文档库 最新最全的文档下载
当前位置:文档库 › 沸腾焙烧炉设计相关计算

沸腾焙烧炉设计相关计算

沸腾焙烧炉设计相关计算
沸腾焙烧炉设计相关计算

沸腾焙烧炉设计

目录

第一章设计概述…………………………………………………………错误!未定义书签。

设计依据…………………………………………………………………错误!未定义书签。

设计原则和指导思想……………………………………………………错误!未定义书签。

课程设计任务………………………………………………………错误!未定义书签。

第二章工艺流程的选择与论证…………………………………………错误!未定义书签。

原料组成及特点…………………………………………………………错误!未定义书签。

沸腾焙烧工艺及主要设备的选择 (1)

第三章物料衡算及热平衡计算…………………………………………错误!未定义书签。

锌精矿流态化焙烧物料平衡计算………………………………………错误!未定义书签。

锌精矿硫态化焙烧冶金计算…………………………………………错误!未定义书签。

烟尘产出率及其化学和物相组成计算………………………………错误!未定义书签。

焙砂产出率及其化学与物相组成计算………………………………错误!未定义书签。

焙烧要求的空气量及产出烟气量与组成的计算……………………错误!未定义书签。

热平衡计算…………………………………………………………………错误!未定义书签。

热收入…………………………………………………………………错误!未定义书签。

热支出…………………………………………………………………错误!未定义书签。

第四章沸腾焙烧炉的选型计算…………………………………………错误!未定义书签。

床面积……………………………………………………………………错误!未定义书签。

前室面积…………………………………………………………………错误!未定义书签。

炉膛面积和直径 (13)

炉膛高度…………………………………………………………………错误!未定义书签。

气体分布板及风帽………………………………………………………错误!未定义书签。

气体分布板孔眼率……………………………………………………错误!未定义书签。

风帽……………………………………………………………………错误!未定义书签。

沸腾冷却层面积…………………………………………………………错误!未定义书签。

水套中循环水的消耗量 (14)

风箱容积 (15)

加料管面积 (15)

溢流排料口 (15)

排烟口面积 (15)

参考文献 (15)

第一章设计概述

设计依据

根据《冶金工程专业课程设计指导书》。

设计原则和指导思想

对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为:

1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计;

2、设计中对主要工艺流程进行多方案比较,以确定最佳方案;

3、设计中应充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则;

4、要按照国家有关劳动安全工业卫生及消防的标准及行业设计规定进行设计;

5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术;

6、设计中应充分考虑节约能源、节约用地,实行自愿的综合利用,改善劳动条件以及保护生态环境。毕业设计任务

一、沸腾焙烧炉专题概述

二、沸腾焙烧

三、沸腾焙烧热平衡计算

四、主要设备(沸腾炉和鼓风炉)设计计算

五、沸腾炉主要经济技术指标

第二章工艺流程的选择与论证

原料组成及特点

本次设计处理的原料锌精矿成分如下表所示。

沸腾焙烧工艺及主要设备的选择

金属锌的生产,无论是用火法还是湿法,90%以上都是以硫化锌精矿为原料。硫化锌不能被廉价的、最容易获得的碳质还原剂还原,也不容易被廉价的,并且在浸出—电积湿法炼锌生产流程中可以再生的硫酸稀溶液(废电解液)所浸出,因此对硫化锌精矿氧化焙烧使之转

变成氧化锌是很有必要的。焙烧就是通常采用的完成化合物形态转变的化学过程,是冶炼前对矿石或精矿进行预处理的一种高温作业。

硫化物的焙烧过程是一个发生气固反应的过程,将大量的空气(或富氧空气)通入硫化矿物料层,在高温下发生反应,氧与硫化物中的硫化合产生气体SO

2

,有价金属则变成为氧化物或硫酸盐。同时去掉砷、锑等杂质,硫生成二氧化硫进入烟气,作为制硫酸的原料。焙烧过程得到的固体产物就被称为焙砂或焙烧矿。

焙烧过程是复杂的,生成的产物不尽一致,可能有多种化合物并存。一般来说,硫化物的氧化反应主要有:

1)硫化物氧化生成硫酸盐

MeS + 2 O

2 = MeSO

4

2)硫化物氧化生成氧化物

MeS + O

2 = MeO + SO

2

3)金属硫化物直接氧化生成金属

MeS + 2 O

2 = MeO + SO

2

4)硫酸盐离解

MeSO

4 = MeO + SO

3

SO

3 = SO

2

+ O

2

此外,在硫化锌精矿中,通常还有多种化合价的金属硫化物,其高价硫化物的离解压一般都比较高,故极不稳定,焙烧时高价态硫化物离解成低价态的硫化物,然后再继续进行其焙烧氧化反应过程。

在焙烧过程中,精矿中某种金属硫化物和它的硫酸盐在焙烧条件下都是不稳定的化合物时,也可能相互反应,如:

FeS + 3FeSO

4 = 4FeO + 4SO

2

由上述各种反应可知,锌精矿中各种金属硫化物焙烧的主要产物是MeO、MeSO

4以及SO

2

SO

3和O

2

。此外还可能有MeO·Fe

2

O

3

,MeO·SiO

2

等。

沸腾焙烧炉炉体(下图)为钢壳内衬保温砖再衬耐火砖构成。为防止冷凝酸腐蚀,钢壳

外面有保温层。炉子的最下部是风室,设有空气进口管,其上是空气分布板。空气分布板上是耐火混凝土炉床,埋设有许多侧面开小孔的风帽。炉膛中部为向上扩大的圆锥体,上部焙烧空间的截面积比沸腾层的截面积大,以减少固体粒子吹出。沸腾层中装有的冷却管,炉体还设有加料口、矿渣溢流口、炉气出口、二次空气进口、点火口等接管。炉顶有防爆孔。

操作指标和条件主要有焙烧强度、沸腾层高度、沸腾层温度、炉气成分等。

① 焙烧强度 习惯上以单位沸腾层截面积一日处理含硫35%矿石的吨数计算。焙烧

强度与沸腾层操作气速成正比。气速是沸腾层中固体粒子大小的函数,一般在 1~3m/s 范围内。一般浮选矿的焙烧强度为15~20t/(d m ?);对于通过3×3mm 的筛孔的破碎块矿,焙烧强度为30t/(d m ?)。

② 沸腾层高度 即炉内排渣溢流堰离风帽的高度,一般为~。

③ 沸腾层温度 随硫化矿物、焙烧方法等不同而异。例如:锌精矿氧化焙烧为1070~

1100℃,而硫酸化焙烧为900~930℃;硫铁矿的氧化焙烧温度为850~950℃。

④ 炉气成分 硫铁矿氧化焙烧时,炉气中二氧化硫13%~%,三氧化硫≤%。硫酸

化焙烧,空气过剩系数大,故炉气中二氧化硫浓度低而三氧化硫含量增加。

特点:①焙烧强度高;②矿渣残硫低;③可以焙烧低品位矿;④炉气中二氧化硫浓度高、三氧化硫含量少;⑤可以较多地回收热能产生中压蒸汽,焙烧过程产生的蒸汽通常有35%~45%是通过沸腾层中的冷却管获得;⑥炉床温度均匀;⑦结构简单,无转动部件,且投资省,维修费用少;⑧操作人员少,自动化程度高,操作费用低;⑨开车迅速而方便,停车引起的空气污染少。但沸腾炉炉气带矿尘较多,空气鼓风机动力消耗较大。

第三章 物料衡算及热平衡计算

锌精矿流态化焙烧物料平衡计算

锌精矿硫态化焙烧冶金计算

根据精矿的物相组成分析,精矿中各元素呈下列化合物形态Zn 、Cd 、Pb 、Cu 、Fe 分别呈ZnS 、CdS 、PbS 、2CuFeS 、87S Fe 2FeS ;脉石中的Ca 、Mg 、Si 分别呈3CaCO 、3MgCO 、2SiO 形态存在。

以100kg 锌精矿(干量)进行计算。 量 :

kg 99.704

.654

.9767.47=? 其中Zn :kg S :kg

量:

kg 23.04.1124

.14418.0=? 其中 Cd :kg S :kg

量:

kg 13.42

.2072

.23958.3=? 其中:Pb :kg S :kg

4.2CuFeS 量:

kg 69.05

.6335

.18324.0=? 其中:Cu :kg Fe :kg S :kg

5. 2FeS 和87S Fe 量:除去2CuFeS 中Fe 的含量,余下的Fe 为 5.37kg 0.21-5.58=,除去ZnS 、CdS 、PbS 、2CuFeS 中S 的含量,余下的S 量为Kg 78.4)24.055.005.032.23(94.28=+++-。此S 量全部分布在2FeS 和87S Fe 中,设2FeS 中Fe 为x kg ,S 量为y kg ,则

872S Fe FeS ??????

