文档库 最新最全的文档下载
当前位置:文档库 › 超声波探伤缺陷分析

超声波探伤缺陷分析

超声波探伤缺陷分析
超声波探伤缺陷分析

超声波探伤缺陷分析

铸件中常见的主要缺陷有:

1.气孔

这是金属凝固过程中未能逸出的气体留在金属内部形成的小空洞,其内壁光滑,内含气体,对超声波具有较高的反射率,但是又因为其基本上呈球状或椭球状,亦即为点状缺陷,影响其反射波幅。钢锭中的气孔经过锻造或轧制后被压扁成面积型缺陷而有利于被超声波发现。

2.缩孔与疏松

铸件或钢锭冷却凝固时,体积要收缩,在最后凝固的部分因为得不到液态金属的补充而会形成空洞状的缺陷。大而集中的空洞称为缩孔,细小而分散的空隙则称为疏松,它们一般位于钢锭或铸件中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小的气孔。由于热胀冷缩的规律,缩孔是必然存在的,只是随加工工艺方法不同而有不同的形态、尺寸和位置,当其延伸到铸件或钢锭本体时就成为缺陷。钢锭在开坯锻造时如果没有把缩孔切除干净而带入锻件中就成为残余缩孔,如果铸件的型模设计不当、浇注工艺不当等,也会在铸件与型模接触的部位产生疏松。

3.夹渣

熔炼过程中的熔渣或熔炉炉体上的耐火材料剥落进入液态金属中,在浇注时被卷入铸件或钢锭本体内,就形成了夹渣缺陷。夹渣通常不会单一存在,往往呈密集状态或在不同深度上分散存在,它类似体积型缺陷然而又往往有一定红、线度。

4.夹杂

熔炼过程中的反应生成物(如氧化物、硫化物等)-非金属夹杂,或金属成分中某些成分的添加料未完全熔化而残留下来形成夹杂,如高密度、高熔点成分-钨、钼等。

5.偏析

铸件或钢锭中的偏析主要指冶炼过程中或金属的熔化过程中因为成分分布不均而形成的成分偏析,有偏存在的区域其力学性能有别于整个金属基体的力学性能,差异超出允许标准范围就成为缺陷。

6.铸造裂纹

铸件中的裂纹主要是由于金属冷却凝固时的收缩应力超过了材料的极限强度而引起的,它与铸件的开状设计和铸造工艺有关,也与金属材料中一些杂质含量较高而引起的开裂敏感性有关(例如硫含量高时有热脆性,磷含量高时有冷脆性等)。在钢锭中也会产生轴心晶间裂纹,在后续的开坯锻造中如果不能锻合,将留在锻件中成为锻件的内部裂纹。

超声检测报告模板

基桩超声波透射法 检测报告 工程名称: 工程地点: 委托单位: 检测日期: 报告编号: (检测单位名称) 年月日

###工程 基桩超声波射法检测报告 检测人员: 检测负责: 报告编写: 校核: 审核: 审定: (检测单位盖章) 年月日 地址: 邮编: 联系人: 电话: 声明:1、本检测报告涂改、换页无效。 2、如对本检测报告有异议,可在报告发出后20天内向本检测单位书面提请复议。

工程概况

受委托,于年月日至年月日对工程(概况见表1)的基桩进行超声波透射法检测,目的是检测桩身结构完整性。根据国家和省有关规范、规程和规定,并考虑本工程的具体情况(经与有关单位研究协商),确定本次试验共检测根工程桩。现将检测情况及结果报告如下: 一、检测仪器设备、基本原理和标准 1、仪器设备 检测设备采用北京铭创科技有限公司生产的“多通道超声波基桩检测仪MC-6360”。 2、基本原理 超声波透射法检测桩身结构完整性的基本原理是:由超声脉冲发射源向砼内发射高频弹性脉冲波,并用高精度的接收系统记录该脉冲波在砼内传播过程中表现的波动特性;当砼内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射波能量明显降低;当砼内存在松散、蜂窝、孔洞等严重缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特性、频率变化及波形畸变程度等特征,可以获得测区范围内砼的密实度参数。测试记录不同侧面、不同高度上的超声波动特征,经过处理分析就能判别测区内砼存在缺陷的性质、大小及空间位置(和参考强度)。 在基桩施工前,根据桩直径在大小预埋一定数量的声测管,作为换能器的通道。测试时每两根声测管为一组,通过水的耦合,超声脉冲信号从一根声测管中的换能器中发射出去,在另一根声测管中的换能器接收信号,超声仪测定有关参数,采集记录储存。换能器由桩底同时往上逐点检测,遍及各个截面。 3、检测标准 检测参照国家行业标准《建筑基桩检测技术规范》JGJ106-2014中有关规定进行。

008 超声波检测混凝土缺陷作业指导书_修正版_修正版

xxxxxx公司 超声波检测混凝土缺陷作业指导书文件编号: 版本号: 分发号: 编制: 批准: 生效日期:

