文档库 最新最全的文档下载
当前位置:文档库 › 反激式开关电源设计与测试步骤

反激式开关电源设计与测试步骤

反激式开关电源设计与测试步骤
反激式开关电源设计与测试步骤

初次设计反激电源式电源步骤

准备

在初次设计电源之前,应确保电源所采用的印刷电路板符合Power Integrations器件数据手册中指定的布局指南。如果在实验用面包板或原始样板上搭建设计的电路,会引入很多寄生元件,这样会影响电源的正常工作。而且,许多实验用面包板都无法承载开关电源所产生的电流水平,并可能因而受损。此外,在这些电路板上非常难以控制爬电距离和电气间隙。

所需设备

在本课程中,您将用到以下设备:

1.一个隔离式交流电源供应器或一个自耦变压器

2.一个瓦特表

3.至少四个数字万用表,其中两个具有高精度电流量程

4.一个带有高压探针的示波器

5.一个电流探针

6. 还有您的实际负载

第1章:术语

本课中将频繁使用的两个术语是“稳压”和“自动重启动”。当电源处于稳压状态时,控制器持续接收反馈,所有输出电压均保持稳定不变,并处于指定的容差限值内。自动重启动是Power Integrations器件中内置的一种保护模式。

处于稳压状态的输出

自动重启动

在工作期间,如果所消耗的功率大于电源所能提供的功率限值,或者在启动后,电源的输出电压在指定的时间内不能达到稳压,Power Integrations器件将进入自动重启动保护模式。这种设计通过限制电源在故障情况下提供的平均功率,可防止元件受损。有关特定的自动重启动导通时间,请参见相关的Power Integrations器件数据手册。

在测试期间,如果发现电源性能与本课程中所描述的情况不符,或者表现出任何异常特征,请停止测试程序,并参照其他PI大学故障诊断课程中的内容排查问题,或者联系当地PI代表解决问题。

第2章:设计信息

现在就可以开始测试了。下面,我们将以使用TinySwitch -PK器件的RD-1151参考设计电路板为例进行讲解。该电源用于DVD播放器,可提供7.5 W的连续输出功率,峰值功率为13 W。连续输出功率分为四路输出,它们包括:

3.3 V,500 mA

5 V,500 mA

正12 V,250 mA

负12 V,30 mA

第3章:目测

设计之前,应先目测检查电路板,确保所有极性组件都已正确插装。虽然这种情况并不常见,但一个元件插装错误却能导致破坏性故障。

即使在完成了元件插装检查后,我们仍强烈建议您在第一次设计电源时佩戴护目装置。确保所有极性组件都已正确插装

第4章:禁用欠压锁存

第一步是检查电源能否在低输入电压下正确工作,因此您需要禁用Power Integrations器件的欠压锁存功能(如果已启用的话)。在大部分设计中,这意味着将UV电阻从电路板上卸除。在本设计范例中,UV电阻连接在DC总线和TOPSwitch -HX器件的M引脚之间。您需卸除这些电阻,使M引脚与源极短路。如果是其他产品,请参阅相应的器件数据手册,确定应使用的正确元件和禁用UV功能的方法。

第5章:极低电压工作

接下来,将两个短导线焊接到输入电容的负极和正极端子上,用作测试点。为了正确验证低电压工作情况,您需要在施加低AC输入电压的过程中,监测输入电容的输出电压和DC总线电压。将一个万用表连接到电路板的输出端子,并将另一个万用表连接到输入电容,利用两个测试点进行监测。这两个万用表都应设置为读取DC电压。

如果您的设计有多路输出,可将负载电阻连接到主稳压输出以外的任何输出。负载电阻的大小应能够吸收为每个输出指定的最小负载。这样可防止这些输出电压因峰值充电而超出规格范围。

如果没有为输出指定最小负载,那么选择电阻吸收5 mA的输出电流。将AC输入导线连接到电路板。确保AC输入正确连接到电源的输入端子,而不是连接到DC输出。AC输入连接错误可严重损坏电源。

在本测试中,您还需要测量AC输入功率。如果您有瓦特表,请参照其操作手册中有关如何安装到AC输入通道的说明,配置为测量AC电压、电流及输入功率。如果没有瓦特表可用,可将第三个万用表与AC输入串联,设置为测量AC电流。再将第四个万用表连接到电源输入端子,测量AC电压。