??-=?-?=83278.47

85.5537.52

3285.55y

x y

x 解得:x =kg ,y =kg 即2FeS 中:Fe=kg 、S=kg 、2FeS =kg 。

87S Fe 中:Fe :kg S :kg 87S Fe :kg 6. 3CaCO 量: kg 其中CaO :kg 2CO :kg 7. 3MgCO 量:kg 其中MgO :kg 2CO :kg

表3-1 混合精矿物相组成,kg

烟尘产出率及其化学和物相组成计算

焙烧矿产出率一般为锌精矿的88%,烟尘产出率取50%,则烟尘量为:44公斤。镉60%进入烟尘,锌48%进入烟尘,其它组分在烟尘中的分配率假定为50%,空气过剩系数 。 烟尘产出率及烟尘物相组成计算: Zn kg 2.882248.07.674=? Cd kg 108.060.018.0=? Pb kg 1.7950.03.58=? Cu kg 21.050.042.0=? Fe kg 2.7950.05.58=? CaO kg 445.050.00.89=?

MgO kg 34.050.068.0=?

2SiO kg 3.4150.06.82=?

s S x kg

4SO S x kg

其他 kg 99.150.03.98=? 各组分化合物进入烟尘的数量为: 量:

kg 316.232

4

.97761.0=? 其中:Zn kg S kg

2.4ZnSO 量:

kg 751.432

4

.161942.0=? 其中:Zn kg S kg O kg

3.32O Fe ZnO ?量:烟尘中Fe 先生成32O Fe ,其量为:

kg 3.9897

.1117

.1592.79=?,32O Fe 有31与

ZnO 结合成32O Fe ZnO ?,其量为:kg 1.3331

3.989=?。

32O Fe ZnO ?量为

kg 2.0087

.1591

.2411.33=? 其中:Zn kg Fe kg O kg

余下的32O Fe 的量:kg 其中:Fe kg O kg 量:Zn (++)=kg ZnO

kg 3.4824.654.818.8611=? O 量:kg 231.04

.1124

.128081.0=? 其中:Cd

kg O kg 量:

kg 15.05

.635

.7921.0=? 其中:Cu kg O kg

7.2SiO PbO ?量:PbO

kg 1.9282

.2072

.2231.79=? 其中:Pb kg O kg

与PbO 结合的2SiO 量:

kg 518.02

.22360

1.928=?

剩余的2SiO 量:kg 表3-2烟尘产出率及其化学和物相组成,kg

焙砂产出率及其化学与物相组成计算

焙砂中S SO4取%,S S 取%,S SO4和S S 全部与Zn 结合;PbO 与SiO 2结合成 PbO ˙SiO 2;其他金属以氧化物形态存在。

各组分化合物进入焙砂中的数量为:4SO S 量:kg ,S S 量:kg 1.4ZnSO 量:

kg 441.232

4

.161484.0=?

其中:Zn O 量:

kg 536.032

4

.97176.0=?

其中:Zn kg S kg

3.32O Fe ZnO ?量:焙砂中Fe 先生成32O Fe ,其量为

kg 3.9897

.1117

.1592.79=?,32O Fe 有40%与ZnO

结合成32O Fe ZnO ?,其量为kg 1.5964.03.989=?。

32O Fe ZnO ?量:

kg 2.4097

.1591

.2411.596=?

其中:Zn kg Fe kg O kg 余下的32O Fe 量:kg 2.3931.5963.989=- 其中:Fe kg O kg

量:Zn kg 2.792)649.036.0989.0(788.42=++-

ZnO

kg 8.36524

.654

.812.792=?

O kg 量:

kg 082.04

.1124

.128720.0=?

其中:Cd kg O kg 以上计算结果列于下表

表3-3焙砂的物相组成,kg

焙烧要求的空气量及产出烟气量与组成的计算

焙烧矿脱硫率计算

精矿中S 量为kg ,焙砂和烟尘中的S 量为+++=,焙烧脱硫量为:出炉烟气计算:

假定95%的S 生成2SO ,5%的S 生成3SO ,则:

生成2SO 需要的2O 量为:22SO O S =+

kg 5.248232

32

95.06.5772=?

? 生成3SO 需要的2O 量为:322

3

SO O S =+

kg 1.99332

48

05.06.5772=?

? 烟尘和焙砂中,氧化物和硫酸盐的含氧量为kg ,则100kg 锌精矿(干量)焙烧需理论氧量为:

kg 4.9324691.171.9935.2482=++

空气中氧的质量百分比为23%,则需理论空气量为:

kg 195.423

100

4.9324=?

过剩空气系数可取~,本文取,则实际需要空气量为:

kg 244.251.25195.4=?

空气中各组分的质量百分比为2N 77%,2O 23%,鼓入kg 空气,其中:

2N kg 188.073%77244.25=? 2O kg 6.1785%2344.252=?

标准状况下,空气密度为3m kg ,实际需要空气之体积为:

3188.902293

.144.25

2m =

焙烧炉排出烟量和组成 1.焙烧过程中产出 2SO kg 0.496532

64

%956.5772=?

? 3SO kg 322.332

80

%56.5772=?

? 2.过剩的2O 量:kg 246.114.93246.1785=-

3.鼓入空气带入的2N 量:kg 188.073

4.3CaCO 和3MgCO 分解产2CO 量:+=kg

5.锌精矿及空气带入水分产生的水蒸汽量:

进入焙烧矿的锌精矿含水取8%,100Kg 干精矿带入水分为kg 696.8%1008

1008

=?-。

空气带入水分量计算

赤峰地区气象资料:大气压力88650Pa ,相对湿度77%,年平均气温5C ,换算成此条件下空气需要量为:

39.862115

.2735

15.2738865010132588.9021m =+??

空气的饱和含水量为3m kg ,带入水分量为:

kg 743.277.00162.09.8621=?? 带入水分总量为:kg 439.11.7432696.8=+或3235.1418

4

.22439.11m =?

以上计算结果列于下表

按以上计算结果编制的物料平衡表如下:(未计机械损失)

热平衡计算

热收入

进入流态化焙烧炉热量包括反应热及精矿、空气和水分带入热量等。 1.硫化锌按下式反应氧化放出热量Q 1

ZnS+12

1

O 2=ZnO+SO 2+105930千卡

生成ZnO 的ZnS 量:()649.02.792541.08.8611+++ kg 3.80364

.654

.97=?

Q 1=

千卡69390.684

.97 3.803

6105930=?

2.硫化锌按下式反应生成硫酸盐氧化放出热量O 2

ZnS+2O 2=ZnSO 4+185050千卡 生成ZnSO 4的ZnS 量:()kg 34.44

.654

.97989.0925.1=?

+ Q 2=千卡82464

.9734

.4185050=?

和Fe 2O 3按下式反应生成23放出的热量Q 3: ZnO+ Fe 2O 3= 23+27300千卡 生成23的ZnO 量

()kg 1.4814

.654.81649.0541.0=?+

Q 3=

千卡699.4964

.811.481

27300=?

2

按下式反应氧化放出热量Q 4

4FeS 2+11O 2=2 Fe 2O 3+8 SO 2+790600千卡 Q 4=

千卡9103.2794

.479 5.52

790600=?

按下式反应氧化放出热量Q 5

2FeS+321

O 2= Fe 2O 3+2 SO 2+293010千卡

Fe 7S 8分解得到FeS 量:kg 401.48

7

1.83

2.8=?

+ CuFeS 2分解得到FeS 量:kg 453.02

1

12.042.0=?+ 得到的FeS 总量为:+=. Q 5=

千卡7914.77285

.872 4.746

293010=??

2

和Fe 7S 8分解得到硫燃烧放出热量Q 6

CuFeS 2= Cu 2S+FeS+21

S 2

分解出S 量:

kg 60.08

.36632

69.0=?

Fe 7S 8=7FeS+21

S 2

分解出S 量:

kg 215.095

.64632

4.36=?

1kg 硫燃烧放出的热量为2222千卡则: Q 6=()千卡611.052222215.060.0=?+ 按下式反应放出热量Q 7

PbS+121

O 2=PbO+SO 2+100690千卡

PbS+SiO 2= PbO ˙SiO 2+2030千卡

生成PbO 放出热量:千卡1738.5022

.239 4.13

100690=?