超声波检测混凝土缺陷作业指导书 1. 目的 试验结果是否正确,除了要求试验仪器本身达到规定的精度外,同时还要求试验人员必须熟悉试验机操作方法。为了使检测员更好地掌握本职工作,保证检测数据科学、公正、准确,特制定本规程。 2. 适用范围 本规定适用于岩海公司非金属超声波检测仪,也同时适用于其它型号的非金属超声波检测仪 3. 检测依据 《超声法检测混凝土缺陷技术规程》CECS 21:2000; 《建筑结构检测技术标准》GB/T50344-2004。 4. 检测设备 RS-ST01C型非金属超声波检测仪; 38kHz厚度振动式换能器 5. 检测前准备 5.1 超声波检测仪应满足下列要求 5.1.1 具有波形清晰、显示稳定的示波装置; 5.1.2 声时最小分度为0.1μs; 5.1.3 具有最小分度为 1dB的衰减系统; 5.1.4 接收放大器频响范围 10~500kHz,总增益不小于 80dB,接收灵敏度(在信噪比 为3:1时)不大于50μv; 5.1.5 电源电压波动范围在标称值±10%的情况下能正常工作; 5.1.6 连续正常工作时间不少于 4h。 5.2 换能器的技术要求 5.2.1 常用换能器具有厚度振动方式和径向振动方式两种类型,可根据不同测试需要 选用。 5.2.2 厚度振动式换能器的频率宜采用 20~250kHz。径向振动式换能器的频率宜采用 20~60kHz,直径不宜大于 32mm。当接收信号较弱时,宜选用带前置放大器的接收换能器。 5.2.3 换能器的实测主频与标称频率相差应不大于±10%。对用于水中的换能器,其水

超声法检测混凝土缺陷作业指导书

作业指导书 批准人: 颁布日期: 实施日期: 审核: 编写:

目录 1适用范围 ............................... 错误!未定义书签。 2 检测目的............................... 错误!未定义书签。 3 检测依据............................... 错误!未定义书签。 4 检测设备............................... 错误!未定义书签。5抽检数量 ............................... 错误!未定义书签。 6 检测前准备............................. 错误!未定义书签。7检测方法 ............................... 错误!未定义书签。8检测步骤 ............................... 错误!未定义书签。9检测分析处理 ........................... 错误!未定义书签。10检测报告 .............................. 错误!未定义书签。

超声法检测混凝土缺陷 一、适用范围 本作业指导书适用于超声法检测混凝土的缺陷。缺陷检测系指对混凝土内部空洞和不密实区的位置和范围、裂缝深度、表面损伤层厚度、不同时间浇注的混凝土结合面质量、钢管混凝土中的缺陷进行检测。 二、检测目的 采用带波形显示功能的超声波检测仪,测量超声脉冲波在混凝土中的传播速度(简称声速),首波幅度(简称波幅)和接收信号主频率(简称主频)等声学参数并根据这些参数及其相对变化,判断混凝土中的缺陷情况。 三、检测依据 《超声法检测混凝土缺陷技术规程》CECS21:2000; 《建筑结构检测技术标准》GB/T 50344-2004。 四、检测设备 超声波检测仪。

超声法检测混凝土缺陷试题(库)2010

“超声法检测混凝土缺陷”题库 Ⅰ、单选题 1、基本概念: 1、超声波频率为50kHz,波速为4500m/s,波长为( )。 (A)9m (B)90cm (C)9cm(正确) (D)9mm 2、超声波频率越高,( )。 (A)在混凝土中传播速度越快(B)在混凝土中传播距离越远 (C)在混凝土中传播速度越慢(D)在混凝土中传播距离越短[正确] 3、在混凝土中传播的超声波是一种( )。 (A)机械振动波[正确] (B)电磁波 (C)不能在液体中传播的波(D)不能在气体中传播的波 4、用于发射超声波的换能器在工作的时候,其部的晶片产生的变化是( )。 (A)将机械能转化为电能(B)将电能转化为机械振动[正确] (C)将机械能转化为辐射(D)将辐射转化为机械能 5、用于接收超声波的换能器在工作的时候,其部的晶片产生的变化是( )。 (A)将机械能转化为电能[正确] (B)将电能转化为机械振动 (C)将机械能转化为辐射(D)将辐射转化为机械能 6、超声换能器的工作原理是基于其( ) (A)光电效应(B)压电效应[正确] (C)电磁感应(D)涡流感应 7、超声波从固体进入液体或气体中时,只有( )能继续传播。 (A)横波(B)表面波(C)纵波[正确] (D)剪切波

8、超声波在真空中( )。 (A)速度比空气中慢(B)速度比空气中快(C)不能传播[正确] (D)衰减很大 9、超声波在水中的速度比空气中的( )。 (A)快[正确] (B)慢(C)取决于声波频率(D)取决于温度 10、超声波在空气中的速度比混凝土中的( )。 (A)快(B)慢[正确] (C)取决于声波频率(D)取决于温度 11、空气中的超声波速度随着温度上升( )。 (A)上升[正确] (B)下降(C)不变(D)取决于频率 2、《超声法检测混凝土缺陷技术规程》(CECS21:2000) 12、超声法检测混凝土缺陷所采用的超声波频率一般为( )。(2.1.1) (A)20Hz~250kHz (B) 20kHz~250kHz[正确] (C)20kHz~250MHz (D) 20MHz~250MHz 13、在进行不密实区、空洞或混凝土结合面质量检测时,对于工业与民用建筑,测点间距宜为( )。(6.2.1) (A)50mm (B)500mm (C)100mm~300mm[正确] (D)400mm 14、通常情况下进行上部结构梁柱构件超声法检测时,应优先选用( )换能器。(3.2.1) (A)圆管式(B)高频(C)平面[正确] (D)径向 15、检测不密实区和空洞时构件的被测试围应( )有怀疑的区域。(6.1.2) (A)大于[正确] (B)小于(C)约等于(D)等于 16、超声波的主频是指在被接收的超声脉冲波各频率成份的( )分布中最大的频率值。 (2.1.6) (A)速度(B)波长(C)幅度[正确] (D)相位 17、依据CECS21:2000规要求,用于混凝土缺陷检测的超声波检测仪声时最小分度应不大