现在,确保自耦变压器或交流电源供应器设置为零,然后将其开启。将输入电压慢慢提高到约10 VAC。您应该可以在瓦特表或输入万用表上看到AC输入电压在逐步增大。如果没看到的话,应确认您的交流电源供应器是否配置正确。您还应该看到DC总线电压在您施加AC电压的过程中不断增大。

如果您使用的是瓦特表,稳态AC输入功率应小于15 mW。如果您使用的是两个万用表,稳态AC电流读数应小于10 mA。如果您看到输入功率或AC电流高于此值,那么说明您的电路板存在故障。关闭交流电源供应器,断开AC输入连接。

在上述情况下,持续提高AC电压会对电路板造成破坏性故障。有关确定和修复电路板故障的信息,请参见PI大学课程“修复无输出电压的反激式电源”。

第6章:启动和稳压

如果输入功率小于15 mW,则可继续将电压增大到50 VAC。观测DC输出电压,如果输出处于稳压状态、自动重启动状态,或者输出电压表上的电压读数大于0.1 V,则说明的电路板未受损且功能正常。

继续将AC输入电压增大至指定的最小输入电压。如果电源无法启动或达到稳压,请停止测试,并参照PI大学课程“修复输出无法达到稳压的反激式电源”排查问题。

现在,关闭AC输入,将输入导线从电路板断开,将输入电容放电至安全的电压水平。此外,将万用表从DC大容量电容断开。

第7章:MOSFET漏极开关波形

接下来,您需要监测漏极开关波形。断开电路板上的漏极走线,插入一个电流环。确保此断开点介于Power Integrations器件漏极引脚与箝位电路中的任何元件之间。这样可以确保探针只检测到MOSFET电流。

将一个1000 V或更大倍数的x100探针连接到MOSFET两端来测量开关电压。将示波器配置为以适当的比例同时显示电压和电流波形,并设置一个宽时基,以便在一帧图像上显示许多开关周期。例如,对于这个132 kHz设计,可将时基设置为每格50 μs。

第8章:负载主输出

现在,将一个电子负载连接到电源的主输出,确保负载设置为零。将两个万用表连接到该输出,一个连接到输出端子来测量输出电压,另一个与电子负载串联来测量输出电流。用精度最高的万用表来测量输出电流。

重新将AC输入导线连接到电路板,确保自耦变压器或交流电源供应器设置为零。现在,接通AC输入,慢慢将电压增大至电源的最小指定输入电压。慢慢将电源的负载增大至满功率的25%。输出电压应维持在指定稳压容差范围内。继续将负载提升到满载。输出电压应保持稳定,并处于稳压限值范围内。

第9章:满载工作

如果您的设计采用多路输出,请关断AC输入,拆下早前安装的最小负载电阻。将所有这些电阻都分别替换为电子负载,直到您电源的所有输出都加有负载。如果此时没有电子负载可用,请参照电力电子装置导论课程了解更多负载选项,以及如何替代它们的信息。

按照前面所讲的方法,连接两个万用表来监测每个输出的输出电压和电流。本设计总共有4路输出,因此总共需要8个万用表,其中至少4个应具有高精度电流量程。这种配置便于进行快速测量。如果没有足够的这种万用表可用,可以用一个万用表来测量所有电压,方法是将它轮流连接到所有输出,分别测量电压,一次测量一个输出。

将所有负载设置为从每个输出吸收少量的电流,避免峰值充电的发生。再次将AC输入归零,然后接通,慢慢将输入增大至电源的最小工作电压。从主输出开始逐个慢慢增大每个输出的负载,以达到该输出的额定满载点,直到电源的所有负载都提供指定的满输出功率为止。

此时,您的电源提供最大连续输出功率。所有输出都应保持稳压,并且处于指定的容差限值范围内。否则,请停止测试,参照PI大学故障诊断课程中的内容来排查问题。如果电源已进入自动重启动模式,请参见PI大学课程“修复无法提供满功率的反激式电源”。

第10章:检验效率

当电源在最大连续负载和低压状态下运行时,对电源执行快速效率测量,并将测量结果与PI Expert指定的目标值进行比较。如果发现测量的效率低于预期的5%以上,请参照PI大学故障诊断课程中的内容排查问题。

