP神经网络的训练 (18) 3.6.1训练样本集合和目标值集合 (18) 3.6.2 网络训练 (18) 3.7网络训练 (19) 3.8 语音的识别结果 (20) 四.总结 (21) 参考文献 (22) 附录 (23)

一.绪论 计算机的飞速发展,使人们的生活方式发生了根本性的改变,鼠标、键盘,这些传统的人机接口使人们体会到了生活的便利。科学技术日新月异,假如让“机器”能够听懂人的语言,并根据其信息去执行人的意图,那么这无疑是最理想的人机智能接口方式,因此语音识别作为一门极具吸引力的学科应运而生,很多专家都指出语音识别技术将是未来十年信息技术领域十大重要的科技发展技术之一。 语音识别(Speech Recognition)是指,计算机从人类获取语音信息,对语音信息进行分析处理,准确地识别该语音信息的内容、含义,并对语音信息响应的过程。语音信号具有非稳定随机特性,这使得语音识别的难度大。目前人类甚至仍没有完全理解自身听觉神经系统的构造与原理,那么要求计算机能像人类一样地识别语音信号很有挑战性。 1.1 研究背景及意义 语言在人类的智能组成中充当着很重要的角色,人与人之间的交流和沟通大部分是通过语言的方式有效的完成。作为人与人之问交流最方便、自然、快捷的手段,人们自然希望它成为人与计算机交流的媒介。随着数字信号处理及计算机科学的飞速发展,人们对实现人机对话产生越来越迫切的要求,使得语音识别技术近年来得到了迅速的发展,语音识别技术的研究进入了一个比较成熟的时期。语音识别是一门交叉科学,它综合了声学、语言学、语音学、生理科学、数字信号处理、通信理论、电子技术、计算机科学、模式识别和人工智能等众多学科。也是人机交互最重要的一步。 1.2 语音识别的国内外研究现状 通过语音传递信息是人类最重要,最有效,和最方便的交换信息的形式,语音识别主要指让机器转达人说的话,即在各种情况下,准确的识别出语音的内容,

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一

种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过硬件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

语音信号采集与时频域分析正文

第一章引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图1.1时频域分析设计图 图1.2加噪滤波分析流程图

第二章 语音信号时域分析 语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。 2.1窗口选择 由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。两种窗函数的时域波形如下图2.1所示: sample w (n ) sample w (n ) 图2.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 (2.1) 哈明窗的定义:一个N 点的哈明窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = (2.2) 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

相关文档
相关文档 最新文档