文档库 最新最全的文档下载
当前位置:文档库 › 超声波探伤的物理基础——(第六节超声波的获得和超声场)

超声波探伤的物理基础——(第六节超声波的获得和超声场)

超声波探伤的物理基础——(第六节超声波的获得和超声场)
超声波探伤的物理基础——(第六节超声波的获得和超声场)

第一章 超声波探伤的物理基础

第六节 超声波的获得和超声场

一、超声波的获得

超声波的获得是利用某些物质特定的物理效应来实现的。自然界中,在一定条件下,可以把一种形式的能量转换成另一种形式的能量。因此,原则上凡是能将其他形式能量转换成超声振动方式的能量都可以用来发生超声波,例如利用机械冲击和摩擦产生超声波的机械方法;利用物体表面突然受热时,由于热膨胀产生机械应力而发生超声波的热效应法;利用铁磁材料在交变磁场中产生交变机械变形而产生超声波的磁致伸缩法;利用通有交变电流的线圈靠近导体,用电磁力作用于工件表面而产生超声波的电磁声法等。在超声探伤中应用最多的是利用某些单晶体或多晶陶瓷声电、电声转换效应——压电效应来获得超声波。

大家知道,某些电介晶体(如石英、锆钛酸铅、铌酸锂等),通过纯粹的机械作用,使材料在某一方向(如厚度)伸长(或缩短),这时晶体表面产生电荷效应而带正或负电荷,这种效应现象称为正压电效应。当在这种晶体的电极面上施加高频交变电压时,如图1–48所示,晶体就会按电压的交变频率和大小,在厚度方向伸长或缩短,产生机械振动而辐射出高频声波——超声波,晶体的这种效应称为逆压电效应。具有正、

逆压电效应的晶体称为压电体。

从上述可见,压电效应是可逆效应,正是晶体的这种可逆性,我们就可以用压电晶片来制作超声波换能器,实现超声波和电脉冲之间的相互转换,以发射超声波和把接收到的超声波信号以电信号的形式在仪器上显示出来,从而达到超声波探伤的目的。

充满超声波的空间叫做超声场。从物理学的观点来看,

超声场是没有边界的,一个声源所产生的超声波在无穷远处。但是在超声波探伤中,我们只要研究离辐射声源一定范围的超声场。典型的辐射声源是圆形平面晶片,因此,本节

重点讨论晶片辐射的纵波轴对称声场。

(1) 纵波声源在声束轴线上的声压分布

根据迭加原理,声束中心轴线上任一点处的声压等于声源上各点辐射出的声压在该点的迭加,由于声源上各点到达该点的声程不同,迭加时有相位差,因而在整个声束轴线上出现有声压极大和极小值的波动,如声源发出的波是连续平面波,则圆盘形纵波声源在声束轴线上距离声源X 处的声压幅值分布,可用式(1–47)表示:

???

?

??

?

????? ?

?-+λπ

=X X 4

D sin P 2P 2

2

(1–47)

式中:0P 为声源的起始声压;P 为声轴上距声源距离X 处的声压;D 为声源(晶片)直径;λ为声波在介质中传播波长。

上式表明圆晶片声轴上活塞波声压服从正弦函数变化规律,声压值是距离(声程)X 的正弦函数。 声束轴线上最后一个声压极大值点至声源的距离称为近场长度,以N 表示:

λ

λ-=

4D N 2

2 (1–48)

当D >λ时,

λ

=

4D N 2

(1–49)

距离小于N 的范围称为近距离声场,距离大于N 的范围称为远距离声场。

图1–48 压电效应获得超声波

根据方程式(1–47)可画出圆晶片声束轴线上声压幅度分布曲线(图1–49)。

图1–49中还画出了球面波声压辐值曲线

(虚线),它可以用方程式:X

4D

P P 2

λπ=球来表示。

当X >D 时,式(1–47)可简化为:

?

??

?

??λπ≈X 4D sin P 2P 20 (1–50) 当X >3N 时,可进一步简化为:

X

4D

P P 2

λπ≈ (1–51)

从上式可见,在距离X >3N 时,圆盘源轴线上的声压辐值变化与球面波之间的差别已是很小的了。 (2) 晶片辐射声束的指向性

近场长N 和声束指向性是表征晶片辐射声场特征的重要特性。晶片向一个方向集中辐射超声波束的性

质叫做晶片的声束指向性。晶片超声波束的定向束射和传播,使得晶片声场轴线附近的一定区域内声能相

当集中,可见超声场的指向性直接反映了声场中声能的集中程度和几何边界。一般情况下,晶片辐射声场的良好指向性正是超声波探伤所必须具备的性能之一。图1–50为晶片辐射声场示意图。

图中指向角0θ(声束半扩散角)是声场主声

束和相邻副瓣声束之间切线(即边缘声压为0)方向与声束轴线间的夹角,即用第一零辐射角表示,它取决于探头晶片直径D 的大小和声波的

波长λ。0θ越大,超声场能量越分散,检测灵敏度越低。

不同形状和尺寸的晶片,其指向角0θ可由以下数学式计算: 圆晶片

)

(D

70

D

22

.1sin

1

0度λ=λ=θ- (1–52)

正方晶片

)(D

57

a

sin

1

0度λ=λ=θ- (1–53)

式中:a 为正方晶片边长。

长方晶片

)

(a 57

a

sin

1

01度λ=λ=θ- (1–54) )

(b

57b

sin

1

02度λ=λ=θ-

(1–55)

式中:a ,b 分别为长方形晶片的长和宽。长方形晶片有相应的二个指向角,其声束指向性呈扁平状。应该指出,这里讨论的指向角0θ是一个零辐射角,也就是声场边缘声压为零时