生成PbO ˙SiO 2量:

生成PbO ˙SiO 2放出热量:千卡35.0543

.2834.892

2030=?

Q 7=+=千卡

按下式反应放出热量Q 8

CdS+21

O 2=CdO+SO 2+98800千卡

生成CdO 的CdS 量:kg 312.04

.1124

.14418.0=?

Q 8 =

千卡158.0534

.14431

2.098800=?

2

按下式反应氧化放出热量Q 9

Cu 2S+2 O 2= 2CuO+ SO 2+127470千卡 生成CuO 的Cu 2S 量:kg 288.01

.1271

.15932.0=?

Q 9=

千卡30.74421

.159288

.0127470=?

10.锌精矿带入热量Q 10

进入流态化焙烧炉的精矿温度为40C ,精矿比热取()C kg

?千卡

Q 10=千卡8002.040100=??

11.空气带入热量为Q 11

空气比热取()

C

m ?3千卡,空气温度为20C ,

Q 11=千卡89.513316.0209.8621=?? 12.入炉精矿含水分kg ,水分比热取()C kg

?千卡,100kg 精矿中的水分带入热量Q

12

Q 12=千卡3500.140696.8=?? 热量总收入:

Q 总收入=Q 1+O 2+Q 3+Q 4+Q 5+Q 6+Q 7+Q 8+Q 9+Q 10+Q 11+Q 12 =69390+8246++++++++800++350 =100464千卡

热支出

1.烟气带走量为Q 烟

炉顶烟气9000

C,各比分比热为(()C m

?3千卡

):

SO 2 SO 3 C O 2 N 2 O 2 H 2O

千卡烟61926.5900)403.0.23614350.07.872333.00.48815521.0733.055.039.0529.017.673(=??+?+?+?+?+?=Q

2.烟尘带走的热量为Q 烟尘

由炉中出来的烟尘温度为900C ,其比热为()C kg

?千卡

Q 烟尘=×900×=7848千卡 3.焙砂带走的热量为Q 焙

由炉中出来的焙沙温度为850C ,其比热为()C kg

?千卡

Q 焙=×900×=千卡

4.锌精矿中水分蒸发带走热量为Q 蒸 Q 蒸=G 水t 水C 水+G 水V

Q 蒸=千卡5350575696.8140696.8=?+??

5.精矿中碳酸盐分解吸收的热量为Q 分Ⅰ

CaCO 3分解吸热378()kg 千卡, Mg CO 3分解吸热314()kg 千卡 Q 分Ⅰ=千卡1046.261.433141.58378=?+?

2

和Fe 7S 8分解吸收的热量为Q 分Ⅱ Q 分Ⅱ=()千卡668.222222.812.0=?+

7.通过炉顶和炉壁的散失热量为Q 散

为简化计算,按生产实践,散热损失均为热收入的~%,取%

Q

散=

总吸收

?%=?=千卡

8.剩余热量为Q

Q

剩= Q

总吸收

-(Q

+Q

烟尘

+Q

+ Q

+Q

分Ⅰ

+Q

分Ⅱ

+Q

=100464-(+7848++5350+++) =千卡

计算结果列于下表

第四章 沸腾焙烧炉的选型计算

床面积

床面积按每日需要焙烧的干精矿量依据同类工厂先进的床能率选取。计算式为:

a

A F =

a=日)米(吨)层操作

?+2/1(86400t V W β W 操作=米/秒

a=

(273

900

1880.7315

.086400+??= 日)米(吨?2/ 则床能率取日)米(吨?2/

A=

7674.0*94.0*33060000

=(吨/日)

则 23.875

.5405.76m a A F ===

前室面积

一般为~22m .这里取22m .

(米)

本床前室床床9.5871.813.113.113.1===-=F F F D

沸腾层高度据生产经验为H 层=1(米)

炉膛面积和直径

()膛

膛烟膛W F t F 864001V ?+?=

βα

()2121.132

.086400 3.8

7273900119.32195.5m F =??+??=

m F D 12.43513.1=?=膛膛

V 烟—每吨物料产生的烟气量 m 3/T

t 膛—炉膛温度,锌精矿焙烧温度为900 oC

W 膛-炉膛空间烟气流速,m/s ;根据实践锌精矿焙烧为±X ,可取一定定值()

炉腹角ф取

20。

炉膛高度

炉膛有效高度:指溢流口下沿至排烟口中心线的高度,可按照经验公式估算炉膛空间容积: V 膛=(10-12)F 床 V 膛=

扩大型炉子炉膛高度的计算方法:

1. 未扩大直筒部分1H ,根据操作和安装方便而定,一般取m 。

2. 扩大部分高度2H

() 20

212ctg D D H ?-=床膛()m ctg 3.92209.5812.4352

1

=?-=

3. 炉膛高度膛H ()膛

床膛烟F t

F t V H ???+?=

8640013βα

式中t —烟气在炉内必须停留的时间,秒,取20s .

3H =

()膛

床膛烟F t

F t 864001V ??+?βα==m

m H H H H 1.7814.63.921.46321=++=++=膛

气体分布板及风帽

气体分布板孔眼率

风帽的形式多采用标准伞形风帽?8×6 mm(孔径×孔数),炉底风帽的排列方法,对于圆形炉底采用同心圆排列发,通常同心圆之距离为170-180 mm ,每一圆周上的中心距为150-200mm ,孔眼率(孔眼总面积与床面积之比)为。

1.确定炉底上风帽孔眼的总数目:

n=

f

W V 孔眼=00005

.0107

8.8??

=21288

其中,V-鼓入沸腾炉内的实际空气量 (m 3/s) V=

f -一个孔眼的面积 m 2

W 孔眼-孔眼中空气的喷射速度 m/s

储备系数

2.确定孔眼率

=+??=

%5.782

前室

本床孔孔F F n b d =%

其中,d 孔为风帽孔眼直径 风帽个数:

风帽数量一般可由下式计算: ==

m

n N

其中:m-一个风帽的孔眼个数

沸腾冷却层面积

=

-=

水层剩

冷t t K Q F (

其中:剩Q -沸腾层所需排热千卡/小时

t 层-沸腾层的平均温度900 t 水-冷却水的平均温度40

K-沸腾层到循环水的综合传热系数 ,120-180

水套中循环水的消耗量

若用气化冷却,则水量为冷却水的

即:

其中:剩Q -沸腾层剩余热量(千卡/小时)

C-水的比热 1千卡/公斤.oC t 0-进入水套的水温度,20 oC

t-排出水套的温度,一般为50-60 oC 。

风箱容积

==34

.1800

V V )(

风风箱

V 风箱-风箱容积,m 3 V 风-鼓风量,m 3/h

加料管面积

==

管W G F D=m

其中:G 料-加料量,吨/时

气体悬浮焙烧炉教材

气体悬浮焙烧炉教材 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、回转窑的描述: 氢氧化铝焙烧是氧化铝生产工艺中最后一道工序,焙烧的目的是在1000℃左右的高温下把氢氧化铝的附着水和结晶水脱除后,从而生产出符合电解要求和其他用途的氧化铝。 自1856—1892年以来,分别由法国萨林德厂和奥地利人拜耳研究发明碱-石灰烧结法和利用苛性碱溶液直接浸出铝兔矿生产氧化铝的拜耳法以来,已有100多年的历史了,截止到1963年,世界各国氧化铝厂基本上都采用回转窑焙烧氢氧化铝来生产氧化铝的工艺流程。 回转焙烧窑的长度一般都在100米左右,直径在3米左右,有2%左右的斜度。在开始下料前,首先要点燃安装在窑前的油枪,把窑内的温度加热到1000℃以上后,开始下料,入窑后的湿氢氧化铝随窑体的旋转由窑尾被送到窑头,而热气流从窑头向窑尾流动,使湿氢氧化铝在窑内经过烘干、脱水、晶型转变等物理化学变化而焙烧成氧化铝。 根据物料在窑内发生的物理化学变化,可以将窑从窑尾起划分为以下四个带: 1、烘干带:此带的主要作用是去除附着水,入窑后的湿氢氧化铝并参和电收尘来的窑灰由30℃左右被加热到200℃左右,附着水全部被蒸发,烘干带的热气则由600℃左右降低到250—350℃左右出窑,经旋风收尘器至电收尘后排入大气层。 2、脱水带:此带的主要作用是去除结晶水,氢氧化铝由200℃左右继续被加热到900℃左右,全部脱除结晶水变为嘎马氧化铝(γ—氧化铝),而此带的温度由1050℃左右降到600℃左右。 3、煅烧带:此带的主要作用是进行晶型转变,火焰温度可达1500℃左右,嘎马氧化铝(γ—氧化铝)转变为阿尔法氧化铝(α—氧化铝),焙烧温度在1100—1200℃左右,物料在窑内停留40—45分钟左右。

