文档库 最新最全的文档下载
当前位置:文档库 › 2轮第8专题数学方法在物理中的应用

2轮第8专题数学方法在物理中的应用

2轮第8专题数学方法在物理中的应用
2轮第8专题数学方法在物理中的应用

第8专题 数学方法在物理中的应用

方法概述

数学是解决物理问题的重要工具,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、长驱直入地解决问题的目的.中学物理《考试大纲》中对学生应用数学方法解决物理问题的能力作出了明确的要求,要求考生有“应用数学处理物理问题”的能力.对这一能力的考查在历年高考试题中也层出不穷,如2009年高考北京理综卷第20题、宁夏理综卷第18题、江苏物理卷第15题;2008年高考四川理综卷第24题、延考区理综卷第25题、上海物理卷第23题、北京理综卷第24题等.

所谓数学方法,就是要把客观事物的状态、关系和过程用数学语言表达出来,并进行推导、演算和分析,以形成对问题的判断、解释和预测.可以说,任何物理问题的分析、处理过程,都是数学方法的运用过程.本专题中所指的数学方法,都是一些特殊、典型的方法,常用的有极值法、几何法、图象法、数学归纳推理法、微元法、等差(比)数列求和法等.

一、极值法

数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等.

1.利用三角函数求极值 y =a cos θ+b sin θ

=a 2+b 2(a a 2+b 2cos θ+b

a 2+

b 2sin θ)

令sin φ=a a 2+b 2,cos φ=b

a 2+b

2

则有:y =a 2+b 2(sin φcos θ+cos φsin θ) =a 2+b 2sin (φ+θ)

所以当φ+θ=π2

时,y 有最大值,且y max =a 2+b 2

2.利用二次函数求极值

二次函数:y =ax 2+bx +c =a (x 2

+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 2

4a

(其中a 、b 、c 为实常数),当x

=-b

2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).

3.均值不等式

对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 2

4;对于

三个大于零的变量a 、b 、c ,若其和a +b +c 为一定值q ,则当a =b =c 时,其积abc 取得极大值 q 3

27

二、几何法

利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上,确定方法有以下几种.

1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.

2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图8-1所示.

图8-1 由EB2=CE·ED

=CE·(2R-CE)

得:R=EB2

2CE

CE

2

也可由勾股定理得:R2=(R-CE)2+EB2

解得:R=EB2

2CE

CE

2

以上两种求半径的方法常用于求解“带电粒子在匀强磁场中的运动”这类习题中.

三、图象法

中学物理中一些比较抽象的习题常较难求解,若能与数学图形相结合,再恰当地引入物理图象,则可变抽象为形象,突破难点、疑点,使解题过程大大简化.图象法是历年高考的热点,因而在复习中要密切关注图象,掌握图象的识别、绘制等方法.

1.物理图象的分类

整个高中教材中有很多不同类型的图象,按图形形状的不同可分为以下几类.

(1)直线型:如匀速直线运动的s-t图象、匀变速直线运动的v-t图象、定值电阻的U-I图象等.

(2)正弦曲线型:如简谐振动的x-t图象、简谐波的y-x图象、正弦式交变电流的e-t图象、正弦式振荡电流的i-t图象及电荷量的q-t图象等.

(3)其他型:如共振曲线的A-f图象、分子力与分子间距离的f-r图象等.

下面我们对高中物理中接触到的典型物理图象作一综合回顾,以期对物理图象有个较为系统的认识和归纳.

2(1)利用图象解题可使解题过程更简化,思路更清晰.

利用图象法解题不仅思路清晰,而且在很多情况下可使解题过程得到简化,起到比解析法更巧妙、更灵活的独特效果.甚至在有些情况下运用解析法可能无能为力,但是运用图象法则会使你豁然开朗,如求解变力分析中的极值类问题等.

(2)利用图象描述物理过程更直观.

从物理图象上可以比较直观地观察出物理过程的动态特征. (3)利用物理图象分析物理实验.

运用图象处理实验数据是物理实验中常用的一种方法,这是因为它除了具有简明、直观、便于比较和减少偶然误差的特点外,还可以由图象求解第三个相关物理量,尤其是无法从实验中直接得到的结论.

3.对图象意义的理解

(1)首先应明确所给的图象是什么图象,即认清图象中比纵横轴所代表的物理量及它们的“函数关系”,特别是对那些图形相似、容易混淆的图象,更要注意区分.例如振动图象与波动图象、运动学中的 s -t 图象和v -t 图象、电磁振荡中的i -t 图象和q -t 图象等.

(2)要注意理解图象中的“点”、“线”、“斜率”、“截距”、“面积”的物理意义. ①点:图线上的每一个点对应研究对象的一个状态.要特别注意“起点”、“终点”、“拐点”、“交点”,它们往往对应着一个特殊状态.如有的速度图象中,拐点可能表示速度由增大(减小)变为减小(增大),即加速度的方向发生变化的时刻,而速度图线与时间轴的交点则代表速度的方向发生变化的时刻.

②线:注意观察图线是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系. ③斜率:表示纵横坐标上两物理量的比值.常有一个重要的物理量与之对应,用于求解定量计算中所对应的物理量的大小以及定性分析变化的快慢.如 v -t 图象的斜率表示加速度.

④截距:表示纵横坐标两物理量在“边界”条件下物理量的大小.由此往往可得到一个很有意义的物

理量.如电源的U -I 图象反映了U =E -Ir 的函数关系,两截距点分别为(0,E )和???

?E

r ,0.

⑤面积:有些物理图象的图线与横轴所围的面积往往代表一个物理量的大小.如v -t 图象中面积表示位移.

4.运用图象解答物理问题的步骤 (1)看清纵横坐标分别表示的物理量.

(2)看图象本身,识别两物理量的变化趋势,从而分析具体的物理过程.

(3)看两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.

四、数学归纳法

在解决某些物理过程中比较复杂的具体问题时,常从特殊情况出发,类推出一般情况下的猜想,然后用数学归纳法加以证明,从而确定我们的猜想是正确的.利用数学归纳法解题要注意书写上的规范,以便找出其中的规律.