的最大的指向角。对于确定的D 和λ来说,0θ是一定的。可

想而知,在离声轴一定距离的不同声压边界上,可以有许多

图1–49 圆晶片声轴上声压分布曲线

图1–50 圆晶片辐射声场示意图

图1–51 不同边界声压时的指向角

不同的指向角,见图(1–51所示)。

若用50θ表示比声轴上声压低6dB 的声束指向角,其声束的边缘声压为声轴上声压的50.1%。比声轴上声压低12dB 的声束指向角用25θ表示,其声束的边缘声压为声轴上声压的25.1%。比声轴上声压低20dB 的声束指向角用10θ表示,其声束的边缘声压为声轴上声压的10%。

圆晶片辐射的、比声轴上声压低一定dB 值的不同指向角,可用指向角系数1η来表示:

D

22

.1sin

11

λ?η=θ- (1–56)

这里1η只反映了辐射声束的指向性,可用串列式直探头测定。

不同dB 值x 的指向角系数1η与其相应的边界声压的关系见表1–6所列。

由于超声能量基本集中在主声束,因此,对于圆晶片,当距离X ≤b 时(见图1–52),可以认为超声能量未逸出以晶体面积为底的圆柱体,ob 就称为非扩散区,在1η=1时,按几何关系可求得ob=1.67N 。

表1–6 指向角系数η1与相应边界声压P 的关系

图1–52 声场非扩散区示意图

超声检测物理基础练习题(附答案)

超声检测物理基础练习题学号姓名 一、是非题(对画○, 错画X) 1.波只能在弹性介质中产生和传播。() 2.完成五次全振动所用的时间,可以使超声波在介质中传播五个波长的距离。()3.在同种固体材料中,纵、横波声速之比为常数。() 4.平面波垂直入射到界面上,入射声压等于透射声压和反射声压之和。() 5.超声波垂直入射到异质界面时,如果底面全反射,则声压往复透射率与声强透射率在数值上相等。() 6.超声波垂直入射时,界面两侧介质声阻抗相差越小,声压往复透射率越高。()7.超声波倾斜入射到异质界面时,同种波型的折射角总大于入射角。() 8.超声波倾斜入射至有机玻璃/钢界面时,第一临界角约为14.5°。() 9.声阻抗是衡量介质声学特性的重要参数,温度变化对材料的声阻抗也会有影响。() 10.根据公式C=λf可知:声速C与频率f成正比,因此同一波型的超声波在高频时传播速度比低频时大。( ) 11.焊缝横波检测时常采用液态耦合剂,说明横波可以通过液态介质薄层。( ) 12.超声纵波可以在固体或液体介质中传播,而横波只能在固体介质传播,但是表面波可以在固体或液体介质中传播。() 13.吸收衰减和散射衰减是材料对超声能量衰减的主要原因。() 14.面积相同、频率相同的圆晶片和方晶片其声束指向角也相同。() 15.因为有机玻璃/铝界面的第一临界角大于有机玻璃/钢界面的第一临界角,所以前者的第二临界角也大于后者。() 16.超声检测实际声场中,声束轴线上不存在声压为零的点。() 17.当其他条件一定时,若超声波频率增加,则近场区长度和半扩散角都增加。()18.使用聚焦透镜能提高灵敏度和分辨力,但减小了探测范围。() 19.200mm处Φ4长横孔的回波声压比100mm处Φ2长横孔的回波声压高。()20.实用AVG曲线只适用于特定的探头,使用时不需要进行归一化处理。() 二、单项选择题 1.下面关于机械波的说法,错误的是() A、波动是振动状态和能量的传播过程 B、能量的传播是靠物质的迁移来实现的

超声波基础知识讲解

超声波基础知识的一般讲解 一、超声波探伤物理基础 1、超声波是一种机械波 机械振动:物体沿直线或曲线在某一平衡位置附近作往复周期性的运动称为机械振动。 机械波:机械振动在弹性介质中的传播过程,称为机械波;如水波、声波、超声波等。 产生机械波的条件:(1)要有作机械振动的波源(2)要有能传播机械振动的弹性介质2、波长、波速、频率 1)波长:同一波线上相邻两振动相位相同的质点之间的距离,符号λ 2)波速:波动在弹性介质中单位时间内所传播的距离,符号C 3)频率:波动过程中,任一给定点在1秒内能通过的完整波的个数,符号f 三者的关系:C=λ·f 3、次声波、声波和超声波 1)次声波:频率低于20Hz的机械波 2)声波:频率在20~20000Hz的机械波 3)超声波:频率高于20 KHz的机械波 4、超声波的特性 1)方向性好,犹如手电简灯光在黑暗中寻找到所需物品 2)能量高 3)能在界面上产生反射折射和波型转换 4)超声波穿透能力强 5、超声波的类型 a、按质点的方向分类 1)纵波:介质中质点的振动方向与波的传播方向相同的波 2)横波:介质中质点的振动方向与波的传播方向垂直的波 3)表面波:当介质表面受到交变应力作用时产生沿介质表面传播的波 4)板波:在板厚与波长相当的弹性薄板中传播的波 C、按波的形状分类 1)平面波:波阵面为互相平行的平面的波 2)柱面波:波阵面为同轴圆柱面的波 3)球面波:波阵面为同心球面的波 6、声速 纵波:钢 5900 m/s 铝 6300 m/s 水 1500 m/s 有机玻璃 2700 m/s 空气 340 m/s 横波:只能在固体中传播 钢 3200 m/s 铝 3130 m/s 有机玻璃 1120 m/s 表面波:声速大约为横波的0.9倍,纵波的0.45倍 7、超声波垂直入射到平面上的反射和透射 当超声波垂直入射到足够大的光滑平面时,将在第一介质中产生一个与入射波方向相反的反射波在第二介质中产生一个与入射波方向相同的透射波 设入射波声压为P 0,反射声压为P r , 透射声压为P t , 其声压反射率r=P r / P =(z 2 -z 1 )/ (z 2 +z 1 ) 其声压透射率t=P t / P =2 z 2 / (z 2 +z 1 )