超声波探伤用于锻件白点缺陷的定性研究

(48 )超声波探伤用于锻件白点缺陷的定性研究 王德全,臧春和 (洛阳理工学院数理部,洛阳471023) 摘要白点是钢锻件在锻后冷却过程中产生的一种内部缺陷,是锻件的致命缺陷。在钢锻件 超声波探伤中,对当量并不超标的白点缺陷进行定性就尤其重要。通过对白点的产生、分布、形状、大小、数量、波形特征的分析,以达到对白点进行定性的目的。 关键词:锻件 缺陷白点超声波 Ultrasonic Testing Used for Qualitative Research of Forging White Point Wang Dequan,Zang Chunhe (Luoyang Institute of Technology Department of M athematics and Physics,Luoyang 471023,China )Abstract:White point is an internal flaw produced in the cooling process of forging.Therefore,qualitative study of the impact of the white point that does not exceed quantity limitation in ultrasonic testing is particularly important.Qualitative study of white point is achieved through the analysis of its generation,distribution,shape,size,quantity,waveform characteristics. Key words:forging,flaw,white point,ultrasonic 柴油机设计与制造 Design &Manufacture of Diesel Engine 2011年第1期第17卷(总第134期) 来稿日期:2010-03-01作者简介:王德全(1962-),男,高级工程师,主要研究方向为金属材料及工艺。1 前言 在大型浇注钢锭生产的锻件,以及马氏体、珠 光体钢锻件中,合金含量大于3.5%的镍铬钢或镍铬钼钢较容易出现。在目前的超声波探伤技术中对该类缺陷的定性还十分困难。2 白点的产生及性质 研究白点形成的理论很多,比较一致的看法为: 白点是钢中的氢与内应力(主要指组织应力)共同作用下产生的结果[1]。气体在冶炼和浇注过程中,通过不同途径溶入钢液中,在铸锭凝固过程中,氢在钢液中溶解度随温度的下降而降低,由于部分过饱和而析出的氢不能及时逸出钢锭外,仍以原子状态过饱和地固溶在钢锭中,扩散在钢锭的微隙(疏松)中,结合成分子。当锻压时,微隙将被锻合或压缩,其中一部分氢重新固溶于钢中,另一部分未固溶的分子氢,由于体积被压缩而对周围金属施加较大的压力,产生局部的内应力[2]。这些锻件或锻坯在冷却过程中由奥氏体转变为铁素体和珠光体时,氢的溶解度急剧 下降,使钢中氢的过饱和度不断增加。当冷却过程缓慢时,氢有足够的时间逐渐向外扩散,组织应力也小。当冷却过程较快时,氢来不及充分扩散,大部分仍继续以过饱和状态溶于钢中,这些氢只能向附近的微隙中挤,并在微隙中结合成分子。这些氢分子在较低温度下很难重新分布进入固溶体中,只能被封闭在微隙。大量的氢分子对微隙产生巨大的压力,这种压力和相变及其他原因形成的应力(包括组织应力、热应力和变形压力等)相叠加,若超过了金属的强度极限,即产生以微隙为核心的穿晶脆性裂纹[3]。3白点的分布及形貌 3.1白点在横向低倍试片上的宏观形貌 白点在横向低倍试片上为锯齿状裂纹或称发丝状裂纹。白点一般群集分布,分布范围较大,一般出现在锻件的中心部位。白点多呈同心圆状分布,也有呈放射状分布或无序向分布,如图1所示。3.2白点在纵向宏观断口上的形貌特征 白点在纵向宏观断口上有几种不同形貌特征, doi:10.3969/j.issn.1671-0614.2011.01.0011 48--