五、微元法

利用微分思想的分析方法称为微元法.它是将研究对象(物体或物理过程)进行无限细分,再从中抽取某一微小单元进行讨论,从而找出被研究对象的变化规律的一种思想方法.微元法解题的思维过程如下.

(1)隔离选择恰当的微元作为研究对象.微元可以是一小段线段、圆弧或一小块面积,也可以是一个小体积、小质量或一小段时间等,但必须具有整体对象的基本特征.

(2)将微元模型化(如视为点电荷、质点、匀速直线运动、匀速转动等),并运用相关的物理规律求解这个微元与所求物体之间的关联.

(3)将一个微元的解答结果推广到其他微元,并充分利用各微元间的对称关系、矢量方向关系、近似极限关系等,对各微元的求解结果进行叠加,以求得整体量的合理解答.

六、三角函数法

三角函数反映了三角形的边、角之间的关系,在物理解题中有较广泛的应用.例如:讨论三个共点的平衡力组成的力的三角形时,常用正弦定理求力的大小;用函数的单调变化的临界状态来求取某个物理量的极值;用三角函数的“和积公式”将结论进行化简等.

七、数列法

凡涉及数列求解的物理问题都具有过程多、重复性强的特点,但每一个重复过程均不是原来的完全重复,而是一种变化了的重复.随着物理过程的重复,某些物理量逐步发生着前后有联系的变化.该类问题求解的基本思路为:

(1)逐个分析开始的几个物理过程;

(2)利用归纳法从中找出物理量变化的通项公式(这是解题的关键); (3)最后分析整个物理过程,应用数列特点和规律求解.

无穷数列的求和,一般是无穷递减数列,有相应的公式可用.

等差:S n =n (a 1+a n )2=na 1+n (n -1)

2d (d 为公差).

等比:S n =a 1(1-q n )

1-q

(q 为公比).

八、比例法

比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,要清楚公式的物理意义和每个量在公式中的作用,以及所要讨论的比例关系是否成立.同时要注意以下几点.

(1)比例条件是否满足.物理过程中的变量往往有多个,讨论某两个量间的比例关系时要注意只有其他量为常量时才能成比例.

(2)比例是否符合物理意义.不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的

意义.(如不能根据R =U

I

认定电阻与电压成正比)

(3)比例是否存在.讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不变量.如果该条

件不成立,比例也不能成立.(如在串联电路中,不能认为P =U

2R

中P 与R 成反比,因为R 变化的同时,

U 也随之变化而并非常量)

许多物理量都是用比值法来定义的,常称之为“比值定义”.如密度ρ=m V ,导体的电阻R =U

I

,电容

器的电容 C =Q U ,接触面间的动摩擦因数μ=f F N ,电场强度E =F

q

等.它们的共同特征是:被定义的物理量

是反映物体或物质的属性和特征的,它和定义式中相比的物理量无关.对此,学生很容易把它当做一个数

学比例式来处理而忽略了其物理意义,也就是说教学中还要防止数学知识在物理应用中的负迁移.

数学是“物理学家的思想工具”,它使物理学家能“有条理地思考”并能想象出更多的东西.可以说,正是有了数学与物理学的有机结合,才使物理学日臻完善.物理学的严格定量化,使得数学方法成为物理解题中一个不可或缺的工具.

热点、重点、难点

●例1 如图8-2甲所示,一薄木板放在正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的正中间.木块和木板的质量均为m ,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然以一水平外力F 将薄木板抽出,要使小木块不从桌面上掉下,则水平外力F 至少应为________.(假设木板抽动过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上)

图8-2甲

A .2μmg

B .4μmg

C .6μmg

D .8μmg

【解析】解法一 F 越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑下.设拉力为F 0时,木块恰好能滑至桌面的边缘,再设木块与木板分离的时刻为t 1,在0~t 1 时间内有:

12·(F 0-μmg -2μmg )m ·t 12-12μgt 12=L 2 对t 1时间后木块滑行的过程,有: v 122μg =(μgt 1)22μg =L 2-12μgt 12

解得:F 0=6μmg .

解法二 F 越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑出.若木块不从桌面滑出,则其v -t 图象如图8-2乙中OBC 所示,其中OB 的斜率为μg ,BC 的斜率为-μg ,t 1=t 2

图8-2乙

有:S △OBC =????12·μgt 12×2≤L 2

设拉力为F 时,木板的v -t 图象为图7-2乙中的直线OA ,则S △OAB =L

2

即12(v 2-v 1)·t 1=L 2

其中v 1=μgt 1,v 2=F -3μmg

m

·t 1

解得:F ≥6μmg

即拉力至少为6μmg . [答案] C

【点评】对于两物体间的多过程运动问题,在明确物理过程的基础上,画出物体各自的运动图象,这样两物体的运动特点就很明显了.利用图线与坐标轴所夹面积的关系明确物体间的位移关系,可省略一些物理量的计算,从而快速、简捷地解答问题,同类题可见专题一能力演练第3题.

●例2 如图8-3 甲所示,在竖直平面内的直角坐标系中,一个质量为m 的质点在外力F 的作用下

从坐标原点O 由静止沿直线ON 斜向下运动,直线ON 与y 轴负方向成θ角(θ<π

4

),则F 的大小至少为

________;若F =mg tan θ,则质点的机械能大小的变化情况是__________________________.

[2008年高考·上海物理卷]

图8-3甲

【解析】 该质点在重力和外力F 的作用下从静止开始做直线运动,说明质点做匀加速直线运动,如图8-3乙所示,当F 的方向为a 方向(垂直于ON )时,F 最小为mg sin θ;若F =mg tan θ,即F 可能为b 方向或c 方向,故除重力外的力F 对质点可能做正功,也可能做负功,所以质点的机械能增加、减少都有可能.

图8-3乙

[答案] mg sin θ 增加、减少都有可能 【点评】运用平行四边形(三角形)定则分析物体受力的变化情况(或用相似三角形比较受力)是一种常用的方法,同类题可见专题一同类拓展2和例题4.