超声波检测基础知识

第一章超声波检测 超声波检测定义:使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 超声检测的优点:(1)适用于金属、非金属和复合材料等多种制件的无损检测;(2)穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;(3)缺陷定位较准确;(4)对面积型缺陷的检出率较高;(5)灵敏度高,可检测试件内部尺寸很小的缺陷;(6)检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。 超声检测的局限性:(1)对试件中的缺陷进行精确的定性、定量仍须作深入研究;(2)对具有复杂形状或不规则外形的试件进行超声检测有困难;(3)缺陷的位置、取向和形状对检测结果有一定影响;(4)材质、晶粒度等对检测有较大影响;(5)以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 超声波检测的适用范围:从检测对象的材料来说,可用于金属、非金属和复合材料;从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;从检测对象的形状来说,可用于板材、棒材、管材等;从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。 1.1超声波检测的基础知识 1.1.1 超声波 声波:频率在20~20KHz之间; 次声波:频率低于20Hz;不容易衰减,不易被水和空气吸收.而次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射.某些次声波能绕地球2至3周.某些频率的次声波由于和人体器官的振动频率相近,容易和人体器官产生共振,对人体有很强的伤害性,危险时可致人死亡

超声波检测技术

超声工业测量技术 在非电量电测技术中,许多非电量可以通过电学方法加以测定,同样,许多非声量也可通过声学方法来加以测定,这就是所谓超声工业测量技术。非电量的电测主要是通过一些元件的电阻、电容或电感等量来进行的。在超声工业测量技术中,非声量的测定也往往是通过某些媒质声学特性(主要是声速、声衰减和声阻抗率等)的测量来进行的。 超声工业测量技术中应用最广的是媒质的声速这一物理量。 第一,媒质的声速与媒质 的许多特性有直接或间接的关系。有些关系非常简单直接,已有精确的理论公式,例如,在测定声速和密度后,就可求出媒质的弹性模量。有些关系比较间接而且复杂,但在特定的条件下,仍可以建立一些半理论或纯经验的关系式,例如,媒质的成分,混合物的比例,溶液的浓度,聚合物的转化率,某些液体产品的比重,某些材料的强度等等,都可与声速建立一定的关系,利用这些关系,就熊通过测量声速来测定这些媒质的非声特性。上述原则是声速分析仪的基本原理。 第二,媒质的声速与媒质所处的状态也有相互关系。例如,媒质的温度、压强和流速等状态参量的变化都会引起相应的声速的变化。如声学温度计、超声波风速仪和超声流量计就是用这一类关系来测量温度或流量的。 第三,其他应用,例如在声速c已经测知的媒质中,可以利用声波传播距离L和传播时间t 的关系L=ct,或利用波长λ和频率f(或周期T)之间的关系c=fλ=λ/T,进行超声测距的应用。如超声液位计和超声测厚计就是这一方面的典型应用技术。 声阻抗率方法也是一种较常用于媒质特性分析的技术。在这种技术中,所测定的声学 量是换能器对媒质的辐射阻抗率。如果换能器在媒质中所激起的是平面纵波行波,则辐射阻抗率就是声阻率ρc。当两种媒质的声速c几乎相同,但密度ρ有很大不同时,往往就可根据ρc的测量来加以区别。在同时测得声速的情况下,也可用这种方法来测量液体的密 度p或弹性模量ρc2等。如果换能器在液体媒质中激起的是切变行波,其声阻抗率将与 成正比,η是液体的粘性,这就是超声粘度计的原理。如果换能器是在流体中作弯曲振动的,则其辐射声抗率将与流体的密度p有关,因而使换能器的共振频率随p而变化,这也是一种可以精确测定液体密度的原理。 遇到需要采用声学方法来测定一个非声量的情况时,在声速、衰减和阻抗这三种技术途径中,应按什么准则来决定取舍呢?第一是看要测的非声量究竟与那一个声学量的关系比较明显。这就是说,相应于同样大小的非声量的变化,如果某一声学量能够有最大的变化,这一声学量就比较值得考虑。第二,应该考虑到声速、衰减和声阻抗率都是随很多因素变化的,除待测的那种非声量外,其他媒质特性或媒质状态的变化往往也会引起声学量的变化,对于须测的非声量来说,这些其他因素引起的变化就是一种干扰。因此,选用某种声学量的途径时,应注意干扰因素要尽可能少,干扰影响要尽可能小,或可采用切实可行的补偿措施来避免这些干扰。第三,挑选技术途径时必须注意满足现场的使用、安装和维护等条件并应达到要求的精度,在这一前提下还应力求稳定耐久和方便可靠,才能有较高的实用价值。上述准则只是一些原则性的意见,还应根据具体情况作具体的考虑。 声发射检测技术 材料或结构受外力或内力作用产生形变或断裂 ,以弹性波的形式释放出应变能的现象称为声发射。各种材料声发射的弹性波的频率范围很宽 ,从次声频、声频到超声频 ,因此 ,