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

超声波检测中草状波缺陷的形成及消除

超声波检测中草状波缺陷的形成及消除 草状波是大型锻件超声波检测中经常出现的一种缺陷,人们普遍认为草状波是由于粗晶而产生的。一旦在超声波检测中出现了草状波,最有效的处理方法就是通过正火,细化晶粒,消除草状波。 但在生产实践中却发现,为防止出现草状波,在锻后热处理中进行了一次甚至两次正火的锻件,探伤时仍然可能出现草状波,看来对草状波的产生原因还有待于进一步探讨。 据目前报道所见,草状波的形成原因有两种情况:一种认为是由粗晶所造成的,这是普遍认同的一种观点;另一种情况是由微小裂纹和孔洞等缺陷造成的。可见,为防止锻件在超声波检测时出现草状波,就需在锻造和锻后热处理过程中,努力创造条件细化晶粒和防止内部出现微小裂纹。 1. 关于细化晶粒 之所以确信草状波是由粗晶产生的,是因为正火可以消除草状波,通过正火细化晶粒,同时消除草状波,由此推断草状波是由粗晶产生的。 大锻件内奥氏体晶粒较为粗大且不均匀,因而,细化晶粒是大型锻件锻后热处理中的重要任务之一。对于大型锻件,细化奥氏体晶粒的方法并不多,有文献介绍提高α→γ相变区的加热速度可以细化奥氏体晶粒,但对于特别大的锻件要提高α→γ相变区的加热速度是很困难的,因而效果也很有限。 细化奥氏体晶粒最有效的方法就是正火,有时为了取得理想的效果要采用多次正火。无论从得到均匀奥氏体晶粒,或割断原始粗大晶粒与再奥氏体化后晶粒度之间的联系,都要求在多次正火中第一次奥氏体化加热温度稍高一些,这时奥氏体晶粒长得大一些,第二次奥氏体化加热时,应选用不致晶粒发生显着长大的温度。对于碳化物相对稳定的Cr-Mo-V钢,第二次奥氏体化时,还应同时考虑使解理面上的碳化物相当大程度地溶解,其后的冷却过程中可望以未溶细小碳化物为核心得到细小的贝氏体组织。 多次正火中多采用空冷或鼓风冷却,以降低转变温度得到较细的晶粒。为使锻件中心的过冷奥氏体分解温度下降和转变得更充分,过冷温度应选得低一些。关于正火中的冷却速度是否会对晶粒细化的效果有影响,尚未见有关报道,况且对于大型锻件来说,快速冷却很难实现。 2. 关于微小裂纹的愈合 除粗晶外,会不会有别的缺陷也会产生草状波。深入了解草状波的本质对于制订合理的热处理工艺,防止草状波出现具有重要意义。对于冷轧工作辊辊坯在超声波检测出现草状波的部位切取试样进行了检验,发现在横向酸浸低倍试片的中心区f 50~f 70 mm的范围内密集分布着许多细小裂纹和孔洞,没有规律,裂纹最长不超过3mm。在纵向断口上沿加工方向呈条状或由孔洞组成的裂纹,裂纹内无夹杂物。

结构混凝土表观与内部缺陷无损检测技术继续教育

第1题 超声法检测中,换能器应通过( )与混凝土测试表面保持紧密结合。 A.胶粘剂 B.耦合剂 C.防腐剂 D.阻锈剂 答案:B 您的答案:B 题目分数:2 此题得分:2.0 批注: 第2题 超声法检测时应避免超声传播路径与附近钢筋轴线平行,如无法避免,应使两个换能器连线与该钢筋的最短距离不小于超声测距的( )。 A.1/2 B.1/3 C.1/4 D.1/6 答案:D 您的答案:C 题目分数:2 此题得分:0.0 批注: 第3题 根据《超声法检测混凝土缺陷技术规程》CECS21:2000的定义,不带波形显示的超声波检测仪( )用于混凝土的超声法检测。 A.不能 B.可以 C.经过验证可以 D.无法确定 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第4题

超声法检测混凝土结合面时,构件的被测部位应具有使声波()结合面的测试条件。 A.垂直 B.斜穿 C.平行 D.垂直或斜穿 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第5题 混凝土裂缝深度常用的无损检测方法是()。 A.尺量法 B.塞尺法 C.显微镜法 D.超声波法 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第6题 裂缝的宽度量测精度不应低于()。 A.1.0mm B.10.0mm C.1.0cm D.10.0cm 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第7题 超声法检测结构混凝土裂缝时,当结构的裂缝部位只有一个可测表面时,单面平测法适用于裂缝深度不大于( )的情况。 A.200mm B.300mm

C.400mm D.500mm 答案:D 您的答案:C 题目分数:3 此题得分:0.0 批注: 第8题 依据CECS21:2000规要求,用于混凝土缺陷检测的超声波检测仪声时最小分度应不大于()μs。 A.1 B.0.1 C.0.01 D.0.5 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第9题 超声法检测混凝土缺陷,检测中出现可疑数据时应及时查找原因,必要时应进行( )。 A.复测校核 B.密测点补测 C.平测 D.斜测 答案:A,B 您的答案:A,B 题目分数:5 此题得分:5.0 批注: 第10题 常用的超声换能器有( )振动方式。 A.厚度 B.球形 C.径向 D.点状 答案:A,C