第11章:峰值漏极电压(高压)

接下来,减小示波器的时基,并在漏极电压的上升沿触发。将示波器设置为正常触发模式,然后缓慢增加触发电平,直至示波器在MOSFET电压出现最高峰值时偶尔触发。

利用示波器的光标测量MOSFET在此峰值时的最大电压。现在,缓慢将AC输入电压增加到最大输入电压,增加50 V后暂停,以增加触发电平,然后测量最高峰值。

一旦所测得的峰值漏极电压超过650 VDC,则应停止增加输入电压,以防止该电压超过MOSFET 的最大额定电压。如果在被迫停止前尚未达到最大输入电压,则说明您的箝位电路可能设计有误,或者变压器漏感超过了预期值。请先解决这一问题,然后再继续下一操作。

第12章:欠压锁存

接下来,将各输出负载降至最低,然后切断AC输入。如果您的设计中包含UV检测电路,则请重新连接该电路。此外,应将一个万用表连接到输入大容量电容两端,设置为测量DC电压。将AC输入归零并接通,然后缓慢增加电压,直至DC总线电压达到UV阈值的下限。

电源的启动电压应介于根据Power Integrations器件及您的UV电阻的容差所定义的两个限值之间。而且,电源在电压达到您设计的最小AC输入电压之前应能启动。

在我们的设计范例中,电源应在DC总线上的78 V到105 VDC电压范围内启动,这由电阻和器件UV电流阈值的容差所定义。

第13章:峰值漏极电压(过载)

电源启动后,将AC电压增加到最小输入电压,然后使电源上的负载达到满载。在主输出上,开始缓慢增加负载,同时监测示波器上的峰值漏极电压。在开始使电源输出过载时,确认该峰值电压始终不会超过650 V峰值。如果超过峰值,请停止测试,排查箝位电路上的问题。

一旦达到最大过载功率,输出将会失调。这将触发Power Integrations器件并进入自动重启动,或者进行锁存关断。

自动重启动是对电压失调最常见的一种响应方式,但具体响应情况因器件系列和电路配置而异。详细信息请参见产品数据手册。

记录电源在刚进入保护模式之前示波器上所显示的峰值漏极电压值。如果该电压大于650 VDC,您需要调整箝位电路。

电源过载会给所有元件带来压力,且会增加电源的损耗。这将导致元件温度迅速升高,因此如果出现过热的情况,应立即停止测试,让电源慢慢冷却下来。

第14章:峰值漏极电压(启动)

进行下一个测试时,需要将电源负载减小至满载。如果电源已进入锁存关断模式,可能需要在电源返回正常操作模式之前切断并重新接通AC输入。切断交流电源供应器,然后等待DC 总线上的电压已降至约10 V。如果设计中采用了大容量电容,可能需要花费几分钟的时间。使用电容放电板可以缩短这一时间。

接下来,您将检验启动时的漏极电压和电流波形。将输入电压增至最大值,确保电源处于满载状态。将示波器设置为在漏极电压波形的上升沿正常触发。缓慢增加触发电平,直至找到可在正常工作模式下进行触发的最高电平。然后切断交流输入,重新装上电源。

在增加触发电平的过程中继续这一操作,直至在装上电源的过程中抓取到最高峰值电压。如果测得的最高电压超过650 V 峰值,则需要重新设计箝位。

第15章:漏极电流波形(启动)

触发示波器上的漏极电流波形时重复上述操作程序,测量在装上电源时看到的最高电流。检验电流波形的形状,看是否存在变压器饱和的迹象。

启动过程中,可能会看到两个电流波形中的一个。左侧波形是正常电流脉冲,它在导通到关断的过程中呈线性斜升。右侧电流脉冲表示存在变压器饱和的迹象。请注意该脉冲是如何以类似指数的形式上升到更高端的。这是变压器磁芯达到饱和且不能再贮存能量的临界点。此时,初级电流将快速增大,可能会损坏Power Integrations器件或其他初级侧元件。