超声波探伤作业指导

超声波探伤作业指导书 一、适用范围 超声检测适用于板材、复合板材、碳钢和低合金钢锻件、管材、棒材、奥氏体不锈钢锻件等承压设备原材料和零部件的检测;也适用于承压设备对接焊接接头、T型焊接接头、角焊缝以及堆焊层等的检测。 二、引用规范 JB/T4730.3 承压设备无损检测第三部分:超声检测 GB/T12604 无损检测术语 三、一般要求 1、超声检测人员应具有一定的基础知识和探伤经验。并经考核取得有关部门认可的资格证书。 2、探伤仪 ①采用A型脉冲反射式超声波探伤仪,其频率应为1~5MHz。 ②仪器至少应在满刻度的75%范围内呈线性显示,垂直线性误差不得大于5%。 ③仪器的水平线性、分辨力和衰减器的精度等指标均应复合JB/T 10061的规定。 3、探头 ①纵波直探头的晶片直径应在10~30mm之间,工作频率1~5MHz,误差不得超过±10%。 ②横波斜探头的晶片面积应在100~400mm2之间,K值一般取1~3. ③纵波双晶直探头晶片之间的声绝缘必须良好。 4、仪器系统的性能 ①在达到所探工件的最大检测声程时,其有效灵敏度余量不得小于10dB。 ②仪器与探头的组合频率与公称频率误差不得大于±10%。 ③仪器与直探头组合的始脉冲宽度(在基准灵敏度下):对于频率为5MHz的探头,宽度不大于10mm; 对于频率为2.5MHz的探头,宽度不大于15mm。 ④直探头的远场分辨力应不小于30dB,斜探头的远场分辨力应不小于6dB。 ⑤仪器与探头的系统性能应按JB/T 9124和JB/T 10062的规定进行测试。 四、探伤时机及准备工作 1、探伤一般应安排在最终热处理后进行。若因热处理后工件形状不适于超声探伤,也可将探伤安排在热处理前,但热处理后仍应对其进行尽可能完全的探伤。 2、工件在外观检查合格后方可进行超声探伤,所有影响超声探伤的油污及其他附着物应予以清除。 3、探伤面的表面粗糙度Ra为6.3μm。 五、探伤方法 1、为确保检测时超声波声束能扫查到工件的整个被检区域,探头的每次扫查覆盖率应大于探头直径的15%。探头的扫查速度不应超过150mm/s。耦合剂应透声性好,且不损伤检测表面,如机油,浆糊,甘油和水等。 2、灵敏度补偿 ①耦合补偿在检测和缺陷定量时,应对由表面粗糙度引起的耦合损失进行补偿。 ②衰减补偿在检测和缺陷定量时,应对材质衰减引起的检测灵敏度下降和缺陷定量误差进行补偿。 ③曲面补偿对探测面是曲面的工件,应采用曲率半径与工件相同或相近的试块,通过对比实验进行曲率补偿。 六、系统校准与复核

超声监测专业技术的新应用

超声监测技术的新应用

————————————————————————————————作者:————————————————————————————————日期:

超声监测技术的新应用 超声检测技术是一门以物理、电子、机械以及材料学为基础,各行各业都在使用的通用技术之一,他是通过超声波的产生、传播及接受的物理过程完成的。目前,超声波技术广泛应用于工业领域的很多方面。 其中超声探伤检测是无损探伤中最为重要一种方法,由于超声波具有穿透能力强、对材料人体无害、使用方便等特点,可对各种锻件、轧制件、铸件、焊缝等进行内部缺陷检测,因而得到广泛应用。 此外利用超声波的各种特性,超声技术还应用于金属与非金属材料厚度测量、流量测量、料位及液位检测与控制、超声波零件清洗等工业领域。 本文主要介绍超声技术在设备故障检测及诊断方面的最新应用。 一.压力及真空系统的泄漏检测 当气体在压力下通过限流孔时,它从一个有压层流变为低压紊流(参见图1)。紊流产生所谓的“白噪声”广谱声音。在这种白噪声中含有超声波分量。因为泄漏部位的超声最大,探测这些信号通常是非常简单的。 目前已有成熟的超声检测专用仪器,可将探测到的超声波信号转换为人耳可听见的音频信号,适用于各种泄漏检测。(参见附录) 泄漏可以在压力系统或真空系统中出现。在这二种系统中,超声的产生方式如上所述。二者之间唯一不同的是真空泄漏产生的超声波振幅通常小于同等流速的压力泄漏。其原因在于真空泄漏产生的紊流是发生在真空室内,而压力泄漏产生的紊流出现在大气中 什么样的气体泄漏采用超声波探测呢?一般来说,不管何种气体,包括空气在内,只要它从限流孔泄出时产生紊流,就可以用超声波探测。与气体专用的传感器不同,超声检测是属于声音专用检测。气体专用传感器仅能用于它所能辨别的具体气体(如氦)。而超声检测能辨别出任何类型的气体,因为它探测的是泄漏紊流所产生的超声。

超声波探伤的物理基础——(第四节超声平面在平界面上斜入射的行为)

第一章 超声波探伤的物理基础 第四节 超声平面在平界面上斜入射的行为 超声平面波以一定的倾斜角入射到异质界面上时,就会产生声波的反射和折射、并且遵循反射和折射定律。在一定条件下,界面上还会产生波型转换现象。 一、斜入射时界面上的反射、折射和波型转换 (1) 超声波在固体界面上的反射 1. 固体中纵波斜入射于固体——气体界面 图1–25中,L α为纵波入射角,1L α为纵波反射角,1S α为横波反射角,其反射定律可用下列数学式表示: 1 S 1S 1L 1 L L L sin C sin C sin C α=α=α (1–34) 因入射纵波L 与反射纵波L 1在同一介质内传播,故它们的声速相同,即1L L C C =,所以1L L α=α。又因同一介质中纵波声速大于横波声速,即1S 1L C C >,所以1S 1L αα>。 2. 横波斜入射于固体——气体界面 图1–26中,S α为横波入射角,1S α为横波反射角,1L α为纵波反射角。由反射定律可知: 1 L 1 L 1S 1S S S sin C sin C sin C α=α=α (1–35) 图1–25 纵波斜入射 图1–26 横波斜入射 因入射横波S 与反射横波S 1在同一介质内传播,故它们的声速相同,即1S S C C =,所以1S S α=α。又因同一介质中1S 1L C C >,所以,1S 1L αα>。 结论: 当超声波在固体中以某角度斜入射于异质面上,其入射角等于反射角,纵波反射角大于横波反射角,或者说横波反射声束总是位于纵波反射声束与法线之间。图(1–27)表示钢及铝材中纵波入射时的横波反射角,也可以看成横波入射时的纵波反射角。 (2) 超声波的折射 1. 纵波斜入射的折射 图1–28中L α为第一介质的纵波入射角,L β为第二介质的纵波折射角,S β为第二介质的横波折射角,其折射定律可用下列数学式表示: S 2S L 2L L L sin C sin C sin C β=β=α (1–36)