●例3 总质量为80 kg 的跳伞运动员从离地500 m 的直升机上跳下,经过2 s 拉开绳索开启降落伞,图8-4是跳伞过程中的v -t 图象,试根据图象求:(取g =10 m/s 2)

图8-4

(1)t =1 s 时运动员的加速度和所受阻力的大小.

(2)估算14 s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间. [2008年高考·上海物理卷]

【解析】(1)从图象中可以看出,在t =2 s 内运动员做匀加速运动,其加速度的大小为:a =v t t =162

m/s 2

=8 m/s 2

设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有:mg -f =ma 得:f =m (g -a )=80×(10-8) N =160 N .

(2)v -t 图象与t 轴所包围的面积表示位移,由图象可知14 s 内该面积包含的格子为39格 所以h =39×2×2 m =156 m

根据动能定理,有:mgh -W f =1

2

m v 2

所以W f =mgh -12

m v 2

=(80×10×156-12

×80×62

) J

≈1.23×105

J .

(3)14 s 后运动员做匀速运动的时间为:

t ′=H -h v

=500-1566 s ≈57 s

运动员从飞机上跳下到着地所需要的总时间为: t 总=t +t ′=(14+57) s ≈71 s .

[答案] (1)160 N (2)1.23×105 J (3)71 s

【点评】对于本题,应明确v -t 图象中“面积”的含义,在数小方格个数时需注意合理取舍,即大于半格的算1个,小于半格的舍去.

●例4 如图8-5甲所示,一质量m =1 kg 的木板静止在光滑水平地面上.开始时,木板右端与墙相距L =0.08 m ,一质量m =1 kg 的小物块以初速度v 0=2 m/s 滑上木板左端.木板的长度可保证物块在运动过程中不与墙接触.物块与木板之间的动摩擦因数μ=0.1,木板与墙碰撞后以与碰撞前瞬时等大的速度反弹.取g =10 m/s 2,求:

图8-5甲

(1)从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间. (2)达到共同速度时木板右端与墙之间的距离.

【解析】解法一 物块滑上木板后,在摩擦力的作用下,木板从静止开始做匀加速运动.设木板的加速度大小为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为v 1,则有:

μmg =ma

L =12aT 2

v 1=aT

可得:a =1 m/s 2,T =0.4 s ,v 1=0.4 m/s

物块与木板达到共同速度之前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的运动,因而木板与墙相碰后将返回至初态,所用时间为T .设在物块与木板达到共同速度v 之前木板共经历了n 次碰撞,则有:

v =v 0-(2nT +Δt )a =a ·Δt

式中Δt 是碰撞n 次后木板从起始位置至达到共同速度所需要的时间 上式可改写为:2v =v 0-2nTa

由于木板的速率只能在0到v 1之间,故有: 0≤v 0-2nTa ≤2v 1 解得:1.5≤n ≤2.5

由于n 是整数,故n =2

解得:v =0.2 m/s ,Δt =0.2 s

从开始到物块与木板达到共同速度所用的时间为: t =4T +Δt =1.8 s .

(2)物块与木板达到共同速度时,木板右端与墙之间的距离为:s =L -1

2

a ·Δt 2

解得:s =0.06 m

解法二 (1)物块滑上木板后,在摩擦力的作用下,木板做匀加速运动的加速度a 1=μg =1 m/s ,方向向右

物块做减速运动的加速度a 2=μg =1 m/s ,方向向左 可作出物块、木板的v -t 图象如图8-5乙所示

由图可知,木板在0.4 s 、1.2 s 时刻两次与墙碰撞,在t =1.8 s 时刻物块与木板达到共同速度. (2)由图8-5乙可知,在t =1.8 s 时刻木板的位移为: s =1

2

×a 1×0.22=0.02 m 木板右端距墙壁的距离Δs =L -s =0.06 m .

图8-5乙

[答案] (1)1.8 s (2)0.06 m

【点评】本题的两种解题方法都是在清晰地理解物理过程的前提下巧妙地应用数学方法解析的,专题一例4中的解法二也是典型地利用图象来确定物理过程的.

●例5 图8-6所示为一个内外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积的带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点的电场强度大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性作出判断.根据你的判断,E 的合理表达式应为[2009年高考·北京理综卷]( )

图8-6

A .E =2πkσ?

?

???R 1x 2+R 12

R 2

x 2+R 22x

B .E =2πkσ?

?

???1x 2+R 12-1x 2+R 22x C .E =2πkσ?

?

???

R 1x 2+R 12+R 2x 2+R 22

D .

E =2πkσ?

?

?

??1x 2+R 12+1x 2+R 22x 【解析】A 选项表达式可变形为:

E =2πkσ? ????

?R 11+(R 1x )2-R 21+(R 2x )2,对于这一表达式,当R 1=0时,E =-

2πkσR 21+(R 2x

)2

,随x 的增大,E 的绝对值增大,这与客观事实不符合,故A 错误,对于C 选项中的表达式,当x =0时,E =4πkσ,而事实由对称性知应该为E =0,故C 错误.对于D 选项,

E =2πkσ? ????

?11+(R 1x )2+11+(R 2x

)2

同样E 随x 增大而增大,当x =∞时E >0,这与事实不符合,故D 错误,只有B 可能正确. [答案] B

【点评】本例与2008年高考北京理综卷第20题相似,给出某一规律的公式,要求证它的正确性,这类试题应引起足够的重视.

●例6 如图8-7所示,一轻绳吊着一根粗细均匀的棒,棒下端离地面高为H ,上端套着一个细环.棒和环的质量均为m ,相互间的最大静摩擦力等于滑动摩擦力kmg (k >1).断开轻绳,棒和环自由下落.假设棒足够长,与地面发生碰撞时触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气阻力不计.求:

图8-7

(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度. (2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s .