氧化铝生产流程

氧化铝生产流程控制概述(1) 铝是世界上第二大常用金属,其产量和消费量仅次于钢铁,是国民经济中具有支撑作用和战略地位的金属原材料。氧化铝是铝冶炼的主要原料,每生产1吨原铝需要消耗近2吨氧化铝。此外,各种特殊性能的氧化铝也广泛应用于电子、石油、化工、耐火材料、陶瓷、造纸、制药等行业,因此,氧化铝生产在我国经济建设中占有十分重要的地位。 我国具有较丰富的铝土矿资源(保有储量约26亿吨),居世界第四位,具备发展铝工业的资源条件。我国的氧化铝是在建国后伴随着电解铝的生产和发展建立起来的,八十年代以来得到了较快发展。近年来,氧化铝价格的暴涨,激励投资者和氧化铝厂持续加速生产和扩张。国内目前已有中铝公司所属的山东、山西、河南、中州、贵州、平果、重庆与遵义(拟建)八大铝厂,广西华银(160万吨)、阳煤集团(120万吨)、鲁能晋北、山东信发(100万吨)、三门峡开曼、东方希望(80万吨)铝业等数十个大小氧化铝厂建成或在建。据专家估计,2006年我国的氧化铝产量将年增29-33%,达到1200-1300万吨。 氧化铝生产工艺类型 氧化铝是用不同的生产方法是从铝土矿中提取出来的白色粉末。氧化铝是典型的大型复杂流程性工业,全世界90%以上的氧化铝直接采用的是经济的拜耳法生产流程,而我国氧化铝企业因矿质的不同,而分别选用不同的生产工艺。 烧结法:适于矿石品位含硅高、难溶的、中等资源品位的一水硬铝石,流程长、工艺复杂。我国绝大部分老的氧化铝企业多采用这一方法进行氧化铝冶炼。山东铝厂、中州铝厂Ⅰ期、山西铝厂Ⅰ期

烧结法氧化铝生产过程主要包括熟料烧成、熟料溶出、精液制备、分解和蒸发等主要的生产工序。 来自原料磨的生料浆通过回转窑烧制成易于溶出的铝酸钠熟料,再经碳分母液和一次洗液浸泡后进行溶出;此后通过赤泥分离洗涤、粗液脱硅、硅渣分离等工序生成的精液分别送至碳分和种分工序进行分解反应,析出氢氧化铝;种分母液经蒸发形成的种蒸母液送拜尔法碱液调配后给原矿浆配料;碳蒸母液则返回至原料磨配料。析出的氢氧化铝送焙烧工序进行焙烧。与拜耳法相比,烧结法主要在熟料烧成和碳分分解的控制部分是完全不同的两个过程 拜尔法:拜尔法是Karl Joseph Bayer于1887年发明,他发现加入精种的铝酸钠溶液中可以分解出AL(OH)3,分解母液蒸发后可以在高温高压下溶出铝土矿中的AL(OH)3。该发现后来在实验中得到证实并应用于工业实践,是国外氧化铝最广泛采用的生产工艺。适于生产易溶的三水铝石和一水软铝石,处理中等品位铝土矿碱耗高、矿耗大是常规拜耳法生产氧化铝的缺点。贵州铝厂Ⅰ期、平果铝厂 拜尔法氧化铝生产过程主要包括预脱硅、溶出过程,赤泥洗涤、过滤过程,种分分解过程和氢氧化铝过滤、焙烧等主要的生产工序。 选矿拜尔法:可将A/S为4以上的铝土矿通过浮选成A/S为11.2的矿浆,可提高单管溶出系统的溶出率,工艺管道和罐内不易结巴。中州铝厂Ⅱ期 串联法:处理中低晶位铝土矿的适宜方法。先以较简单的拜尔法处理矿石,最大限度地提取矿石中的氧化铝,然后再用烧结法回收拜尔法赤泥中的 Al2O3和 Na2O,可降低氧化铝生产的综合能耗,Al2O3的总回收率高,

绿建专篇(初步设计、方案)

第十四章 第十五章 第十六章绿色建筑专篇 一、项目基本信息 工程名称: 建设地点: 建设单位: 建筑类型: 绿色设计目标:国标一星 二、设计依据 1、《绿色建筑评价标准》 GB/T 50378-2014 2、《绿色建筑评价标准》 DB/T 1039-2007 3、《绿色建筑设计标准》 DB33/1092-2016 4、《民用建筑可再生能源应用核算标准》 DB33/1105-2014 5、《绿色建筑施工图设计文件技术审查要点》 三、节地与室外环境 1、环境噪声控制 本项目位于温岭市城西街道螺屿村(编号为GY030101-3地块),东侧为规划新河线河道,南侧为空地(规划为道路),西侧为空地(商服用地,为台州邦丰塑料有限公司项目用地),北侧临中心大道。场地环境噪声要求符合现行国家标准《城市区域环境噪声标准》GB3096的规定。 1)根据交通规模预测交通噪声量,通过计算机模拟分析交通噪声对建筑区域声环境的影响。 2)通过区域周边绿化配置形成噪声防护屏障。2、室外风环境控制 要求建筑总平面的布置和设计有利于室内自然通风,建筑周围人行区风速低于5m/s,不影响室外活动的舒适性。1)利用电脑模拟建筑室外风环境,为建筑方案提供优化建议。如优化建筑布局、建筑截面面积,建筑体形以及建筑高度等; 2)通过绿化配置,减少室外局部风力放大。 3、生态场地设计 对场地和景观设计进行优化,设计透水地面,有利于雨水回收,减低热岛效应,改善生态环境。 1)建筑周边、庭院的地面和公共广场等采用透水铺设。主要采用地下停车场,地上车位采用嵌草砖(草皮砖)铺装地面。人行道采用透水砖铺装地面。 2)关注各种下垫面的吸热特征,选择浅色与可反射适当太阳能的铺装饰面,保证有绿化覆盖率和遮荫率。 3)绿化设计优先选择适宜当地气候和土壤条件的乡土植物,采用包含乔、灌木的复层绿化;生态绿地、墙体绿化、屋顶绿化和垂直绿化等多样化的绿化方式。 四、节能设计 1、建筑造型节能 1)利用数值模拟软件对建筑造型和形体模拟,进行优化设计,如体型控制,选择浅色外墙饰面;对朝向与窗墙面积比进行有效控制等。充分利用自然通风。 2)设计建筑自遮挡,达到良好的外遮阳效果,降低外窗成本。 2、建筑部件节能 1)外窗综合遮阳遮阳设施要求构造简单、经济、耐久、轻巧、美观;一般可分为:水平式、垂直式、综合式、挡板式等四种。各种遮阳设施又有固定式及活动式两种,活动式使用灵活,但构造复杂,造价较高,建议采用综合固定式。 2)屋面有土或无土种植或屋面遮阳利用建筑屋顶作为种植屋面,适合于夏热冬暖等阳光资源丰富的地区。屋面覆盖种植土、轻质材料使整体屋面的热惰性提高,水分也容易蒸发,会使室内具有冬暖夏凉的效果。此项技术建议在本项目中广泛应用。 3)东、西外墙采用花格构件或爬藤植物遮阳

锅炉烟气量估算方法完整版

锅炉烟气量估算方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

常用锅炉烟气量估算方法 烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。3L!p+A)H#y&z9H#^ 烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。4b4p3u#E0W 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;)u%S!h+k%X,g0] 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。9^)e8|$w/q+P 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。;~#I+I8I!]"h8q 物料衡算公式:8v;_$M*U'V8T;~ 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1%,则烧1吨煤排放16公斤S O2。,C8Sr9W"L&J 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2。'J5D"G3m2C$\*U6p 排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】0.7~0.9,即用水量的70-90%。2E#C1W&]'g3V+Q+Q 【生活污水排放系数】采用本地区的实测系数。。*B-t?G1f:U)N)j 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。9S1s-]1`*h3m._9E*t!A%@'i 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘9E-R)m)O1A9H9Y4C(C 原?煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法/d2G%D.c1d*].x-C