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

超声波检测新技术

超声波检测新技术-TOFD 摘要:本文通过简单介绍超声波检测中TOFD方法的物理原理和在无损探伤中的应用,提出了TOFD检测技术将会更加广泛应用于焊缝的无损检测工作中。TOFD检测技术的发展过程、TOFD检测的原理、优点及其局限性,对TOFD检测主要应用范围进行了阐述。给出了TOFD检测的一般工艺流程,并结合实际操作,说明了该技术的重要用途,对TOFD技术对缺陷精确定量进行了简要说明。 关键词:超声波;TOFD;检测 New technology of ultrasonic TOFD ABSTRACT: in this paper, the physical principle of TOFD in ultrasonic testing method is briefly introduced and applied in non-destructive inspection, put forward a nondestructive test technique for the detection of TOFD will be more widely used in the welding seam. TOFD detection technology development process, the TOFD detection principle, advantages and limitations of TOFD testing, main application range are described. The general process of TOFD detection is presented, and combined with the actual operation, explains the important uses of the technology, the TOFD technology of the precise and quantitative defects are introduced briefly. Keywords: ultrasonic; TOFD; detection 0 引言 TOFD(Time-of-flight-diffraction technique)检测技术于1977年,由英国Silk教授根据超声波衍射现象首次提出。现已在核电、建筑、化工、石化、长输管道等工业的厚壁容器和管道方面多有应用。TOFD技术的检测费用是脉冲回声技术的1/10。现在,TOFD检测技术在西方国家是一个热门话题,现已开始大量推广应用,几年以后,将有取代RT的可能。 2006年9月TOFD标准组成立暨首次会议上,中国特检院提出由全国锅容标委归口,2009年12月《固定式压力容器安全技术监察规程》(简称“新容规”)开始实施,后延至2010年11月正式实施。TOFD监测系统由计算机超声波探伤仪本体、发射探头、接收探头、前置放大器、光学或磁性编码器以及连接电缆组成。仪器能以不可更改的方式将所有扫描信号和TOFD图像存储于磁、光等永久介质,并能输出其硬拷贝。[1] 《固定式压力容器安全技术监察规程》第4.5.3.1无损检测方法的选择:压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差超声检测(TOFD)、可记录的脉冲反射法超声检测和不可记录的脉冲反射法超声检测;当采用不可记录的脉冲反射法超声检测时,应当采用射线检测或者衍射时差超声检测(TOFD)做为附加局部检测。第 4.5.3.4.2超声检测技术要求:采用衍射时差超声检测(TOFD)的焊接接头,合格级别不低于II级。[2] 1 TOFD检测的原理和应用 1.1 基本原理 TOFD检测原理:当超声波遇到诸如裂纹等缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。也可理解为当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。 两束衍射波信号在直通波与底面反射波之间出现。缺陷两端点的信号在时间上将是可分辨的,根据衍射波信号传播的时间差可判定缺陷高度的量值。因为衍射波分离的空间(或时间)与裂纹高度直接相关。[3] 非平行扫查一般作为初始的扫查方式,用于缺陷的快速探测以及缺陷长度、缺陷自身高度的

第一章-超声检测物理基础

第一章超声检测物理基础 Chapter 1 Physical Foundations for Ultrasonic Testing 本章简要介绍声波的本质、声波的传播、声场、规则反射体回波声压计算和AVG曲线等超声检测的物理基础。掌握这些基础对正确理解超声波的特性、合理选择超声检测条件、有效解释超声波传播的现象等都极其重要。 1.1声波的本质essence of sound wave 1.1.1振动与波vibration & wave 波有两种类型:电磁波(如无线电波、X射线、可见光等)和机械波(如声波、水波等)。声波的本质是机械振动在弹性介质中传导形成的机械波。声波的产生、传播和接收都离不开机械振动,如人体发声是声带振动的结果;声音从声带传播到人耳,是声带引起空气振动的结果;人能听见声音是因为空气中的振动引起了人耳鼓膜的振动的结果。所以,声波的实质就是机械振动。 1、机械振动 质点不停地在平衡位置附近往复运动的状态称为机械振动。如钟摆的运动、气缸中活塞的运动等。 (1) 谐振动 如图1-1所示的质点——弹簧振动系统,在静止状态下往下轻拉一下装在弹簧上的小质点,松手后质点便在平衡点附近进行往复运动。如空气阻力为零,则质点——弹簧系统自由振动的位移随时间的变化符合余弦(或正弦)规律: () ωφ (1-1) cos =+ y A t 式中:y——质点的位移,单位:米(m) A——质点的振幅,单位:米(m) t——时间,单位:秒(s) 图1-1 加载弹簧的振动 这种位移随时间的变化符合余弦规律的振动称为谐振动。谐振动是一种周期振动,质点