(3)从断开轻绳到棒和环都静止的过程中,摩擦力对环和棒做的总功W . [2007年高考·江苏物理卷]

【解析】(1)设棒第一次上升的过程中环的加速度为a 环,由牛顿第二定律有:

a 环=kmg -mg m

=(k -1)g ,方向竖直向上.

(2)棒第一次落地前瞬间的速度大小为:v 1=2gH 设棒弹起后的加速度为a 棒,由牛顿第二定律有:

a 棒=-kmg +mg

m

=-(k +1)g

故棒第一次弹起的最大高度为:

H 1=-v 122a 棒=H

k +1

路程s =H +2H 1=k +3

k +1

H .

(3)解法一 设棒第一次弹起经过t 1时间后与环达到共同速度v 1′ 环的速度v 1′=-v 1+a 环t 1 棒的速度v 1′=v 1+a 棒t 1

解得:t 1=1k 2H

g

v 1′=-2gH

k

环的位移h 环1=-v 1t 1+1

2环t 12=-k +1k

2H

棒的位移h 棒1=v 1t 1+1

2a 棒t 12=k -1k

2H

x 1=h 环1-h 棒1

解得:x 1=-2H

k

棒、环一起下落至地,有:v 22-v 1′2=2gh 棒1

解得:v 2=2gH

k

同理,环第二次相对棒的位移为:

x 2=h 环2-h 棒2=-2H

k

2

……

x n =-2H k

n

故环相对棒的总位移x =x 1+x 2+…+x n =-2H

k -1

所以W =kmgx =-2kmgH

k -1

解法二 经过足够长的时间棒和环最终静止,设这一过程中它们相对滑动的总路程为l ,由能量的转化和守恒定律有:

mgH +mg (H +l )=kmgl

解得:l =2H

k -1

故摩擦力对环和棒做的总功为:

W =-kmgl =-2kmgH

k -1

[答案] (1)(k -1)g ,方向竖直向上 (2)k +3

k +1

H

(3)-2kmgH k -1

【点评】 ①高考压轴题中常涉及多个物体多次相互作用的问题,求解这类题往往需要应用数学的递推公式或数列求和知识.

②一对滑动摩擦力做功的总和W =-f ·s 总,s 总为相对滑动的总路程. ③对于涉及两个对象的运动过程,规定统一的正方向也很重要.

●例7 如图8-8所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B ,方向与导轨平面垂直.长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“

”形装置,总质量为m ,置

于导轨上.导体棒中通以大小恒为I 的电流(由外接恒流源产生,图中未画出).线框的边长为d (d

图8-8

(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q . (2)线框第一次穿越磁场区域所需的时间t 1.

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离x m . [2009年高考·江苏物理卷] 【解析】(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W ,由动能定理得:

mg sin α·4d +W -BIld =0 且Q =-W

解得:Q =4mgd sin α-BIld .

(2)设线框刚离开磁场下边界时的速度为v 1,则接着向下运动2d ,由动能定理得:mg sin α·2d -BIld =0-12

m v 12 线框在穿越磁场中运动时受到的合力F =mg sin α-F ′ 感应电动势E =Bd v

感应电流I ′=E

R

安培力F ′=BI ′d

由牛顿第二定律,在t 到(t +Δt )时间内,有Δv =F

m

Δt

则 Δv=∑[g sin α-B2d2v mR

]Δt

有v1=gt1sin α-2B2d3 mR

解得:t1=2m(BIld-2mgd sin α)+

2B2d3

R

mg sin α

(3)经过足够长时间后,线框在磁场下边界与最大距离x m之间往复运动,由动能定理得:mg sin α·x m-BIl(x m-d)=0

解得:x m=

BIld

BIl-mg sin α

[答案] (1)4mgd sin α-BIld

(2)2m(BIld-2mgd sin α)+

2B2d3

R

mg sin α

(3)BIld

BIl-mg sin α

能力演练

一、选择题(10×4分)

1.图示是用来监测在核电站工作的人员受到辐射情况的胸章,通过照相底片被射线感光的区域,可以判断工作人员受到何种辐射.当胸章上1 mm铝片和3 mm铝片下的照相底片被感光,而铅片下的照相底片未被感光时,则工作人员可能受到了辐射的射线是()

A.α和βB.α和γ

C.β和γD.α、β和γ

【解析】α粒子的穿透能力很弱,一张普通的纸就能把它挡住,题中无法说明辐射中不含α射线,能穿透1 mm、3 mm铝片而不能穿透5 mm铅片的是β射线,若存在γ射线,则5 mm 厚的铅片也能被穿透,故A正确.

[答案] A

2.在电磁波发射技术中,使电磁波随各种信号而改变的技术叫调制,调制分调幅和调频两种.在图甲中有A、B两幅图.在收音机电路中天线接收下来的电信号既有高频成分又有低频成分,经放大后送到下一级,需要把高频成分和低频成分分开,只让低频成分输入下一级,如果采用如图乙所示的电路,图乙中虚线框a和b内只用一个电容器或电感器.以下关于电磁波的发射和接收的说法中,正确的是()

A.在电磁波的发射技术中,甲图中A是调幅波

B.在电磁波的发射技术中,甲图中B是调幅波

C.在图乙中a是电容器,用来通高频阻低频,b是电感器,用来阻高频通低频

D.在图乙中a是电感器,用来阻交流通直流,b是电容器,用来阻高频通低频

【解析】A图象中高频振荡的振幅随信号而变,为调幅波,B图象中高频振荡的频率随信号而变,为调频波,A正确,检波电路的作用为通低频阻高频,故a为电容较小的高频旁路电容器,b为高频扼流圈,

C 正确.

[答案] AC

3.如图所示,绝热汽缸固定在水平地面上,汽缸内用绝热活塞封闭着一定质量的理想气体,开始时活塞静止在图示位置,现用力使活塞缓慢向右移动一段距离,则在此过程中( )

A .外界对汽缸内气体做正功

B .缸内气体的内能减小

C .缸内气体在单位时间内作用于活塞单位面积冲量增大

D .在单位时间内缸内气体分子与活塞碰撞的次数增加

【解析】体积膨胀,气体对外做功,内能减小,温度降低,选项A 错误、B 正确,由体积增大,温度降低知单位时间内气体对活塞的碰撞次数减少,压强减小,选项C 、D 错误.