变压器饱和的主要原因是有过多的磁通在磁芯中累积。如果在您的设计中发现饱和现象,首先需要与变压器供应商核实,看变压器是否严格按照PI Expert设计所指定的参数值进行制造。此外,还应确保变压器的初级电感值处于设计所容许的容差限值范围内。(请参见第16章,了解不使用LCR测量仪进行此测量的具体方法。)如果器件限流点设定过高,也会造成变压器饱和。请查阅所用器件的数据手册,了解检验限流点设定方式的信息。

如果变压器结构和限流点设定方式正确,您需要重新设计变压器,以减小磁芯的磁通密度。您可以通过为变压器添加额外线圈或减小初级电感LP所容许的生产容差来实现这一点。在PI Expert设计中增加线圈数时,可增加次级绕组圈数NS,软件将会按比例相应增加初级绕组圈数NP。您也可以通过调节KP值来减小磁通密度。如果初级限流点可设定且远高于您的功率级要求,那么降低限流点也会造成磁通量增大。在特殊情况下,您也能需要通过增大磁芯尺寸来减小磁通密度。您需要不断调整设计,直至最大磁通密度(BM)和峰值磁通密度(BP)都远低于PI Expert所指定的限值。请注意,优化后的PI Expert设计应始终能把磁通密度限制到可接受的水平。在手动调整设计时,如果所作的某个修改可使磁通密度骤然增大,PI Expert将会向您发出警告消息,提醒这一危险状况。

变压器磁芯过热时,也会造成变压器饱和。发现饱和问题后,应检验变压器是否在适当的温度限值内进行工作。必要时,请重新设计变压器,以降低磁芯和绕组损耗,并降低其工作温度。

在启动测试期间,可能会抓取到短脉冲,如上图所示。这些脉冲都是正常的,是由低输出电压下变压器复位不足造成的。

第16章:变压器初级电感量

现在切断AC输入,将高压示波器探针连接到输入大容量电容的端子。然后,向电源施加最小的AC输入电压,将输出负载增至满载。设定示波器,将高压探头连接在输入大容量电解电容两端,从而测量到DC总线电压,同时测量漏极开关电流波形。

利用示波器测量大部分线性斜升过程中的漏极电流的di/dt比值。这部分通常处于流限的25%到75%之间。此外,还应在用来测量电流变化的时间间隔内,同时测量平均DC总线电压。利用这两个测量结果,您可以根据电感的基本关系式计算出变压器初级电感量的近似值:V = L Δi/Δt

MOSFET导通后,变压器初级侧的电压将近似等于平均DC总线电压。电感中的电流等于漏感电流。调整该公式后,我们可以计算出L值:L = V Δt/Δi

将计算得出的值与PI Expert中的指定值进行比较。如果计算值超出给定的容差范围,则需联系变压器制造商以解决这一问题。

第17章:初始电流尖峰

接下来,检查在MOSFET导通后随即出现的高初始电流。切断交流电源供应器,将高压示波器探针重新连接到MOSFET两端,测量漏极开关电压。然后,施加指定的最大AC输入电压,并将电源负载增至满载。设定示波器,以便同时显示MOSFET电压和电流,并在漏极电压的上升沿触发。调宽时基范围,以便监测一个完整的开关周期。

前沿消隐功能,在MOSFET导通后立即将流限传感器禁止一段时间。这样可防止初始电流尖峰触发流限,使其提前结束电流脉冲。不过,如果导通尖峰大于正常值,还是会触发器件的初始流限,并使传输到输出的功率受到限制。

PI前沿消隐功能

在指定的最低输入电压下重复此测量。如果电源设计为在低压下以连续导通模式工作,则初始电流基值将会增大初始电流尖峰。

第18章:偏置绕组电压

如果您在设计中采用了偏置绕组,则需关断AC输入并连接一个示波器电压探针,然后进行设置,测量偏置绕组输出滤波电容上的DC电压。必要时,可将两个短接导线焊接到电路板背面,用作测试点。然后,施加最小的AC输入电压,并移除电源输出上的所有负载。

通过示波器测量并记录偏置绕组电容在整个周期内的最低电压。如果测量的最低偏置绕组电压低于8 V,则可导致您的电源出现稳压问题。要解决此问题,您需要增加偏置绕组的圈数以增大电压。我们建议您在重新检测原型设计的电压之前,每次只添加一个线圈。添加过多线圈将导致偏置绕组电压大幅升高,从而加大设计的空载功耗。建议空载时的最低偏置绕组电压应大于8 V,但小于约9 V。在有些设计中,增大偏置绕组滤波电容的值可提供足够的维持时间,使最低偏置绕组电压升至8 V以上。