在平衡位置往复运动一次所需的时间称为周期,用

超声波测试混凝土的基本方法

超声波测试混凝土的基本方法 声波在均匀的固体介质中传播时,特别是在金属中定向传播过程中,实际上并没有什么衰减,而在金属与空气界面上则几乎全被反射回来。这就是利用声波来检测金属零部件均匀性和零件内是否有气孔、裂缝、铸造等缺陷的物理基础。而混凝土超声探测亦是根据这一原理来研究混凝土的结构形态。目前比较成功的方法有以下几种类型: (1)用超声波通过混凝土来判断混凝土内部结构的方法,叫透射法或穿透法; (2)用声波所产生的回波信号来研究混凝土内部结构及裂缝位置及波速叫反射法; (3)用声波的界面滑行波来研究岩体的下伏界面速度及界面位置的方法叫折射法; (4)用钻孔来了解混凝土内波速及结构特征随深度的变化,称为孔中测定法。 下面分别介绍各种方法工作的特点及使用条件. 〔I〕透射波(直达波)法: 混凝土超声波透射法,是一种简单而效果又是最好的探测方法?采用透射法发收、换能器机-电,电-机转换效率高,因而在混凝土中的穿透能力相对较强,传播距离相对较长,可以扩大探测范围。透射波法可以获得较反射波法大几倍,较折射波法大几十倍的能量,因而波形单纯、清楚、干扰较小,初至清晰,各类波形易于辨认。透射波法要求发射探头和接受探头之间的距离必须能够准确丈量,否则计算出来的误差值较大,反而影响了测量的精度。 当被测对象较破碎,或存在张裂缝时岩体对声波的衰减系数较大,以及做大距离测试, 可采用锤击法。这时接收仍可采用单片弯曲式换能器接收,其谐振频率以10千赫左右为宜。因为在混凝土上加板的激发频率主频约在数千赫。鉴于这时所测声时值较大,发射到接收的系统延时值在数微秒,可忽略,故不再计较t o的值。 〔U〕反射波(回波)法 用发射、接收换能器检测混凝土质量。超声波在混凝土中传播时,所遇到的每个波阻抗面上,都将发生反射、透射现象,在有几个波阻抗面存在时,则在每个界面上都将发生反射和透射。这样我们在混凝土表面上可以观测到一系列依次到达的反射波如图1所示, 反射波的强度不仅与入射波的强度有关外,而且决定界面的反射系数,即决定两种介质的声阻抗。声波在介质中传播过程中,由于波前的发散作用和凝滞及阻尼等吸收作用,波内稀疏部分与压缩部分中间之热传导及辐射,以及反射波形成过程中都会使入射波的振幅随着传播的距离增加而迅速衰减,在均匀同性介质中,振幅随距离按指数规律衰减。在各向异性介质中,振幅一方面要随距离衰减外,而且随着节理、层理、界面曲率、混凝土结构的破碎程度、裂缝的宽度和长度及与波传播的方向等因素有关,无一定规律的衰减,在计算时,这要看诸影响因素中起主导作用的是什么,抓住主要矛盾,再考虑其它因素。 混凝土不均匀或者由界面破碎等波阻抗面的不同所造成的反射波,当波阻抗面距离小于波形振动的延续面时,则往往造成两个波形振动带的干涉使之产生叠加,反射波多层薄层分辩率最好的位置

超声波探伤的通用方法和基础技术——

第三章 超声波探伤的通用方法和基础技术 第一节 超声波探伤方法分类及特点 超声波探伤的实质是:首先将工件被检部位处于一个超声场中,工件若无不连续分布(如无缺陷等),则超声场在连续介质中的分布是正常的。若工件中存在不连续分布(如有缺陷等),则超声波在异质界面上产生反射、折射和透射,使超声场的正常分布受到干扰。使用一定的方法测出这种异常分布相对于正常分布的变化,并找出它们之间变化规律,这就是超声波探伤的任务。 超声波探伤有许多方法,如将它们逐一分类,一般可用以下几种: 下面仅以实际探伤中较为常用的方法和特点作一简介。 一、脉冲反射法和穿透法 超声波在传播过程中遇到缺陷会产生反射、透射及缺陷后侧声影,按以上这些引起声场异常变化的不同原理,可将检测方法分为脉冲反射和穿透法(又称阴影法),前者以检测缺陷的反射声压(或声能) 超声波探直接接触法 按缺陷显按超声波按探伤工按探伤波按 超声 波按探头数穿透法 脉 冲反连续波法 A 型显示法 单探头法 纵波法 横波法

大小来确定缺陷量值,后者以测定缺陷对超声波的正常传播的遮挡所造成的声影大小来确定缺陷的量值。图3–1和图3–2所示为这两者的工作原理图。 目前,超声波探伤中常用脉冲反射法,与穿透法相比,脉冲反射法有如下特点: 1. 灵敏度高 对于穿透法,只有当超声声压变化大于20%以上时才有可能检测,它相当于声压只降低2dB。由于探头晶片尺寸有一定大小及缺陷本身的声衍射现象,要获得大于20%声压变化量,缺陷对声传播遮挡面积已相当大了。对于脉冲反射法,缺陷反射波声压仅是入射声压的1%时,探伤仪就已经能够检出,此时,与缺陷反射声压相对应的反射面积是很小的。 2. 缺陷定位精度高 脉冲反射法可利用缺陷反射波的传播时间,通过扫描速度(即时间轴比例)调节,对缺陷进行正确定位。而穿透法只能以观察接收波形高低来确定缺陷面积,而波形所处位置不能表示缺陷声程,即处于不同部位的相同面积的缺陷,其接收波形高度相等,位置不变,见图3–3所示。 图3–1 脉冲反射法探伤原理

超声波检测考核题及答案

超声波检测现场考核参考题 1、灌注桩成桩质量通常存在哪两方面的问题? 2、总结声波透射法的优缺点。 3、简述声波透射法检测混凝土缺陷的基本依据。 4、声波检测仪应符合那些技术性能? 5、声波透射法所用检测仪器及换能器有哪些主要技术指标?各在什么范围? 6、简述径向换能系统延时的来源及其标定方法。 7、采用声波透射法检测基桩时,预埋检测管应注意哪些问题? 8、声测管埋设应注意哪些要点? 9、为什么大直径灌注桩不宜选用塑料管做声测管? 10、对于桩径小0.6m的灌注桩,声波透射法不适用,为什么? 11、某桩径为0.8m的灌注桩,埋设3根声测管,声测管在桩中的位置,基本等分桩的圆周。请问:声波透射法检测时有没有“盲区”? 12、声波透射法测桩时,如何选择换能器的工作频率、发射电压、埋管数量、测点点距等技术参数? 13、声波透射法有哪几种检测方法?简述不同方法的特点、用途。 14、简述声波透射法检测前的准备工作。 15、声波透射法检测中,要求声测管中应注满清水,请说明原因。如果是泥桨,有何影响? 16、声波透射法测桩质量,可用于判别混凝土缺陷的基本物理参量有哪些?说明其相关关系?