[答案] B

4.两物体甲和乙在同一直线上运动,它们在0~0.4 s 时间内的v -t 图象如图所示.若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t 1分别为[2009年高考·全国理综卷Ⅱ]( )

A .1

3和0.30 s

B .3和0.30 s

C .1

3

和0.28 s

D .3和0.28 s

【解析】根据图象的特点可知甲做匀加速运动,乙做匀减速运动,根据a =

Δv

Δt

,得两物体加速度大小的关系为3a 甲=a 乙,根据牛顿第二定律有F m 甲=13·F m 乙,得m 甲m 乙=3,由a 乙=10 m/s 2=1

0.4-t 1

,可解得t 1=0.3 s ,

B 正确.

[答案] B

5.某物体的v -t 图象如图所示,在下列给出的两段时间内,合外力的功和冲量都相同的是( )

A .0~t 1和t 2~t 4

B .t 1~t 2和t 3~t 4

C .0~t 2和t 2~t 4

D .0~t 1和t 3~t 4

【解析】0~t 1合外力做功为1

2m v 20,

合外力冲量为m v 0,t 2~t 4合外力做功和合外力冲量都为0,A 错误;t 3~t 4时间内合外力做功为-12v 20,合外力冲量为m v 0,t 1~t 2

合外力做功为-12m v 2

,合外力的冲量-m v 0,0~t 2时间内,合外力做功和合外力冲量都为0.故C 正确.

[答案] C

6.一列简谐横波沿x 轴正向传播,t =0时刻波形如图所示,从图示时刻起经0.5 s 时间处于x =2的质

点P 刚好第二次出现波峰,下列说法正确的是( )

A .t =0时刻,P 质点的速度方向指向y 轴正方向

B .Q 质点开始振动时,P 质点正在波峰

C .t =0.5 s 时刻,质点P 的加速度方向指向y 轴正方向

D .t =0.5 s 时刻,Q 质点第一次出现波峰

【解析】t 0=0时刻P 质点正向上振动,A 正确.又由题意知,t =0.5 s =5

4

T ,得T =0.4 s ,PQ =8 m =

2λ,故Q 开始振动时P 处于平衡位置向上振动,B 错误.t =0.5 s 时刻,P 的位移为正,加速度方向为负,

C 错误;经过t =0.5 s ,波传播s =v t =4

0.4

×0.5=5 m ,Q 正处于波峰,D 正确.

[答案] AD

7.如图所示,把一个带电小球A 固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B .现给小球B 一个垂直AB 连线方向的速度v 0,使其在水平桌面上运动,则下列说法中正确的是( )

A .若A 、

B 带同种电荷,B 球一定做速度增大的曲线运动 B .若A 、B 带同种电荷,B 球一定做加速度增大的曲线运动

C .若A 、B 带同种电荷,B 球一定向电势较低处运动

D .若A 、B 带异种电荷,B 球可能做速度和加速度大小都不变的曲线运动

【解析】若A 、B 带同种电荷,库仑力对B 球做正功,B 球做速度增大的曲线运动,B 的电势能减小,

又由于AB 间距增大,故B 的加速度减小,若A 、B 为异种电荷,当m v 02

r =kq A q B

r

2时,B 球做匀速圆周运动,

速度和加速度的大小都不变,D 正确.

[答案] AD 8.某一空间存在着磁感应强度为B 且大小不变、方向随时间t 做周期性变化的匀强磁场(如图甲所示),规定垂直纸面向里的磁场方向为正.为了使静止于该磁场中的带正电的粒子能按a →b →c →d →e →f 的顺序做横“∞”字曲线运动(即如图乙所示的轨迹),下列办法可行的是(粒子只受磁场力的作用,其他力不计)( )

A .若粒子的初始位置在a 处,在t =3T

8时给粒子一个沿切线方向水平向右的初速度

B .若粒子的初始位置在f 处,在t =T

2时给粒子一个沿切线方向竖直向下的初速度

C .若粒子的初始位置在e 处,在t =11

8T 时给粒子一个沿切线方向水平向左的初速度

D .若粒子的初始位置在b 处,在t =T

2

时给粒子一个沿切线方向竖直向上的初速度

【解析】要使粒子的运动轨迹如图乙所示,粒子做圆周运动的轨迹的周期应为T 0=2πm qB =T

2

,结合左

手定则可知,选项A 、D 正确.

[答案] AD

9.水力采煤是利用高速水流冲击煤层而进行的,煤层受到3.6×106 N/m 2的压强冲击即可破碎,若水流沿水平方向冲击煤层,不考虑水的反向溅射作用,则冲击煤层的水流速度至少应为( )

A .30 m/s

B .40 m/s

C .45 m/s

D .60 m/s

【解析】建立如图所示模型,设水柱面积为S ,由动量定理:

F ·Δt =0-(ρS ·v 0·Δt )×(-v 0)

可得压强:p =F

S =ρv 20

故使煤层破碎的速度至少应为v 0=

p

ρ

=60 m/s . [答案] D

10.如图甲所示,传送带通过滑道将长为L 、质量为m 的匀质物块以初速度v 0向右送上水平台面,物块前端在台面上滑动s 距离停下来.已知滑道上的摩擦不计,物块与台面间的动摩擦因数为μ而且s >L ,则物块的初速度v 0为( )

A .2μgL

B .2μgs -μgL

C .2μgs

D .2μgs +μgL

【解析】

物块位移在由0增大到L 的过程中,对台面的压力随位移由0均匀的增加至mg ,故整个过的摩擦力的大小随位移变化的图象如图乙所示,图中梯形“面积”即为物块克服摩擦力所做的功.