中国氧化铝产业发展分析

中国氧化铝产业发展分析 氧化铝工业概况 我国具有较丰富的铝土矿资源,迄今已探明保守储量23亿吨,位居世界第4,具备发展氧化铝工业的资源条件。据2004年以来的不完全统计,国内已公布的氧化铝投资项目达26个,测算总规模达1604.1万t。即使不考虑利用国外铝土矿资源和到海外投资办厂的项目,总规模也达到2814.1万t。2006年底,中铝公司氧化铝生产952万t,除目前已公布在建的氧化铝规模外,全国还有拟建氧化铝总规模1992万t接近国外所有拟建(扩建)氧化铝项目的总和。 氧化铝工业的迅速发展不同于以往的低水平重复建设,而是上规模、高水平,优化了结构,极大地提升了我国氧化铝工业整体水平和竞争力。但是,如果这种投资热继续无序膨胀,势必造成产品相对过剩。 投资氧化铝工业的风险性与电解铝等其他行业在以下方面又有所不同: 1)氧化铝工艺技术相对复杂。通常情况下,项目从设计,开工到形成产能需要2~3年时间左右的时间,投入高,风险较高。 2)现货市场的氧化铝价格跌宕起伏。而供求双方的信息不对称又进一步加剧了氧化铝价格起伏不定的局势,进而将影响氧化铝项目的投资收益。 3)在项目试车、投产和日后生产组织管理等方面,需要一大批精通氧化铝工艺技术和具有实践经验的老专家和技术工人。 4)对资源和能源的依赖度日趋增强。随着国内外资源竞争日趋激烈,适合氧化铝工业发展的优质资源日渐稀缺,投资氧化铝工业必须考虑项目的经济服务年限。 针对目前氧化铝工业发展迅速,避免电解铝行业所出现的无序膨胀问题,有以下5点建议: 1)根据资源保障程度控制氧化铝建设总规模 氧化铝工业是资源、资金、技术密集型原材料产业,因生产过程中要产生大量的尾矿和赤泥(至今未有较好的处理办法添加到水泥原料中,产品也只能用于工业),对环境的影响非常大,铝土矿作为不可再生资源, 其保障程度直接制约着一个地区氧化铝工业的总量与生存周期。因此,各级政府和有关部门,必须准确把握氧化铝工业的发展形势,资源与环境制约状况和基本规律,按照总量控制的要求,严格控制新建氧化铝项目,坚决制止盲目发展和低水平重复建设,努力实现氧化铝工业发展与资源充分利用,优化生态环境相统一。 2)优化氧化铝工业布局 矿产资源主管部门要对铝土矿存量资源进行全面核查,推进铝土矿资源勘查工作,在资源储量有较大幅度提高的情况下,发展计划部门视情况增加布点或同意扩大布点内企业的产能规模。对未经同意在规划布点外拟建氧化铝项目,省环境保护部门不予安排环保评价,擅自建设的必须停止。未经同意不在规划布局内建设的氧化铝项目以及自备电厂,将实行惩罚性电价。 3)严格氧化铝发展的技术政策和经济规模 新建氧化铝项目必须采用国内研究开发的选矿—拜耳法工艺并同步建设选矿厂。严禁采用烧结法、混联法等落后工艺的氧化铝项目上马。新建氧化铝项目的单线规模应达到30万吨以上,单线达不到30万吨合理经济规模的氧化铝项目一律不准建设。已建工艺落后,造成污染的小氧化铝厂要限期转产或关闭。

锅炉烟气量估算方法

常用锅炉烟气量估算方法 烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。3 L! p+ A) H# y& z 9 H# ^ 烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。4 b4 p3 u# E0 W 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;) u% S! h+ k% X, g0 ] 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。9 ^) e8 |$ w/ q+ P 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。; ~# I+ I8 I! ]" h8 q 物料衡算公式:8 v; _$ M* U' V8 T; ~ 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1 %,则烧1吨煤排放16公斤SO2 。, C8 S r9 W" L& J 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2 。' J5 D" G3 m2 C$ \* U6 p ?排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】0.7~0.9,即用水量的70-90%。2 E# C1 W& ]' g3 V+ Q+ Q 【生活污水排放系数】采用本地区的实测系数。。* B- t G1 f: U) N) j 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。9 S1 s- ]1 `* h3 m. _9 E * t! A% @' i 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘9 E- R) m) O1 A9 H9 Y4 C( C 原煤:每吨原煤排放8~10公斤烟尘

焙烧炉操作规程

第二章焙烧主控操作规程 焙烧炉主控操作规程 一.主要职责及任务 1.负责把氢氧化铝焙烧成合格的氧化铝。 2.作为车间生产控制中心,是班组各项工作的中心调度,负责班组内部工作的协调,负责班组各项工作的汇总、反馈,负责对外工作的联系汇报,负责外部信息的收集及传达。班长不在时行使班长的权利,负责班长的工作。 3.负责通过计算机中心远程开启设备,调整焙烧炉各参数,使之保持正常值。 4.严格执行上级下达的技术经济指标,降低消耗,提高经济效益。 5.严格执行各项规章制度,认真填写岗位交接班记录和各项操作记录。 6.负责本岗位所有设备和环境卫生的清理及各种工器具的管理工作。 二、工艺流程及原理 工业生产的湿氢氧化铝一般含有6~8%的附着水。在焙烧过程中,当氢氧化铝受热达到100℃以上时,附着水即被蒸发脱除,当温度达到225℃时,氢氧化铝先脱掉两个分子的结晶水,变成一水软铝石;继续加热到500℃~560℃时,一水软铝石又脱掉最后一个分子的结晶水,变成无水的r-AL2O3。脱水反应式如下:

225℃ AL2O3.3H2O======= AL2O3.H2O+ 2H2O 500℃~560℃ AL2O3.H2O===========r-AL2O3+ H2O 在500℃~560℃温度下焙烧得到的r-AL2O3是很分散的结晶质的氧化铝,需要进一步提高焙烧温度,才能结晶并且长大为粗颗粒。将r-AL2O3加热至900℃时,它开始转变为α-AL2O3,此时转化速度很慢,提高温度则转化速度加快。在1050℃~1200℃下维持足够的时间r-AL2O3才完全转变为α-AL2O3。 从成品过滤送来的氢氧化铝(含水率≤5%)卸入L01给料仓(Ф3000×8200mm)经棒式阀卸到电子计量给料机(DEM1480),计量后送入螺旋给料机(Ф600×3200mm).螺旋给料机将氢氧化铝送入文丘里闪速干燥器。从P02顶部排出的烟气(320℃)经烟道进入文丘里闪速干燥器的地步和氢氧化铝混合进行热交换,氢氧化铝附水在闪速干燥器内蒸发干燥。经干燥后的氢氧化铝被烟气、水蒸气带人P01(Ф3950×9736mm)进行气固分离,P01温度大约145℃。如果从P02来的烟气不足以平衡氢氧化铝附水的蒸发量,需要采用干燥热发生器T11来补充热量。 从P01顶部排出的含尘废气进入电收尘(BABW100m3)净化,由排风机(Q=252000m3/H、P=8800pa)将其送入烟囱排放。粉尘排放浓度小于30mg/Nm

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

沸腾炉、转化器内衬施工方案

中明(湛江)化机工程有限公司沸腾炉、转化器内衬工程 施 工 方 案 2012年8月

编制说明 编制中明(湛江)化机工程有限公司沸腾炉、转化器内衬工程施工方案。为了确保工程质量、工期及施工安全,我公司必须依照提供的图纸及相关标准要求进行组织施工与质量控制,特制定此方案。 编制依据按以下标准: 1. GB211—87《工业炉砌筑工程施工及验收规范》 2. HGJ227—84《化工用炉砌筑工程施工及验收规范》 3. GB50309—92《工业炉砌筑工程质量检验评定标准》 4. 中石化南京化学工业集团公司设计院NB《沸腾炉砌筑技术条 件》之相关要求和标准执行。施工技术、材料质量及配合比, 安全技术、验收指标均按上列《规范》、《标准》控制全过程。

一、工程慨况 中明(湛江)化机工程有限公司沸腾炉、转化器内衬工程,编制如下施工方案: 二、工程内容 (1)沸腾炉 1.沸腾炉钢壳内壁表面清除浮锈、焊渣。 2.筒体内壁粘贴δ= 5 mm石棉板。 3.沸腾炉内壁衬轻质粘土保温砖,δ= 114 mm。 4.沸腾层内衬粘土质耐火砖δ= 230 mm、扩大层及上部燃烧层内衬粘土耐火砖δ= 230 mm,拱顶内衬浇注料δ= 300 mm。 5.炉顶保温层用膨胀珍珠岩填塞,δ=160mm。 (2)转化器 1.转化器钢壳内壁表面清除浮锈、焊渣。 2. 筒体内壁粘贴δ= 5 mm石棉板。 3. 转化器内壁衬轻质粘土耐火砖,δ= 114 mm。 4. 转化器隔层粘贴硅酸铝纤维板,δ=40mm。 5. 转化器底层衬粘土保温砖,δ= 114 mm。 三、施工组织机构 施工组织管理人员一览表。