第19章:输出二极管反向峰值电压(PIV)

接下来,检测输出二极管的PIV。首先,关断AC输入,并断开电路板上的所有示波器探针。然后,在待测量的输出二极管上连接一个低压探针,如下图所示,将接地线夹和探针尖分别连接到阴极和阳极。另外,我们还插入了一个电流探针,与输出二极管串联,用于查看二极管电流。不过,您在测量时并不一定要这样做。

施加最大的AC输入电压,并将电源负载增至满载。观察示波器上显示的DC电压时,您将发现:在二极管导通时二极管上的电压接近零值,二极管关断时电压迅速回复为负值。该负电压即为逆向电压。在任何测量点测量二极管出现的最高负电压,然后将该测量值与二极管的PIV额定值进行比较。如果测量值等于或大于二极管额定值,那么该二极管将在尚未达到预期的元件寿命之前就会失效。

为提高元件的现场可靠性,Power Integrations建议在PIV测量值与二极管额定值之间维持20%的裕量。如果您的二极管不符合这些要求,请换用PIV额定值更大的二极管,或者对二极管缓冲电路进行优化。

第20章:满载效率

接下来,测量并记录电源在最低和最高AC输入电压下的满载效率。如果满载效率比PI Expert 预测值低出5%或更多,则需要解决此问题。

第21章:元件温度

测量设计中关键元件的温度,其中包括二极管、电解电容、共模扼流圈、变压器磁芯、绕组以及Power Integrations器件。执行这些测量应满足以下条件:电源满载,且电源已在室温下工作大约20分钟。分别测量最小和最大AC输入电压下的温度。不过,温度通常在低压时最高。

不断增大所测室温的温度到指定的最高环境温度,以接近最差条件的环境温度。将这些估计温度与元件数据手册中的最大工作温度进行比较。在进行比较时,确保将您设计中的任何降额要求纳入考量。

您可以降低元件额定温度,以满足特定安全要求或延长元件使用寿命。例如,电解电容的允许工作温度与元件的预期使用寿命成函数关系。一个额定温度105℃、额定使用寿命2,000小时的电容,在70℃下连续工作时,其预期使用寿命可达到约20,000小时。为便于参考,这里提供了部分主要元件的温度降额值。

如果发现某个元件或PCB变色,或是某个元件冒烟,请立即关断AC输入并解决这一问题。

第22章:输出电压纹波

现在,测量输出电压纹波,确定它处在设计指定的限值范围内。如果超出指定范围,或发现输出有明显的振荡,请参照PI University的故障诊断课程解决这一问题。

第23章:以最终负载启动

最后,关断AC输入,将电子负载从电源输出移除,然后连接实际负载。将一个万用表连接到电源的输出端,监测输出电压。将交流电源供应器设定为电源的最大AC电压,并装上电源。检验电源能否在为实际负载供电的情况下启动并达到稳压。

将AC电压设定为最小限值,重复此测试。如果电源在连接实际负载的情况下无法启动,您需要观看PI大学故障诊断课程“修复输出无法达到稳压的反激式电源”排查问题。

第24章:为最终负载供电

如果您的负载具有不同的工作模式,请务必循环测试所有模式,确保电源永远不会进入自动重启动模式。如果进入的话,说明您的负载所吸收的功率大于电源的额定输出功率。此时,您需要认真分析负载特性,然后重新设计电源。(电源网原创转载请注明出处)

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。 二、参数设置 相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。 如图:

三、元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路: (1)电源开关交流回路 (2)输出整流交流回路 (3)输入信号源电流回路 (4)输出负载电流回路输入回路 通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