由动能定理得:12μmg (s -L +s )=1

2

m v 02

可解得v 0=2μgs -μgL . [答案] B

二、非选择题(共60分)

11.(6分)某实验小组拟用如图甲所示的装置研究滑块的运动.实验器材有滑块、钩码、纸带、米尺、带滑轮的木板以及由漏斗和细线组成的单摆等.实验中,滑块在钩码的作用下拖动纸带做匀加速直线运动,同时单摆沿垂直于纸带运动的方向摆动,漏斗漏出的有色液体在纸带上留下的痕迹记录了漏斗在不同时刻的位置.[2008年高考·重庆理综卷]

(1)在图乙中,从________纸带可看出滑块的加速度和速度的方向一致.

(2)用该方法测量滑块加速度的误差主要来源有:____________________、____________________.(写出2个即可)

【解析】要使速度和加速度的方向相同,则必须选纸带B,因为B中相等的时间内纸带运动的距离越来越大.

[答案] (1)B(2分)

(2)摆长测量漏斗的重心变化(或液体痕迹偏粗、阻力变化等)(每空2分)

12.(9分)用高电阻放电法测电容的实验,是通过对高阻值电阻放电的方法,测出电容器的充电电压为U时,所带的电荷量为Q,从而再求出待测电容器的电容C.某同学的实验情况如下:A.按图甲所示的电路连接好实验电路;

B.接通开关S,调节电阻箱R的阻值,使小量程电流表的指针偏转接近满刻度,记下这时电流表的示数I0=490 μA及电压表的示数U0=6.2 V,I0和U0分别是电容器放电的初始电流和电压;

C.断开开关S,同时开始计时,每隔5 s或10 s测一次电流I的值,将测得数据填入预先设计的表格中,根据表格中的数据(10组)在以时间t为横坐标、电流I为纵坐标的坐标纸上描点,即图乙中用“×”表示的点.

(1)实验中,电阻箱所用的阻值R=________Ω.

(2)试根据上述实验结果,在图乙中作出电容器放电的I-t图象.

(3)经估算,该电容器两端的电压为U0时所带的电荷量Q0约为______C;该电容器的电容C约为______F.

【解析】由ΔQ=I·Δt知,电荷量为I-t图象与坐标轴所包围的面积,计面积时可数格数(四舍五入).[答案] (1)1.3×104(3分)(2)用平滑曲线连接(2分)

(3)(8.0~9.0)×10-3(1.29~1.45)×10-3(每空2分)

13.(10分)质量为60 kg的消防队员从一根竖直的轻绳上由静止滑下,经2.5 s落地.轻绳受到的拉力变化情况如图甲所示,取g=10 m/s2.在消防队员下滑的过程中

(1)其最大速度和落地速度各是多大?

(2)在图乙中画出其v-t图象.

(3)其克服摩擦力做的功是多少?

【解析】(1)设该队员先在t 1=1 s 的时间内以加速度a 1匀加速下滑,然后在t 2=1.5 s 的时间内以加速度a 2匀减速下滑

第1 s 内由牛顿第二定律得: mg -F 1=ma 1 (1分)

最大速度v m =a 1t 1 (1分)

代入数据解得:v m =4 m/s (1分) 后1.5 s 内由牛顿第二定律得: F 2-mg =ma 2

该队员落地时的速度v =v m -a 2t 2 (1分) 代入数据解得:v =1 m/s . (2)图象如图丙所示. (2分)

(3)该队员在第1 s 内下滑的高度h 1=1

2

a 1t 12 (1分)

该队员在后1.5 s 内下滑的高度h 2=v m t 2-12

a 2t 22

(1分)

由动能定理得:

mg (h 1+h 2)-W f =1

2

m v 2 (1分)

代入数据解得:W f =3420 J . (1分)

[答案] (1)最大速度为4 m/s ,落地速度为1 m/s (2)如图丙所示 (3)3420 J 14.(11分)A 、B 两小球由柔软的细线相连,线长L =6 m ,现将A 、B 球先后以相同的初速度v 0=4.5 m/s 从同一地点水平抛出(先A 、后B ),相隔时间t 0=0.8 s .取g =10 m/s 2,问:

(1)B 球抛出后经过多长时间细线刚好被拉直?(线拉直时,两球都未落地) (2)细线刚被拉直时,A 、B 两球的水平位移(相对抛出点)各为多大? 【解析】(1)A 球先抛出,0.8 s 时间内

水平位移s 0=v 0t 0=4.5×0.8 m =3.6 m (1分)

竖直位移:h 0=12gt 2=1

2

×10×0.82 m =3.2 m (1分)

A 、

B 球都抛出后,若A 球以B 球为参照物,则水平方向相对速度为:v ABx =0,竖直方向上A 相对B 的速度为:

v ABy =gt 0=8 m/s (1分)

设B 球抛出后经过时间t 线被拉直,则有:

(h 0+v ABy ·t )2

+s 02=L 2

(2分) 解得:t =0.2 s . (1分)

(2)至线拉直A 球运动的总时间: t A =t 0+t =1 s (2分)

故A 球的水平位移s A =v 0t A =4.5 m (2分) B 球的水平位移s B =v 0t =0.9 m (1分) [答案] (1)0.2 s (2)4.5 m 0.9 m

15.(12分)光滑平行的金属导轨MN 和PQ 的间距L =1.0 m ,它们与水平面之间的夹角α=30°,匀强

磁场的磁感应强度B =2.0 T ,方向垂直于导轨平面向上,M 、P 间连接有阻值R =2.0 Ω 的电阻,其他电阻不计,质量m =2.0 kg 的金属杆ab 垂直于导轨放置,如图甲所示.用恒力F 沿导轨平面向上拉金属杆ab ,使其由静止开始运动,其v -t 图象如图乙所示.取g =10 m/s 2,设导轨足够长.

(1)求恒力F 的大小.

(2)金属杆的速度为2.0 m/s 时,加速度为多大?

(3)根据v -t 图象估算在前0.8 s 内电阻上产生的热量.