烟气流量计算公式

锅炉烟尘测试方法 1991—09—14发布1992—08—01实施 国家技术监督局 国家环境保护局发布 1、主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数的测试方法。 本标准适用于GBl3271有关参数的测试。 2、引用标准 GB l0180 工业锅炉热工测试规范 GB l327l 工业锅炉排放标准 3、测定的基本要求 3.1 新设计、研制的锅炉在按GBl0180标准进行热工试验的同时,测定锅炉出口原始烟尘浓度和锅炉烟尘排放浓度。 3.2 新锅炉安装后,锅炉出口原始烟尘浓度和烟尘排放浓度的验收测试,应在设计出力下进行。 3.3 在用锅炉烟尘排放浓度的测试,必须在锅炉设计出力70%以上的情况下进行,并按锅炉运行三年内和锅炉运行三年以上两种情况,将不同出力下实测的烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下的烟尘排放浓度,对于手烧炉应在不低于两个加煤周期的时间内测定。 表1 锅炉实测出力占锅炉设计出力的百分数,% 70-《75 75-《80 80-《85 85-《90 9 0-《95 》=95 运行三年内的出力影响系数K 1.6 1.4 1.2 1.1 1.05 1 运行三年以上的出力影响系数K 1.3 1.2 1.1 1 1 1 3.4 测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测定位置应距弯头、接头、阀门和其他变径管的下游方向大于6倍直径处,和距上述部位的上游方向大于3倍直径处。 3.5 测孔规格: 在选定的测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右的短管,并装上丝堵。 3.6 测点位置、数目: 3.6.1 圆形断面:将管道断面划分为适当数量的等面积同心圆环,各测点均在环的等面积中心线上,所分的等面积圆环数由管道直径大小而定,并按表2确定环数和测点数。 表2 圆形管道分环及测点数的确定 管道直径D,mm 环数测点数 《200 1 2 200-400 1-2 2-4 400-600 2-3 4-6 600-800 3-4 6-8 800以上4-5 8-10

氧化铝建设项目氧化铝部分初步设计提纲

氧化铝建设项目氧化铝部分初步设计 《安全专篇》编写提纲 1.设计依据 1.1 建设项目依据的批准文件或相关的合法证明。 1.2 国家、地方政府和行业的有关安全规定。 1.3 采用的国家和行业主要安全技术规范、规程、标准。 1.4 建设项目安全预评价报告及其审查意见、备案文书,简述本项目安全预评价报告及其审查意见、备案文书的主要结论、安全措施要求。 1.5 其他设计依据或参考资料,设计单位资质、可行性研究报告、其它有关说明文件等。 2.工程概述 2.1工程性质及设计内容 工程性质包括新建、扩建或改造;设计内容(子项),如生产系统、辅助生产系统、原料存贮、公用设施、运输、生活设施、赤泥(尾矿)堆场、水源地等。 2.2 建设项目周围环境状况 自然环境条件:地理位置、气象条件、工程地质、断裂带、水文(洪水)、滑坡、泥石流、地震、雷电等。

社会环境条件:周边居民、企业分布情况;是否存在可能对本项目造成重大危险、伤害的生产或使用易燃、易爆危险品的企业、设施,与本项目的相对位置等。 2.3 氧化铝项目基本概况 氧化铝项目设计规模,主要技术方案,生产工艺流程,铝矿、石灰石矿或石灰、碱、酸的来源,重油、燃气或其它危化品的来源及使用,厂内外运输方式、厂区总平面布置、工程概算、主要技术经济指标。改扩建项目应对现有规模、工艺、总平面、运输等情况进行简要概述。 2.4 工程设计中采用新技术和新设备可能涉及的安全问题 对利用科研成果的新工艺技术、设备、替代材料等可能对氧化铝生产过程中的安全性产生影响的,应进行其安全性说明,论述是否可改善传统工艺或设备安全条件;对存在的不安全因素采取的安全防范措施等。 简述初步设计的工程内容、技术方案、原材料等是否与项目安全预评价报告及其批复文件相一致,如有变化应分析说明变化内容及原因。 2.5 氧化铝项目目前安全状况 改扩建项目应说明与改扩建内容相关的生产系统和相同设施、设备目前的安全生产状况,因设计问题造成的重大事故或频发事故发生的原因,改进的方案及防范措施概述。

沸腾炉操作规程

沸腾炉操作规程 一、安全操作 1.工作时必须穿戴劳动防护用品. 2.启动鼓风机前,必须将炉门关好,以免喷火烫伤 3.启动鼓风机前,必须先将鼓风风门关闭,然后慢慢打开至所需风量位置,防止电 机电流超限. 4.停机压火再次打开炉门引火时,操作人员不得站在炉门正前方. 5.接班开机前应用钢钎检查渣层情况,发现渣块及时排除并根据渣层温度采取相应 措施引火。引火时应注意安全检查避免煤气。 6.不宜频繁停炉压火,以免因急冷急热次数多而影响炉子寿命。 7.热工仪表安装好后,不要随便擅自调整. 8避免正压操作. 9.炉膛未冷却,切忌进入炉膛内. 10.紧急出渣时,排渣口若有人,切忌开启鼓风机. 二、点火前准备 1.准备好司炉工具:钩、耙、锹、铲、推车等。 2.准备好点火用材料:

● 木材,直径<100mm ,长度500mm 左右。 ● 优质碎烟煤,筛选1-6mm 粒径为宜。 ● 木炭,废油或废棉纱适量。 ● 黄沙或炉渣,炉渣粒径<10mm 。 3.逐台检查配套设备:风机、提升机、破碎机及圆盘喂料机等运行情况是否正常。 4.检查控制柜连线及各仪表、传感器情况是否正常。 5.检查布风板上风帽通风孔是否通畅,将炉床清理干净。 6.在炉床上面铺上厚150mm --200mm 左右的干黄沙,打开风机让炉料沸腾后逐渐减小风量至黄砂成鼓泡状,观察床料是否腾跃均匀;然后停风机观察床料是否平坦。 三、点火操作 1.在炉床上加铺厚度150mm --200mm 左右的过筛干粗黄砂,并同时加入占其总量8-10%,粒度<10mm 的优质煤。若用干煤渣做床料,则视渣的含量多少适当减少加入的煤量。然后开启风机使床料混合均匀、平整。 2.视炉型大小加入适量木材,点火燃烧已预热炉膛和加热底料,底料上有足够火炭层(厚度30~60mm )后,再把未梢头的大块木材钩出,将赤红火炭层扒平。 3.开动鼓风机,关闭炉门,瞬间将风压升至3500Pa (风门开度30% 左右)后突然关木柴 煤粉

氧化铝焙烧炉烟气余热回收及其利用方案

************氧化铝焙烧炉烟气余热回收及其利用 技术方案 ********工程有限公司 二0一二年六月

1、概述 氢氧化铝焙烧是氧化铝厂生产中的最后一道加工工序,它将分解过滤所得的氢氧化铝滤饼,在气体悬浮焙烧装置中干燥除去附着水、深度加热脱除结晶水并进行晶型转变生成产品氧化铝。 氢氧化铝的焙烧是氧化铝生产中非常重要的一个环节,也是氧化铝生产过程中耗用热能最大的工序之一。 氢氧化铝的焙烧过程实质是一个脱水的过程,干基氢氧化铝中含水为%,再加上氢氧化铝表面的附着水3~5%,氢氧化铝焙烧的实质上就是要将氢氧化铝中约38%的水份全部脱除掉。因此氢氧化铝的焙烧过程必然是要消耗大量的能源才能实现。目前我们的氢氧化铝焙烧炉所采用的大多是气态悬浮焙烧炉,该炉型在设计上就已经充分考虑了热能的回收与利用了,用焙烧好的物料预热冷空气到约700℃,提高了燃烧效率,再用氢氧化铝吸收热烟气的热量,使氢氧化铝在进入焙烧炉装置中的主炉时,物料中的大部分水份已经被脱除掉,这样物料在进入主炉后的主要反应为晶型的转变,大大缩短了焙烧时间,也大大地提高了焙烧炉的热效率,使得目前我们气态悬浮焙烧炉的热耗几乎是发挥到了极限。尽管如此,我们的气态悬浮焙烧炉的尾气是含有大量水蒸气和热的气体,如果能回收此尾气中的热能和水实际上就是一个变废为宝的节能工程,它不仅还能最大限度降低氧化铝生产的综合能耗,降低了氧化铝的生产成本,也最大限度实现了氧化铝生产的节能减排,对国家和企业而言都是非常有益的事。 2、焙烧炉基本数据 原料 原料名称氢氧化铝滤饼 原料基本属性 附着水~8% 温度50℃ 湿密度1400㎏/m3 相对密度(干基) 粒度分布:45μm<12%