反激式开关电源设计

基于U C3845的反激式开关电源设计 时间:2011-10-2821:40:13来源:作者: 引言 反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流变换器应用而设计的。其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。 1UC3845简介 UC3845芯片为SO8或SO14管脚塑料表贴元件。专为低压应用设计。其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。 芯片管脚图及管脚功能如图1所示。 图1UC3845芯片管脚图 1脚:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。 2脚:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。 3脚:电流取样输入端。 4脚:RT/CT振荡器的外接电容C和电阻R的公共端。通过一个电阻接Vref通过一个电阻接地。 5脚:接地。 6脚:图腾柱式PWM输出,驱动能力为土1A. 7脚:正电源脚。 8脚:Vref,5V基准电压,输出电流可达50mA. 2设计方法 如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。 1)启动电压和电容的选择 交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。 当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。 根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下: 图2基于UC3845反激式开关电源的电路图 启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。该电流由启动电容在启动时储存的电荷量来提供。此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

开关电源的制作流程

开关电源的制作流程 开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。 第一节开关电源的电路组成 开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。 1、AC/DC开关电源的组成 AC/DC开关电源的典型结构如图1-1-1所示。电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。 图1-1-1 AC/DC开关电源的典型结构 其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。 2. DC/DC开关电源的组成 DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。当然,有些DC/DC开关电源也会包含其他辅助电路。 图1-1-2 DC/DC开关电源的典型结构

第二节开关电源的制作流程 开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。下面介绍开关电源设计与制作一般流程。 1.解定电路结构(DC/DC变换器的结构) 无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。因此,开关电源的电路结构就是指DC/DC变换器的结构。开关电源中常用的DC/DC变换器拓扑结构如下: (1)降压式变换器,亦称降压式稳压器。 (2)升压式变换器,亦称升压式稳压器。 (3)反激式变换器。 (4)正激式变换器。 (5)半桥式变换器。 (6)全桥式变换器。 (7)推挽式变换器。 降压式变换器和升压式变换器主要用于输入、输出不需要隔离的DC/DC变换器中;反激式变换器主要用于输入、输出需要隔离的小功率AC/DC或DC/DC变换器中;正激式变换器主要用于输入/输出需要隔离的较大功率AC/DC或DC/DC变换器中;半桥式变换器和全桥式变换器主要用于输入/输出需要隔离的大功率AC/DC或DC/DC变换器中,其中全桥式变换器能够提供比半桥式变换器更大的输出功率;推挽式变换器主要用于输入/输出需要隔离的较低输入电压的DC/DC或DC/AC变换器中。 顾名思义,降压式变换器的输出电压低于输入电压,升压式变换器的输出电压高于输入电压。在反激式、正激式、半桥式、全桥式和推挽式等具有隔离变压器的DC/DC变换器中,可以通过调节高频变压器的一、二次匝数比,很方便地实现电源的降压、升压和极性变换。此类变换器既可以是升压型,也可以是降压型号,还可以是极性变换型。在设计开关电源时,首先要根据输入电压、输出电压、输出功率的大小及是否需要电气隔离,选择合适的电路结构。 2.选择控制电路(PWM) 开关电源是通过控制功率晶体管或功率场效应管的导通与关断时间来实现电压变换的,其控制方式主要有脉冲宽度调制、脉冲频率调制和混合调制三种。脉冲宽度调制方式,简称脉宽度调制,缩写为PWM;脉冲频率调制方式,简称脉频调制,缩写PFM;混合调制方式,是指脉冲宽度与开关频率均不固定,彼此都能改变的方式。 PWM方式,具有固定的开关频率,通过改变脉冲宽度来调节占空比,因此开关周期也是固定的,这就为设计滤波电路提供了方便,所以应用最为普通。目前,集成开关电源大多采用此方式。为便于开关电源的设计,众多厂家将PWM控制器设计成集成电路,以便用户选择。开关电源中常用的PWM控制器电路如下: (1)自激振荡型PWM控制电路。 (2)TL494电压型PWM控制电路。 (3)SG3525电压型PWM控制电路。 (4)UC3842电流型PWM控制电路。 (5)TOPSwitch-II系列的PWM控制电路。 (6)TinySwitch系列的PWM控制电路。 3.确定辅助电路

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

开关电源控制环设计过程大揭秘

开关电源控制环设计过程大揭秘 1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。

2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2 描述一个由高通滤波器电路引起的零点。 存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和 BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

总结:开关电源设计心得

总结:开关电源设计心得 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外。 下面谈一谈印制板布线的一些原则 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。 最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。

相关文档
相关文档 最新文档