焊缝超声波探伤缺陷性质的判断

焊缝超声波探伤缺陷性质的判断 1.1.陷性质判断的适用范围 本方法适用于A型脉冲反射法对焊缝进行超声检测缺陷定性。对余高磨平的焊缝,焊缝区域内的各种缺陷均可用本方法进行定性,对有余高的焊缝,只能对不包括余高的焊缝区域内的各种缺陷定性。对缺陷定性用探头应与规定的检测探头相同。 1.缺陷性质判断依据 焊缝超声波检测对缺陷定性依据为: (1)工件结构与坡口形式; (2)母材与焊材; (3)焊接方法和焊接工艺; (4)缺陷几何位置; (5)缺陷最大反射回波高度; (6)缺陷定向反射性; (7)缺陷回波静态波形; (8)缺陷回波动态波形。 2.缺陷性质判断程序 缺陷性质判断的程序如图1所示,具体程序为: (1)缺陷波高H F在JB4730标准评定线以下时,一般不作记录,也不考虑对其定性。如操作人员认为有必要的,也可作进一步定性。 (2)缺陷波高H F位于JB4730标准Ⅲ区(含判废线)时,定为线状缺陷或平面状缺陷或多重缺陷。 (3)缺陷波高H F位于JB4730标准Ⅱ区(含定量线)时,当缺陷指示长度△L≤L S时,如A扫描显示一个光圆波可定为点状缺陷,否定为线状或平面状缺陷或多重缺陷,当缺陷指示长度△L>L S时,可定为线状或平面状缺陷或多重缺陷。L值为: 当板厚6mm≤t<20mm时L S=t,当板厚t≥20mm时,L S=20mm。 (4)缺陷波高H F位于JB4730标准Ⅰ区(含评定线)时,当缺陷指示长度△L≤L d时,如A扫描显示一个光圆波,可定为点状缺陷或多重缺陷;当缺陷指示长度△L>L d时可定为线状缺陷或平面状缺陷或多重缺陷。L d值为:当板厚6mm≤t<30mm时L d=t,当板厚t≥30mm时,L d=30mm。 (5)定为线状或平面状缺陷或多重缺陷后,再进一步测定缺陷平面和深度位置、缺陷高度、定向反射特性、缺陷倾斜度、静态波形、动态波形,然后结合工件结构、坡口形式、材料、焊接工艺和焊接方法及探头扫查方式,进行综合判断,最终定出缺陷的实际性质。 图1中缺陷高度和倾斜度可采用端点衍射波法或端点最大波高法测定。当测定时找不到缺陷端点衍射波或端点最大反射波时。可采用6dB法测定,当用6dB波测定缺陷自身高度时还应对缺陷高度进行适当修正。缺陷静态波形和动态波形可按本文第5部分缺陷回波动态波形中规定的模式。缺陷定向反射可按下列方法测定: 采用相同频率不同入射击角(入射角差值应≥10°)的横波探头探测同一缺陷,分别测得来自同一缺陷的最高反射波(记为H max和H ),若H max-H min9Db,则认为该缺陷具有定向反射性,应进一步测定其倾斜度。 min 在测试缺陷定向反射时,应确保母材两面平行,声波扫查通过的母材区无影响评定的缺陷,当两种不同角度的探头探测时,如声程不同,应对声程不同引起的材质衰减dB差和距离波幅dB差进行修正。 3.缺陷类型及其识别 4.1点状缺陷 4.1.1概述 点状缺陷是指气孔或小夹渣等小缺陷,大多呈球形,也有不规则形状,属小的体积性缺陷。可出现在焊缝中不同部位。 4.1.2特征 回波当量较小,探头左右、前后和转动扫查时均显示动态波形Ⅰ(见5.1波形Ⅰ),对缺陷作环绕扫查时,从不同方向,用不同声束角度探测时,若保持声程距离不变,则回波高基本相同。 4.2 线状缺陷 4.2.1 概述

关于锻件超声波探伤的标准及规程

关于锻件超声波探伤的标准及规程 1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a) 所示.t为公称厚度. 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所 示.t为公称厚度. 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t 为公称厚度. 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t 为公称厚度. 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示. 三维尺寸a、b、c中最上称厚度. 底波降低量GB/BF(dB) 无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷 引起的底面反射的降低量用dB值表示. 密集区缺陷 当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的 缺陷反射信号. 缺陷当量直径 用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径, 或简称为当量直径. AVG曲线 以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线. 2探伤人员 锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格 证书者担任. 3探伤器材

探伤仪 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内. 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差 应不大于5%. 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏 度余量至少为10dB. 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定. 探头 探头的公称频率主要为,频率误差为±10%. 主要采用晶片尺寸为Φ20mm的硬保护膜直探头. 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头. 探头主声束应无双峰,无偏斜. 耦合剂 可采用机油、甘油等透声性能好,且不损害工件的液体. 4探伤时机及准备工作 探伤时机 探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤. 准备工作 探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面 应垂直. 探伤表面应无划伤以及油垢和油潜心物等附着物. 锻件的几何形状及表面检查均合格后,方可进行探伤. 重要区

超声波检测新技术

超声波检测新技术-TOFD 摘要:本文通过简单介绍超声波检测中TOFD方法的物理原理和在无损探伤中的应用,提出了TOFD检测技术将会更加广泛应用于焊缝的无损检测工作中。TOFD检测技术的发展过程、TOFD检测的原理、优点及其局限性,对TOFD检测主要应用范围进行了阐述。给出了TOFD检测的一般工艺流程,并结合实际操作,说明了该技术的重要用途,对TOFD技术对缺陷精确定量进行了简要说明。 关键词:超声波;TOFD;检测 New technology of ultrasonic TOFD ABSTRACT: in this paper, the physical principle of TOFD in ultrasonic testing method is briefly introduced and applied in non-destructive inspection, put forward a nondestructive test technique for the detection of TOFD will be more widely used in the welding seam. TOFD detection technology development process, the TOFD detection principle, advantages and limitations of TOFD testing, main application range are described. The general process of TOFD detection is presented, and combined with the actual operation, explains the important uses of the technology, the TOFD technology of the precise and quantitative defects are introduced briefly. Keywords: ultrasonic; TOFD; detection 0 引言 TOFD(Time-of-flight-diffraction technique)检测技术于1977年,由英国Silk教授根据超声波衍射现象首次提出。现已在核电、建筑、化工、石化、长输管道等工业的厚壁容器和管道方面多有应用。TOFD技术的检测费用是脉冲回声技术的1/10。现在,TOFD检测技术在西方国家是一个热门话题,现已开始大量推广应用,几年以后,将有取代RT的可能。 2006年9月TOFD标准组成立暨首次会议上,中国特检院提出由全国锅容标委归口,2009年12月《固定式压力容器安全技术监察规程》(简称“新容规”)开始实施,后延至2010年11月正式实施。TOFD监测系统由计算机超声波探伤仪本体、发射探头、接收探头、前置放大器、光学或磁性编码器以及连接电缆组成。仪器能以不可更改的方式将所有扫描信号和TOFD图像存储于磁、光等永久介质,并能输出其硬拷贝。[1] 《固定式压力容器安全技术监察规程》第4.5.3.1无损检测方法的选择:压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差超声检测(TOFD)、可记录的脉冲反射法超声检测和不可记录的脉冲反射法超声检测;当采用不可记录的脉冲反射法超声检测时,应当采用射线检测或者衍射时差超声检测(TOFD)做为附加局部检测。第 4.5.3.4.2超声检测技术要求:采用衍射时差超声检测(TOFD)的焊接接头,合格级别不低于II级。[2] 1 TOFD检测的原理和应用 1.1 基本原理 TOFD检测原理:当超声波遇到诸如裂纹等缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。也可理解为当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。 两束衍射波信号在直通波与底面反射波之间出现。缺陷两端点的信号在时间上将是可分辨的,根据衍射波信号传播的时间差可判定缺陷高度的量值。因为衍射波分离的空间(或时间)与裂纹高度直接相关。[3] 非平行扫查一般作为初始的扫查方式,用于缺陷的快速探测以及缺陷长度、缺陷自身高度的