氧化铝建设项目氧化铝部分初步设计规范

国家安全监管总局关于印发氧化铝建设项目氧化铝部分初步设计《安全专篇》编写提纲的通知 安监总管一[2007]46号 各省、自治区、直辖市及新疆生产建设兵团安全生产监督管理局,有关中央企业: 为进一步做好非煤矿山建设项目安全设施"三同时"工作,规范氧化铝建设项目氧化铝部分安全设施设计审查工作,依据《非煤矿矿山建设项目安全设施设计审查与竣工验收办法》(原国家安全监管局令第18号)和安全监管总局《关于印发非煤矿矿山建设项目初步设计〈安全专篇〉编写提纲和安全设施设计审查与竣工验收有关表格格式的通知》(安监总管一字〔2005〕29号),国家安全监管总局组织制定了《氧化铝建设项目氧化铝部分初步设计〈安全专篇〉编写提纲》(以下简称《编写提纲》),现印发给你们,请遵照执行。 氧化铝建设项目氧化铝部分初步设计《安全专篇》,是氧化铝建设项目初步设计《安全专篇》的一部分,要与矿山开采、尾矿库等部分按流程分章节编写,有关内容要统筹考虑,作好彼此之间的衔接,不要单独成册。 请各地将《编写提纲》转发至本辖区内的氧化铝生产企业,也可请各氧化铝生产企业从国家安全监管总局政府网站上下载,并积极做好宣传贯彻工作。

二○○七年二月二十七日氧化铝建设项目氧化铝部分初步设计 《安全专篇》编写提纲 1.设计依据 建设项目依据的批准文件或相关的合法证明。 国家、地方政府和行业的有关安全规定。 采用的国家和行业主要安全技术规范、规程、标准。 建设项目安全预评价报告及其审查意见、备案文书,简述本项目安全预评价报告及其审查意见、备案文书的主要结论、安全措施要求。 其他设计依据或参考资料,设计单位资质、可行性研究报告、其它有关说明文件等。 2.工程概述 工程性质及设计内容 工程性质包括新建、扩建或改造;设计内容(子项),如生产系统、辅助生产系统、原料存贮、公用设施、运输、生活设施、赤泥(尾

碳材烘干方案

碳材烘干生产线电气方案 碳才烘干线由沸腾炉、烘干窑、除尘器系统组成,要求对整个生产线具有联动、分动的功能,远程能控制生产线的所有操作和数据监控,自动记录生产数据形成报表,现场也要单独能手动控制。电气控制框图如下:

下面从沸腾炉、烘干窑、除尘器系统依次说明: 一、沸腾炉:煤粉仓里的煤粉在圆盘输送机下均匀的送煤粉给炉子,炉子里的温度和压力都要检测,炉子出口有温度检测,此温度高了,要减少煤粉的供应,同时调节高压分机的风量,单位时间内风量和炉温直接决定了下流所需的能量,下流煤粉量大,沸腾炉要给出的能量就要线性比例的增大,具体下流烘干炉需要多少的能量都可以计算出来的,Q=CM(t2-t1) Q----热量C----物体的比热(查表) t2---物体最后温度t1---物体初始温度,显然当知道了单位质量被烘干的物体从窑顶到窑底的时间,再知道窑的入口和出口的温度,热量就知道了,沸腾炉根据下流要求自动调整煤粉的供应和高压风机风量的调整,这里是个闭环的PID自动调节。煤粉仓要监控仓内的温度、CO检测、O2检测、煤粉挥发含量等,煤粉在一定温度遇到空气时容易自然,同时仓内煤粉颗粒悬浮在仓顶容易爆炸,在仓内温度明显升高时要通入CO2,有火光时要做清仓处理。仓内有上下料位仪,用来控制煤粉进仓。PLC的I/O点如附件。 二、烘干窑:烘干窑在生产前先要烘窑保温,炉体本身消耗的热量要计算在内,单位时间内要烘干多少质量,都是有热量交换计算好的,一般情况下都是由沸腾炉提供稳定的热量给烘干窑,烘干窑的送料振动电机有慢到快往上调节,同时检测出口的材料的干燥程度和温度,出口如果干燥了,但是出口材料温度还高,说明材料在炉内行走

氧化铝焙烧温度控制系统课程设计-精品

氧化铝焙烧温度控制系统课程设计 摘要:氧化铝是电解铝生产的主要原料,针对我国矿石特点,我国氧化铝的生产工艺主要采 用的是拜尔法和烧结法以及混联法,在拜尔法中焙烧工序是氧化铝生产必不可少的一个过 程,并且是整个氧化铝生产的最后一道工序,该生产过程的主要任务是将来自分解或平盘的 带有附着水的氢氧化铝物质在焙烧炉中高温煅烧,脱除附着水和结晶水,从而生成物理化学 性质符合电解要求的氧化铝。氧化铝焙烧的主要工艺参数是灼烧温度.灼烧温度的高低与稳 定与否直接决定着氧化铝的出厂质量,所以稳定控制氧化铝灼烧温度是保证氧化铝生产质量 的主要途径。本文以氧化铝焙烧生产过程控制系统为背景,开展了氧化铝焙烧生产过程控制 策略的研究和控制系统的设计以及器件的选型。 关键词:氧化铝焙烧;器件选型;串级控制系统;PID 参数整定 一、氧化铝生产工艺 生产氧化铝的方法大致可分为四类:碱法、酸法、酸碱联合法与热法。目前工业上几乎 全部是采用碱法生产。碱法有拜耳法、烧结法及拜耳烧结联合法等多种流程。 目前,我国氧化铝工业采用的生产方法有烧结法,混联法和拜耳法三种,其中烧结法占 20.2%,混联法占69.4%,拜耳法占10.4%。虽然烧结法的装备水平和技术水平在今年来 有所提高,但是我国的烧结技术仍处于较低水平。而由于拜耳法和烧结混合法组成的混联法,不仅由于增加了烧结系统而使整个流程复杂,投资增大,更由于烧结法系统装备水平和技术 水平不高,使得氧化铝生产的能耗增大,成本增高,降低我国氧化铝产品在世界市场上的竞 争力。拜耳法比较简单,能耗小,产品质量好,处理高品位铝土矿石,产品成品也低。目前 全世界90%的氧化铝是用拜耳法生产的。 拜耳法的原理是基于氧化铝在苛性碱溶液中溶解度的变化以及过氧化钠浓度和温度的 关系。高温和高浓度的铝酸钠溶液处于比较稳定的状态,而在温度和浓度降低时则自发分解 析出氢氧化铝沉淀,拜耳法便是建立在这样性质的基础上的。 下面两项主要反映是这一方法的基础: 42232)(2)3(2l OH NaAl O H x NaOH O xH O A =-++ NaOH OH Al OH NaAl +=34)()( 前一反映是在用循环的铝酸钠碱溶液溶出铝土矿时进行的。铝土矿中所含的一水和三水 氧化铝在一定条件下以铝酸钠形态进入溶液。后一反映是在另一条件下发生的析出氢氧化铝 沉淀的水解反应。铝酸钠溶液在95-100度不致水解的稳定性可以用来从其中分离赤泥,然 后使溶液冷却,转变为不稳定状态,以析出氢氧化铝。 拜耳法生产过程简介:原矿经选矿、原矿浆磨制、溶出与脱硅、赤泥分离与精制、晶种 分解、氢氧化铝焙烧成为氧化铝产品。