【解析】(1)由图乙知,杆运动的最大速度v m =4 m/s (2分) 此时有:F =mg sin α+F 安

=mg sin α+B 2L 2v m

R

(1分)

代入数据得:F =18 N . (1分)

(2)对杆进行受力分析,如图丙所示,由牛顿第二定律可得:

F -F 安-mg sin α=ma (1分)

a =F -B 2L 2v R

-mg sin α

m

代入数据得:a =2.0 m/s 2. (1分)

(3)由图乙可知,0.8 s 末金属杆的速度v 1=2.2 m/s (1分)

前 0.8 s 内图线与t 轴所包围的小方格的个数约为27,面积为27×0.2×0.2=1.08,即前0.8 s 内金属杆的位移为:

s =1.08 m (2分)

由能的转化与守恒定律得:

Q =Fs -mgs sin α-1

2

m v 12 (2分)

代入数据得:Q =3.80 J . (1分)

[答案] (1)18 N (2)2.0 m/s 2

(3)3.80 J

16.(12分)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻璃,它的上下

底面是面积S =0.04 m 2

的金属板,间距L =0.05 m ,当连接到U =2500 V 的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图所示.现把一定量均匀分布的烟尘颗粒密闭在容器内,每1 m 3 有烟尘

颗粒1×1013个,假设这些颗粒都处于静止状态,每个颗粒的带电荷量q =+1.0×10-17

C ,质量m =2.0×10-15

kg ,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受的重力.问合上开关后:

(1)经过多长时间烟尘颗粒可以被全部吸附?

(2)除尘过程中电场力对烟尘颗粒共做了多少功?

(3)经过多长时间容器中烟尘颗粒的总动能达到最大?

【解析】(1)由题意可知,只要位于上板表面的烟尘能被吸附到下板,烟尘即被认为全部吸收.设经过

时间t 烟尘颗粒可以被全部吸附,烟尘所受的电场力F =qU

L

(1分)

L =12at 2=12·F m t 2=qUt 2

2mL

(2分)

得:t =2m

qU

L =0.02 s . (1分)

(2)由于板间烟尘颗粒均匀分布,可以认为烟尘的质心位于板间中点位置,因此,除尘过程中电场力对烟尘所做的总功为:

W =1

2

NSLqU =2.5×10-4 J . (3分)

(3)设烟尘颗粒下落的距离为x ,则板内烟尘的总动能为:

E k =12m v 2·NS (L -x )=qU L x ·NS (L -x ) (1分)

当x =L

2时,E k 达最大 (1分)

又x =12

at 12

(1分)

所以t 1=2x a =m

qU

L =0.014 s . (2分)

[答案] (1)0.02 s (2)2.5×10-4 J (3)0.014 s

数学物理方法第八章作业答案

P 175 8.1在0x =的邻区域内,求解下列方程: (1) 2 (1)0x y''xy'y -+-= 解:依题意将方程化为标准形式2 2 10(1) (1) x y''y'y x x + - =-- 2 ()(1) x p x x = -,2 1()(1) q x x =- - 可见0x =是方程的常点. 设方程的级数解为0 ()n n n y x c x ∞ == ∑,则1 1 ()n n n y'x nc x ∞ -== ∑,2 2 ()(1)n n n y''x n n c x ∞ -== -∑ 代入原方程得2 2 2 1 2 2102 2 2 1 (1)(1)0(1)(1)0 n n n n n n n n n n n n n n n n n n n n n n n n n n c x x n n c x x nc x c x n n c x n n c x nc x c x ∞ ∞ ∞ ∞ ---====∞ ∞ ∞ ∞ -====---+- =? -- -+ - =∑∑∑∑∑∑∑∑ 由0 x 项的系数为0有:202012102 c c c c ?-=?= 由1 x 项的系数为0有:311313200 (0)c c c c c ?+-=?=≠ 由2x 项的系数为0有:42224201143212012 24 c c c c c c c ?-?+-=?= = 由3 x 项的系数为0有:533355432300c c c c c ?-?+-=?= 由4x 项的系数为0有:64446403165434010 80 c c c c c c c ?-?+-=?= = 由5 x 项的系数为0有:755577654500c c c c c ?-?+-=?= 由6 x 项的系数为0有:866686025587656056 896 c c c c c c c ?-?+-=?== …… ∴ 方程的级数解为 2 4 6 8 0100000 1115()2 24 80 896 n n n y x c x c c x c x c x c x c x ∞== =++ + + + +???∑

数学物理方法 (2)

数学物理方法 课程类别校级优秀□省级优质√省级精品□国家精品□项目主持人李高翔 课程建设主要成员陈义成、王恩科、吴少平、刘峰数学物理方法是理科院校物理类学生的一门重要基础课,该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。因此,本课程教学质量的优劣,将直接影响到学生对后续课程的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方法是物理专业师生公认的一门“难教、难学、难懂”的课程,为了将其变为一门“易教、易学、易懂”的课程,我们对该课程的课程体系、内容设置、教学方法等方面进行了改革和建设,具体做法如下: 一、师资队伍建设 优化组合的教师队伍,是提高教学质量的根本保证。本课程师资队伍为老、中、青三结合,其中45岁以下教师全部具有博士学位,均具有高级职称。课程原责任教师汪德新教授以身作则,有计划地对青年教师进行传、帮、带,经常组织青年教师观摩老教师的课堂教学、参与数学物理方法教材编写的讨论;青年教师主动向老教师学习、请教,努力提高自身素质和教学水平。现在该课程已拥有一支以中青年教师为主的教师队伍。同时,系领导对该课程教师队伍的建设一直比较重视,有意识地安排青年教师讲授相关的后续课程,例如,本课程现责任教师李高翔教授为物理系本科生和函授生多次主讲过《电动力学》、《量子力学》、《热力学与统计物理》等课程,使得他们熟知本门课程与后续专业课程的连带关系,因此在教学中能合理取舍、突出重点,并能将枯燥的数学结果转化为具体的物理结论,有利于提高学生的学习兴趣。培养学生独立分析问题和解决问题能力的一个重要前提是教师应该具有较强的科研能力,该课程的任课教师都是活跃在国际前沿的学术带头人或学术骨干,近5年来,他们承担国家自然科学基金项目共8项,在国内外重要学术刊物上发表科研论文60余篇,并将科研成果注入教学中。此外,本课程大多数教师有多次出国合作研究的经历,并且在学校教务处和外事处的支持下,吴少平副教授参加了由国家留学基金委员会组织的赴英“双语教学研修项目”,为本课程双语教学的开展打下了良好的基础。 二、教学内容 数学物理方法是联系高等数学和物理专业课程的重要桥梁,本课程的重要任务是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法。本门课程的基本教学内容主要包括复变函数论、数学物理方程两部分。与国内流行的教材和教学内容相比,在讲解数理方程的定解问题时,本门课程教学内容的特色之一是按解法分类而不按方程的类型分类,这样,可以避免同一方法的多次重复介绍;特色之二是把线性常微分方程的级数解法和特殊函数置于复变函数论之后、数学物理方程之前,一方面可将这些内容作为复变函数理论的一个直接应用,使学生进一步巩固已学的相关知识,另一方面可使正交曲线坐标系中分离变量法的叙述更加流畅,并通过与直角坐标系中分