超声波检测混凝土缺陷作业指导书

超声波检测混凝土缺陷作业指导书文件编号: 版本号: 分发号: 编制: 批准: 生效日期:

超声波检测混凝土缺陷作业指导书 1. 目的 试验结果是否正确,除了要求试验仪器本身达到规定的精度外,同时还要求试验人员必须熟悉试验机操作方法。为了使检测员更好地掌握本职工作,保证检测数据科学、公正、准确,特制定本规程。 2. 适用范围 本规定适用于岩海公司非金属超声波检测仪,也同时适用于其它型号的非金属超声波检测仪 3. 检测依据 《超声法检测混凝土缺陷技术规程》CECS 21:2000; 《建筑结构检测技术标准》GB/T50344-2004。 4. 检测设备 RS-ST01C型非金属超声波检测仪; 38kHz厚度振动式换能器 5. 检测前准备 5.1 超声波检测仪应满足下列要求 5.1.1 具有波形清晰、显示稳定的示波装置; 5.1.2 声时最小分度为0.1μs; 5.1.3 具有最小分度为 1dB的衰减系统; 5.1.4 接收放大器频响范围 10~500kHz,总增益不小于 80dB,接收灵敏度(在信噪比 为3:1时)不大于50μv; 5.1.5 电源电压波动范围在标称值±10%的情况下能正常工作; 5.1.6 连续正常工作时间不少于 4h。 5.2 换能器的技术要求 5.2.1 常用换能器具有厚度振动方式和径向振动方式两种类型,可根据不同测试需要 选用。 5.2.2 厚度振动式换能器的频率宜采用 20~250kHz。径向振动式换能器的频率宜采用 20~60kHz,直径不宜大于 32mm。当接收信号较弱时,宜选用带前置放大器的接收换能器。 5.2.3 换能器的实测主频与标称频率相差应不大于±10%。对用于水中的换能器,其水 密性应在1MPa水压下不渗漏。

超声波检测中对缺陷高度的测定

超声波测量缺陷高度的探讨 王云昌 内容摘要: 本文论述了压力容器不同程度地存在着裂纹类缺陷,断裂力学研究证明,带有尖锐边缘的平面缺陷(如裂纹)危险性最大。同时还证明受压部件中平面缺陷穿过壁厚的径向长度、缺陷距表面及与其它缺陷的距离等都是关键性的重要尺寸,而平行于部件表面的裂纹长度是次要的。据统计锅炉压力容器的损坏大部分是由于工件内部裂纹的扩展所引起的,英国曾对10万个容器进行调查,运行一年共发生132件破坏事故,按事故原因统计,由于裂纹扩展造成的破坏占总数的比例高达89.3%。因而对裂纹的检验和监控显得极为重要。 主题词: 超声波测量缺陷高度 正文: 缺陷高度的超声检测方法 6db法 6db法是超声测量长度的传统方法,通常是探头找到最大峰值后向相反的二个方向水平移动使回波峰值下降一半时的波束中心线距离即为长度,该长度称为指示长度但并非裂纹的真实长度。这种方法可以用来测高,但是误差较大。 表面波延时法 对表面开口的裂纹可采用表面波延时法来测量裂纹深度,该法主要是通过裂纹对表面波的延时作用来计算裂纹的深度。但当缺陷内含油或水等液体时,表面波有可能跨越缺陷开口,使测试误差大大增加。此外,缺陷的端部太尖锐接收到超声波信号很低甚至接收不到。缺陷表面过于粗糙也会造成误差增大。 端点衍射波法 超声波入射到裂纹面上时,根据惠更斯原理,在裂纹尖端会形成次波源而产生衍射称为衍射波,超声端点衍射法是通过测量裂纹端点衍射回波的延迟时间差值来求得裂纹高度的。但是衍射波的强度很弱难发现,所以用衍射波测量裂纹高度有较大的难度。 端点反射波法 入射波入射到裂纹的端点,有一部分将沿着原路反射,称为端点反射回波如图1所示。端点反射回波法是通过测量主声束入射到裂纹顶端时,所产生的端点回波声程计算裂纹的高度,从方法上说是比较正确较为可行的方法。 端点反射波法的应用现状 在模拟超声探伤仪上用端点反射法测量裂纹的高度,通常采用深度校准即利用回波声程在垂直方向上的投影长度进行定位。操作工艺的特点是要用试块进行深度线性校准,其实质是一种同高比较法因此其准确度与仪器线性、试块精度和操作工艺有很大的关系。 随着计算机技术的应用,将回波信号数字化能得到回波声程的精确量值。通过相应的数学模型能得到包括垂直高度在内的各种数值,这是本文研究的主题。 2.数字信号处理端点回波声程测量裂纹自身高度方法的研究 2.1 数字处理端点回波声程的原理和应用常规超声检测对回波声程的测定是通过屏幕上回波所处位置的水平量值来换算的,由于波形的跳动、波形峰值的判断误差、线性调节精度等原因,测定的声程值误差很大。数字信号处理端点回波声程(w)是通过计算机A/D转换,将回波的模拟信号转换为数字信号,根据声速和样点数精确计算得到的。