煤矸石提取氧化铝工艺设计

煤系固体废弃物(煤矸石)处理工艺设计 煤系固体废弃物主要成分为煤矸石、粉煤灰和锅炉渣。煤矸石的来源于煤的开采、加工过程。粉煤灰和锅炉渣来源于煤的利用过程(火力发电)。本工艺设计主要针对煤矸石的资源化处理。 一、煤矸石的来源 煤矸石是采煤过程和洗煤过程中排出的固体废物,是一种在成煤过程中与煤层伴生的一种含碳量较低、比煤坚硬的黑灰色岩石。它包括巷道掘进过程中的掘进矸石、采掘过程中从顶板、底板及夹层里采出的矸石以及洗煤过程中挑出的洗矸石。一般每采1t原煤排出矸石0.2t左右。 煤矸石是指煤矿在建井、开拓掘进、采煤和煤炭洗选过程中排出的含碳岩石及岩石,是指煤矿建设生产过程中所排放出的固体废弃物的总称。煤矸石的来源主要有以下三个方面 (1)岩石巷道掘进时产生的煤矸石,通常称为原矿石,占煤矸石的60%-70%。主要岩石有泥岩、页岩、粉砂岩、砂岩、砾岩、石灰岩等。 (2)采煤过程中从顶板、底板和夹在煤层中的岩石夹层里所产生的煤矸石,占煤矸石的 10%-30%。煤层顶板常见的岩石包括泥岩、粉砂岩、砂岩、砂砾岩;煤层底板的岩石多为泥岩、页岩、黏土岩、粉砂岩;煤层夹肝的岩石有黏土岩、碳质泥岩、粉砂岩、砂岩等。 (3)煤炭分选或洗选过程中产生的煤矸石,又被称为洗矸石,约占煤矸石的5%。其中主要由煤层中的各种夹石如高岭石、黏土岩、黄铁矿等组成。 二、煤矸石的特性 2.1 煤矸石的组成 煤矸石的组成有有机物(含碳物)和无机物(岩石物质)组成的混合物。一般,煤矸石的热值:837~418KJ/kg。 煤矸石的化学组成,% 主要矿物包括高岭土、石英、蒙脱石、长石、伊利石、石灰石、硫化铁、氧化铝等。 2.2 煤矸石的外观特征和显微结构 2.2.1 外观特征碳质页岩为黑色或黑灰色,层状结构,表面有油脂光泽,不完全理解,不规则块状,断面参差,易碎,滴入稀盐酸有小气泡缓慢放出。 泥质页岩为黄灰色或黑褐色,土状光泽,有松疏的黑色小粒,片状结构,不完全理解,质软性脆,不规则块状,易碎,滴入稀盐酸不起反应。 砂质页岩为深灰色或灰白色,腊状光泽,结构较泥质、碳质页岩粗糙坚硬,组成均一,沿层理有草叶状条痕,极不全完解理,滴入稀盐酸有气泡放出,还有铁锈斑点。 2.2.2显微结构 碳质页岩以不透明黑色矿物为主,有少量石英和粘土矿,泥质页岩以石英为主,有一定量的不透明黑色矿物和少量云母;砂质页岩主要是石英和云母,还有一定量的不透明矿与碳酸盐矿物,石英颗粒较粗。碳质页岩和泥质页岩在出煤井时含有较多的碳质,往往还含有胶质有机物、树脂,孢子以及其他植物残体,随着含量的增加岩石颜色加深,经长期堆积,内部发热自燃,大部分已起一定煅烧作用,使表面形成一层很厚的硫酸铝或其他复盐。砂质岩出井煤时,块度较其他页岩大,难粉碎,不自燃,难风化。 2.3 煤矸石的物理特性 1、可塑性 煤矸石必须经细碎后才有塑性,矸石中砂岩塑性较页岩差。混合矸石经粉碎至250目筛筛余>2%时,其可塑指标可达2.8~3相应含水率为23~25%,如果进一步细碎至300目筛筛余<2%,则塑性会更大.

定编定岗定员方案

定编定岗定员方案

甘肃省天渊建材有限公司 定编、定岗、定员的工作方案及岗位工作职责 为了加强和规范公司内部管理,强化岗位人员的工作积极性、主动性和责任性,稳定员工队伍,逐步提高员工的综合素质,使公司的生产和各项工作尽快走向规范化和正规化,特制定公司定编、定岗、定员 方案及岗位工作职责 一、管理人员: 总经理(1人):刘文的主要职责: 1.认真贯彻执行国家和各级政府安全生产的方针、政策、法令、规定以及总公司的指示、决议,领导整个公司的员工搞好各项工作。 3.组织制定公司的机构设置和人员编制,向总公司提请聘任或者解聘各科室负责人,对公司发生的重大事情进行奖惩。 4.组织建立完善全公司安全生产管理体系,制定各项管理制度,组织并指导编制各岗位安全操作规程。 5.确定公司的发展方向和管理目标,组织制定全公司安全生产的发展规划,年度工作计划,积极努力完成总公司下达的各类生产任务。 6.领导公司员工的安全教育培训工作和安全检查工作,督促检查公司安全生产工作。 7.组织制定和健全公司各项规章制度,推行岗位责任制,不断全面提高公司的管理水平。 8.定期组织召开安全生产办公会议,研究解决重大安全问题,及

时消除生产安全隐患,做到安全措施全面落实到位。 10.检查、督促、考核各职能科室安全生产责任制度的落实,对生产过程中出现的安全问题作出处理决定。 11.负责加强公司员工队伍的建设,不断提高各类人员的业务素质。 13.负责审批以公司名义发出的各类文件、报表,批办上级来文,处理涉外事宜,做好公司内外的接待工作。 14.完成总公司董事长交办的其它工作。 总工(1人):康效琪的主要职责: 1、技术资料的整理,主要根据本单位本行业和政府的相关规定及要求编制相在资料。配合电厂测量灰并建立相关资料。 2、抓好全公司及各岗位的安全检查及考核工作,落实好各岗位现场的文明生产及考核工作。 3、制定灰坝开采方案和作业规程完善及安全技术措施的落实工作,同时管理相关技术资料。 4、落实生产线当天的产量和灰坝皮带入库量报表统计工作。 5、负责每天工作日志的记录和相关台账的完善工作。 6、配合协助总经理做好全公司的各项工作。同时完成总经理交办的其它工作。 综合办主任、副主任(2人):主任(待招)的主要职责: 1、综合协调各岗位调度及配合工作。 2、组织员工考评、考核、招工、考勤报工等工作。

拜耳法生产氧化铝工艺设计计算

拜耳法生产氧化铝工艺设计计算 1 目的与要求 通过工艺设计计算,对氧化铝生产工艺工艺流程有更深入全面的了解,培养和训练学生具备解决复杂的工艺问题、管理氧化铝生产、进行物料平衡计算的能力。 在进行冶金计算之前,必须收集有关现场数据,以便于具体计算。为了计算的方便,下面的物料平衡计算按生产1吨氧化铝为基准进行。 2 主要生产技术指标的选择 1)产品为一级氧化铝(国标):32O Al 含量 不低于006.98。本设计取为0099。 2)铝土矿的化学组成(00 ) 表1 铝土矿成分表 成分 32O Al 32O Fe 2SiO 2TiO O H 22CO 其他 合计 附着水 67.40 11.08 5.45 4.20 10.77 0.52 0.58 100 0.9 3)石灰的化学组成(00 ) 表2 石灰石的成分表 成分 CaO 32O Al 2SiO 2CO 其他 合计 87.56 3.8 3.27 5.19 0.18 100 4)氧化铝实际溶出率:0009.89,总回收率:0087。 5)石灰添加量占干铝土矿量的008。 6)碱耗:32/53O Al t kg 补碱组成 表3 补碱成分表 成分 k O Na 2 c O Na 2 2CO L g / 438.8 7.2 5.1

密度=14403/m kg 7)循环母液的组成 表4 循环母液的成分 成分 k O Na 2 32O Al c O Na 2 2CO T O Na 2 L g / 240 135.13 20 14.19 260 密度=13583/m kg 3=K α 8)稀释后的铝酸钠溶液组成 表 5 铝酸钠溶液成分 成分 k O Na 2 32O Al c O Na 2 2CO L g / 160 181.52 11.04 7.83 密度=13153 /cm g 48.1=K α 9)沉降分离底流0.3=S L ,末次洗涤槽底流0.1=S L 。 10)弃赤泥液相中O Na 2的含量(浓度):L g 25.2。 11)溶出后赤泥的35.1=S A , 3.0=S N 。 12) 溶出过程浓缩率:008。 13)晶种分解中种子比为3.0,种子附水率为000.18,分离后氢氧化铝浆液的0.1=S L 。 14)氢氧化铝洗涤水的消耗量为3)(0.1OH Al t t -,氢氧化铝滤饼的含水量为0010。 15)蒸发中,O H CO Na 232?带走的循环母液为湿沉淀质量的0050。 16)苛化时的石灰数量为化学反应计算量的00125,苛化率为0090。 17)苛化时碳酸钠-石灰浆夜得液相中含00210T O Na ,弃石灰渣中含水量0025。 3 物料平衡计算

相关文档
相关文档 最新文档