17、常见缺陷在超声波测试信号中的特性有哪些? 18、解释声波透射法的PSD判别法。 19、检测管不平行时,如何判断缺陷及其位置? 20、PSD判据的优点是什么? 21、PSD判据的基本原理是什么?为什么要对斜率加权? 22、简要说明概率法存在哪些问题,在哪些情况下可能导致误判或漏判?如何解决? 23、确定声速异常临界值判据中临界值的基本原理是什么? 24、灌注桩某处离析,造成粗骨大量堆积。声波、幅值有何变化?为什么? 25、什么叫衰减?产生衰减的原因是什么? 26、什么叫超声波声场?反映超声波声场特征的重要物理量有哪几个?什么叫声压、声强、声阻抗? 27、在同一根桩的检测中,不同剖面的检测,声波发射电压和仪器设置参数是否应保持不变?为什么? 28、JGJ106-2003规范要求不同的桩径需埋设不是数量的声测管,具体的要求是什么? 29、声波透视法检测中,发射和接收换能器以相同标高提升,每次提升间距为多少? 30、超声波法检测的适用范围是什么? 31、声测管及耦合水的声时修正值计算公式是什么? 32、声波检测PSD判据的计算公式是什么? 33、超声波在传播中衰减的主要3个类型是什么?

超声波检测技术的实验原理和方法

实验超声波检测 一、实验目的 1、了解超声波检测的基本原理和方法; 2、了解超声波检测的特点和适用范围; 3、掌握斜探头横波探伤的距离-波幅(DAC)曲线制作方法。 二、实验设备器材 1、ZXUD-40E型智能超声波探伤仪 ZXUD-40E型数字式超声波探伤仪是小型化的便携式超声波探伤仪器,特别适用于材料缺陷的评估和定位、壁厚测量等,适合各种大型工件和高分辨率测量的要求。

⑴仪器外观如图9-1所示:

图9-1 仪器外观 当连接仅带有一个超声晶片的探头(自发自收)时,可以任意插入一个仪器上的探头连接器。 当连接带有双超声晶片的探头(一个为发射晶片,一个为接收晶片)或连接两个探头(一个发射探头,一个接收探头)时,必须注意:发射的一端接入左边一个探头连接器插孔,接收的一端接入右边一个探头连接器插孔,如图9-1所示。 ⑶键盘及其功能 图9-2ZXUD-40E的薄膜键盘按键排列 仪器包含27个按键。这些按键分成5大类:电源键、方向键、功能菜单键、子菜单键和功能热键。关于各按键的具体功能概述,参见表9-1。 表9-1各按键的具体功能概述

⑷参数设置规程 参数设置可通过以下两种规程来完成。 有些参数设置仅遵照“方向键增减调节规程”,比如:探头类型、声程跨距等;有些参数设置又仅遵照“直接数字输入规程”,比如:探头频率、探头规格等;还有些参数设置可遵照两种规程,比如:检测范围、零位偏移等。 ⑸方向键增减调节规程 可按下或

来增减参数设置。 ⑹直接数字输入规程 对于垂直菜单探伤通道设置,按下进入探伤通道设置状态,再次按下则进入直接数字输入状态;对于水平菜单,按下子菜单键选中子菜单项,再次按下子菜单键则也进入直接数字输入状态。 一旦进入直接数字输入状态,将在菜单项上出现闪烁光标,等待用户直接输入数字。在输入的过程中,若发现先前输入的数字错误,可按下 使得光标回退,删除刚才输入的错误数字。输入完成之后,用户可按下来接受输入,也可按下

超声波检测基础知识

超声波检测基础知识 超声场特征值与规则反射体的回波声压 一、超声场的特征值 充满超声波的空间或超声振动所涉及的部分介质,叫超声场。超声场具有一定的空间大小和形状,只有当缺陷位于超声场内时,才有可能被发现。描述超声场的特征值(即物理量)主要有声压、声强和声阻抗。 1.1、声压P 超声场中某一点在某一时刻所具有的压强P1与没有超声波存在时的静态压强P0之差,称为该点的声压,用P 表示。 01P P P -= 声压单位:帕斯卡(Pa )、微帕斯卡(μPa ) 超声检测仪器显示的信号幅度值的本质就是声压P ,示波屏上的波高与声压成正比。在超声检测中,就缺陷而论,声压值反映缺陷的大小。 1.2、声阻抗Z 超声场中任一点的声压与该处质点振动速度之比成为声阻抗,常用Z 表示。 c u cu u P Z ρρ===// 声阻抗的单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s ) 1.3声强I 单位时间内垂直通过单位面积的声能称为声强,常用I 表示。单位是瓦/厘米2(W/cm2)或焦耳/厘米2·秒(J/cm2·s )。 Z P Zu I 2 22121== 1.4分贝 在生产和科学实验中,所遇到的声强数量级往往相差悬殊,如引起听觉的声强范围为10-16~10-4 W/cm2,最大值与最小值相差12个数量级。显然采用绝对值来度量是不方便的,但如果对其比值(相对量)取对数来比较计算则可大大简化运算。分贝就是两个同量纲的量之比取对数后的单位。 通常规定引起听觉的最弱声强为I1=10-16 W/cm2作为声强的标准,另一声强I2与标准声强I1之比的常用对数成为声强级,单位为贝(尔)(B )。 Δ=lg(I2/I1) (B) 实际应用贝尔太大,故长取其1/10即分贝(dB )来作单位: Δ=10lg(I2/I1)=20lg(P2/P1) (dB ) 通常说某处的噪声为多少多少分贝,就是以10-16 W/cm2为标准利用上式计算得到的。 二、规则反射体的回波声压 实际检测中常用反射法,反射法是根据缺陷反射回波声压的高低来评价缺陷的大小。然而工件中的缺陷形状、性质各不相同,且目前的检测技术还难以确定缺陷的真实大小和形状。回波声压相同的实际大小可能相差很大,为此特引用当量法。当量法是指在同样的检测条件下,当自然缺陷回波与某人工规则反射体回波等高时,则该人工反射体的尺寸就是此自然缺陷的当量尺寸。自然缺陷的实际尺寸往往大于当量尺寸。