超声波探伤常见缺陷波形特征

超声波探伤常见缺陷波 形特征 标准化管理部编码-[99968T-6889628-J68568-1689N]

分析超声波探伤仪常见八大缺陷的波形特征 疏松 锻件中的疏松,在低灵敏度时伤波很低或无伤波,提高灵敏度后才呈现典型的疏松波形,中心疏松多出现心部,一般疏松出现始波与底波之间。疏松对底波有一定影响但影响不大,随着灵敏度提高,底波次数有明显增加。铸件中的疏松对声波有显着的吸收和散射作用,常使底波显着减少,甚至使底波消失,严重的疏松既无底波又无伤波,探头移动时会出现波峰很低的蠕动波形。 白点 缺陷波为林状波,波峰清晰,尖锐有力,伤波出现位置与缺陷分布相对应,探头移动时伤波切换,变化不快,降低超声波探伤灵敏度时,伤波下降较底波慢。白点对底波反射次数影响较大,底波1~2次甚至消失。提高灵敏度时,底波次数无明显增加。圆周各处探伤波形均相类似。纵向探伤时,伤波不会延续到锻坯的端头。 内裂纹 1、横向内裂纹轴类工件中的横向内裂纹直探头探伤,声速平行于裂纹时,探伤仪既无底波又无伤波,提高灵敏度后出现一系列小伤波,当探头从裂纹处移开,则底波多次反射恢复正常。斜探头轴向移动探伤和直探头纵向贯穿入射,都出现典型的裂纹波形即波形反射强烈,波底较宽,波峰分枝,成束状。斜探头移向裂纹时伤波向始波移动,反之,向远离始波方向 移动。 2、中心锻造裂纹??伤波为心部的强脉冲,圆周方向移动探头时伤波幅度变化较大,时强时 弱,底波次数很少或者底波消失。 3、纵向内裂纹??轴类锻件中的纵向内裂,直探头圆周探伤,声束平行于裂纹时,既无底波 也无伤波,当探头转动90°时反射波最强,呈现裂纹波形,有时会出现裂纹的二次反射,一般无底波。底波与伤波出现特殊的变化规律 缩孔 伤波反射强烈,波底宽大,成束状,在主伤波附近常伴有小伤波,对底波影响严重,常使底波消失,圆周各处伤波基本类似,缩孔常出现在冒口端或热节处。 缩孔残余 伤波幅度强,出现在工件心部,沿轴向探伤时伤波具有连续性,由于缩孔锻造变形,圆周各处伤波幅度差别较大,缺陷使底波严重衰减,甚至消失。 夹杂物 1、单个夹渣????单个夹渣伤波为单一脉冲或伴有小伤波的单个脉冲,波峰园钝不清晰,伤波幅度虽高,但对底波及其反射次数影响不大。 2、分散性夹杂物????分散性夹杂物,伤波为多个,有时呈现林状波,但波顶园钝不清晰,波形分枝,伤波较高,但对底波及底波多次反射次数影响较小。移动探头时,伤波变化比白点为快。 偏析

超声波无损检测工作总结 - 副本

超声波无损检测工作总结 - 副本 超声波无损检测(UT)工作总结 本人于2004年从事无损检测工作10年以来,工作尽心尽责,严把质量关,从未出现过质量事故。04年到06年在茂名华泰检测公司工作时参与了大亚湾油罐的RT、PT无损检测工作;07年到13年在生富钢结构检测科技有限公司工作主要做超高层楼房,火车站站房,体育馆,机场,等UT.MT.PT的无损检测。主要业绩有深圳京基100,深圳北站,深圳福田站,深圳机场T3航站楼,深圳湾体育中心,厦门西客站,广州东塔,厦门国际中心等。 参加无损检测工作以来,我时刻不忘加强自身的学习,以不断提高自己的专业知识和业务水平,利用一切机会扩大自己的知识面,充实自己的理论知识和实践经验。经过这么多年的不断学习,专业技术水平有了明显的提高,实践经验也有了一定的积累。现就超声波无损检测(UT)总结如下: 超声无损检测技术中的三大关键问题是缺陷的定位、定量和定性。迄今为止,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面取得了很大进展,并逐步趋于成熟与完善。如在众多有关超声检验的技术规范中,对诸如确定缺陷埋藏深度,评定缺陷的当量大小,延伸长度以及缺陷投影面积等都有明确的方法规定,对保证产品构件的质量和安全使用具有重大作用。然而,在对缺陷定性评定方面却存在相当大的困难,这主要是由于缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷的种类和性质等等,并且还与所使用的超声检测系统特性及显示方式有关,因此,在超声检测时所获得的缺陷超声响应是一个综合响应。在目前常用的超声检测技术上还难以将上述各因素从综合响应中分离识别出来,给定性评定带来了困难。

超声波检测混凝土缺陷技术

超声波检测混凝土缺陷技术 摘要:混凝土结构内部若存在不密实区或空洞等缺陷,必然会严重影响结构的承载能力和耐久性。结合工程实例,阐述了采用超声波检测混凝土不密实区和空洞的原理、方法。并详细介绍了检测数据处理过程。结果表明用超声波检测混凝土不密实区和空洞效果较理想。 关键词:超声波检测混凝土缺陷检测 混凝土构件在制作或使用过程中,经常因为管理不善或受环境及意外损伤的影响,其内部可能出现蜂窝状不密实区或空洞。这些缺陷的存在会严重影响构件的承载力和耐久性,采用有效方法查明混凝土内部结构缺陷的性质、位置、范围及尺寸,以便进行技术处理,是工程建设中的一个重要内容。 1超声波检测混凝土缺陷的基本原理 目前,在检测混凝土构件的缺陷方面,超声无损检测的应用比较广泛。其主要方法是:首先测出超声波在混凝土构件各段的传播速度,再比较所测速度值的差异,找出有突变的地方,进行分析,从而判断缺陷的形态、范围等。超声波检测仪器比较简单,便携,操作比较方便,所以被广泛应用于混凝土结构缺陷检测。 2超声波检测混凝土缺陷的方法 2.1平测法 当构件具有两对相互平行的测试面时,可采用对测法,在测试部位两对相互平行的测试面上,分别画出200~300mm等间距的网格并编号确定对应的测点位置然后将T、R换能器经耦合剂分别置于对应测点上,逐点记录相应的声时(ti)、波幅(Ai)和频率(fi),并量取测试距离(L)。 2.2斜测法 当混凝土被测部位只能提供两个相对或相邻测试表面时,可采用斜测法检测。检测时,将一对T、R换能器分别耦合于被测构件的两个表面,两个换能器的轴线不在同一直线上。检测混凝土梁、柱的施工接槎、修补加固混凝L结合质量和检测混凝土梁、柱的裂缝深度多采用此方法。 2.3钻孔测法

用超声波定量探测钢管混凝土缺陷的研究

用超声波定量探测钢管混凝土缺陷的研究 新疆交通科学研究所黄克超陈晓光 摘要:本文提出了一种用超声波首波声时定量检测钢管混凝土缺陷的一种方法,该法使用简单,经试验验证测试精度满足工程要求。 关键词:超声波钢管混凝土缺陷检测 一、概述 非金属超声波探测技术是近年来发展非常迅速的一项实用技术,其基本原理是用人工的方法在被测材料或结构中激发出一定频率的弹性波,然后以各种不同的频率在材料或结构内部传播并通过仪器接收。通过分析研究所接收的信号,就可了解材料与结构的力学特性和缺陷分布情况。超声波探测对被测结构没有损伤,而且简便易行,因此在土木建设工程中得到了越来越广泛的应用。非金属超声波探测技术在国外起步较早,随着电子技术和仪器制造业的飞速发展,超声探测仪的精度越来越高,而且体积也越来越小,用于探测混凝土的仪器和各种探测方法也不断的涌现出来。到目前为止,已可以用超声波探测普通混凝土的内部空洞、表层缺陷、裂缝深度、抗压强度等,也可探测钻孔灌注桩的施工缺陷。但探测钢管混凝土中的缺陷要比探测素混凝土要复杂一些,这主要是因为外层钢管的存在使超声波的传播受到影响而使得探测波形难于解释。从已发表的文章来看,对于钢管混凝土内部缺陷只能定性地检测。如何利用超声波定量探测钢管混凝土的灌注质量就成为施工和监理部门所关心的问题之一。我们通过理论分析和试验研究,提出了一种利用超声波声时定量检测钢管混凝土中钢管与混凝土间缝隙宽度的方法,经实际工程验证,完全满足工程检测的要求,现将此方法作一介绍供同行参考。 二、问题的提出 新疆库尔勒市孔雀河大桥是一座150米跨径的中承式钢管混凝土拱桥,该桥在我区是第一次修建,钢管内混凝土的灌注质量能否达到规范的要求需要用无损检测的手段进行探测。因此,我们承担了检测管内混凝土灌注质量的任务。按照验收规范的要求,钢管内混凝土的填充度必须达到98%以上。面对这一个有具体数量要求的指标,必须要摸索出一套行之有效的检测方法,尤其在定量检测方面要有所突破。纵观现有的检测方法,如前所说,都是一些大概、可能、差不多的定性描述,只能判断有没有缺陷,而对缺陷的大小、裂缝的宽窄无法定量描述。虽然前人有一些定量检测素混凝土缺陷的方法,但不能直接应用到钢管混凝土的检测中去。这是因为外面有了一层钢管,它对超声波的传播就有了一定的限制。超声波在传播过程中可以通过多种路径到达另一端。在超声探测中,首波的一些特性参数具有很重要的参考价值。超声波的首波可以延径向穿过钢管-混凝土-钢管到达另一端,也可以沿着钢管壁到达另一端。超声探头接收到的声时是首波到达的时间,如果声波沿钢管壁传播的时间小于

相关文档
相关文档 最新文档