超声波检测技术新继续教育答案

超声波检测技术(每日一练) 考生姓名:苏东旭考试日期:【2020-08-13 】单项选择题(共10 题) 1、声波透射法检测中,当声测管堵塞导致检测数据不全时,该如何 处理?(D) ?A,对上部检测完整的数据进行完整性评价 ?B,可直接判为IV类桩 ?C,根据上部数据估计声测管堵塞处以下混凝土质量 ?D,不得采用规范方法对整桩的桩身完整性进行评定 答题结果: 正确答案:D 2、下列关于声速的说法中,哪一项是正确的?(C) ?A,用声波检测仪测得的声速与测距无关 ?B,用声波检测仪测得的声速与声波频率无关 ?C,超声波在介质中的传播速度就是声能的传播速度

?D,超声波在介质中的传播速度就是质点的运动速度 答题结果: 正确答案:C 3、在桩身某处粗骨料大量堆积往往会造成(C) ?A,波速下降,波幅下降 ?B,波速下降,波幅提高 ?C,波速并不低,有时反而提高,波幅下降 ?D,波速提高,波幅提高 答题结果: 正确答案:C 4、换能器直径D为30mm,将发收换能器置于水中,在换能器表面净 距离d1=500mm、d2=200mm时测得仪器声时读数分别为t1=342.8μs,t2=140.1μs,请计算仪器系统延迟时间(即仪器零读数)t0。将上述换能器放入50号钢管(内径Φ1=54mm,外径Φ2=60mm)的声测管中进行测桩,请计算出该测试中的最终用于计算波速时需扣除的时间是()。(测试时声测管中水的声速为1500m/s;钢的声速为 5000m/s) (D) ?A,19.2

?B,19.9 ?C,18.7 ?D,22.2 答题结果: 正确答案:D 5、气泡密集的混凝土,往往会造成(A) ?A,波速没有明显降低,波幅明显下降 ?B,波速下降,波幅提高 ?C,波速不变,有时反而提高,波幅下降 ?D,波速提高,波幅提高 答题结果: 正确答案:A 6、调试超声波检测仪时,测得t0=5μs,已知某测点声距L=40cm, 仪器显示声时为105μs,则超声波在混凝土中传播的声速为(C)?A,3636m/s ?B,3810m/s

超声波探伤基础培训教材之理论基础

超声波探伤基础培训教材之理论基础 第一章无损检测概述 无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。 射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。射线对人体不利,应尽量避免射线的直接照射和散射线的影响。 超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。 磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。 渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。 涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。 磁粉、渗透和涡流统称为表面检测。 第二章超声波探伤的物理基础 第一节基本知识 超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。 物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。振动的传播过程,称为波动。波动分为机械波和电磁波两大类。机械波是机械振动在弹性介质中的传播过程。超声波就是一种机械波。 机械波主要参数有波长、频率和波速。波长?:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。 由上述定义可得:C=? f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。 次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。它们的区别在主要在于频率不同。频率在20~20000Hz之间的能引起人们听觉的机械波称为声波,频率低于20Hz的机械波称为次声波,频率高于20000Hz的机械波称为超声波。次声波、超声波不可闻。 超声探伤所用的频率一般在0.5~10MHz之间,对钢等金属材料的检验,常用的频率为1~5MHz。超声波波长很短,由此决定了超声波具有一些重要特性,使其能广泛用于无损探伤。 1. 方向性好:超声波是频率很高、波长很短的机械波,在无损探伤中使用的波长为毫米级;超声波象光波一样具有良好的方向性,可以定向发射,易于在被检材料中发现缺陷。 2. 能量高:由于能量(声强)与频率平方成正比,因此超声波的能量远大于一般声波的能量。 3. 能在界面上产生反射、折射和波型转换:超声波具有几何声学的上一些特点,如在介质中直线传播,遇界面产生反射、折射和波型转换等。

超声波检测技术的应用概述

现代工程测试技术论文

超声波技术应用综述 +++ (++++++++++++++++++) 摘要 简述超声波的产生方式,特点和主要参数,其特点决定在实际生活中的诸多领域广泛应用,着重分析了超声波传感器的应用和研究现状,对超声波技术发展做出展望。 关键词:超声波,检测技术,传感器 Abstract The article sketch the main parameters, features and the production of ultrasonic. Its features determine the wide application in our lives. We analyzed the application of the ultrasonic sensor and the research status and prospect the development of ultrasonic technology. Key words: Ultrasonic; Measurement Technique; Sensor 超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业等诸多领域有广泛应用。 1.超声波的产生和主要参数 声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式。 1.1超声波特点 超声波有如下特点: (1)方向性强,能量易于集中。 (2)能在各种不同媒质中传播,且可传播较远距离。 (3)与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。 (4)反射、干涉、叠加和共振现象明显。 1.2超声波的两个主要参数 频率:F≥20KHz(在实际应用中因为效果相似,通常把F≥15KHz的声波也称为超声波)。 功率密度:p=发射功率(W)/发射面积(cm2),通常p≥0.3w/cm2。

相关文档
相关文档 最新文档