考研数学之物理应用分析

Born To Win 人生也许就是要学会愚忠。选我所爱,爱我所选。 考研数学之物理应用分析 数学一和数学二的学生对物理应用这一块掌握的比较薄弱。物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。2015年数学二的考研真题出了一道与物理应用有关的大题。这是个拉分题,很多同学都不会。所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。 一.明确知识框架 有句古语:知己知彼,百战不殆。物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。首先,只有数学一和数学二才考物理应用。然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。最后,有关的物理知识的储备。比如说速率,做功,压强,压力等。 二.掌握学习方法 大家在明白了物理应用的体系后,就应该掌握相应的学习方法。首先是导数中的物理应用。通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。然后是定积分中的物理应用。这是考查的重点。主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。其中克服重力做功问题已经在真题中出现过。最后是微分方程中的物理应用。通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。据此联系了位移与速率;重力,浮力及阻力与加速度关系。总之,在学习这部分知识时候,应该有一些基本的思想。比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。 三.熟练掌握题型 大家在明白了知识体系以及学习方法后就应该通过做题来巩固。不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。所以有必要对基本的物理知识进行回顾。大家可以参考下高中的物理课本就够了。针对做题,题目不求多,关键是把真题搞懂。大家可以看下从1989年到2014年的真题,找到其中的物理应用部分,然后仔细的思考下,做一下,总结题型,体会下思想方法。 总之:物理应用部分是高等数学中一个难点,虽不是热点问题,但是往往冷不丁的在真题中出现,它是制约着大家能否拿高分的瓶颈。所以,大家应该掌握物理应用的知识体系,学习方法及该做哪些题目。 文章来源:跨考教育

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

2017年高三物理总复习(专题攻略)之数学方法在物理学中的应用及高考题型答题技巧 数学方法在物理

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ=,cos φ= 则有:y = (sin φcos θ+cos φsin θ)= sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =。 【典例1】在倾角θ=30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ=3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos =,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 F min = 100 N,此时 = 30 。 【答案】 100 N 与斜面夹角为30 【名师点睛】 根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2 +b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),

数学物理方法第二次作业答案

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中张力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=?????∈-∈===0 ] ,2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变力t F ωsin 0的作用而振动。”则该定解问题为( B )。 A .?????===<<-=-===0 ,0,0)0(,)(sin 0000 2 t l x x xx tt u u u l x x x t F u a u ρ δω u x h 2 /l 0 u 图〈1〉

数学物理方法

1.就下列初始条件及边界条件解弦振动方程 1,0211,1,2t x x u x x =? ≤≤??=??-<≤?? 0 (1),01,t u x x x t =?=-≤≤? 1 0,0.x x u u t ====> 解: 22 222010 ,01,0. 0, 01,02(1),0 1. 11,1,2 x x t t u a x t t t u u t x x u u x x x t x x ====??????=≤≤>????==>??? ?≤≤????==-≤≤? ???-<≤???? 利用分离变量的方法有:(,)()(),u x t X x T t = 代入齐次方程得 " 2 " ()() ()(). X x T t a X x T t = 则 2"()"() ()() X x T t X x a T t λ==- 得常微分方程 2"()() 0,"()() 0. T t a T t X x X x λλ+=+= 利用边界条件得 "() ()0(0)(1)0.X x X x X X λ+=??==? 我们知道 1’ 00λλ<=,时不符合要求 2’ 0λ>时, 令2λβ= 则 方程的通解 X ()c o s s i n x A x B x ββ=+ 由边界 (0)(1)0X X == 得22n n λπ= s i n n n X B n x π= 得 222 "()()0n n T t a n T t π+=

即解得 'c o s 's i n n n n T C n a t D n a t ππ=+. 得 (,)()() [c o s s i n ] s n n n u x t X x T t C n a t D n a t n x πππ= =+ 通解 1 1 (,)(,)[cos sin ]sin .n n n n n u x t u x t C n at D n at n x πππ∞ ∞ ====+∑∑ 由初始条件 (1)t u x x t =?=-?=1 sin n n D n a n x ππ∞ =∑ ? 1 44 2 4[(1)1] (1)sin n n D x x n x n a n a πππ--=-=? 再由0 1,0211,1,2 t x x u x x =?≤≤??=??-<≤?? ? 1/2 1 22 1/2 42sin 2(1)sin sin 2 n n C x n xdx x n xdx n π πππ =+-= ?? ∴224414 4[(1)1](,)(sin cos sin )sin 2n n n u x t n t an t n x n n a πππππ π∞ =--=+∑ 2 .

数学物理方法第二次作业答案

第七章数学物理定解问题 1.研究均匀杆的纵振动。已知 x0端是自由的,则该端的边界条件为__。2.研究细杆的热传导,若细杆的x0 端保持绝热,则该端的边界条件为。3.弹性杆原长为 l ,一端固定,另一端被拉离平衡位置 b 而静止,放手任其振动,将其平衡位置选在 x 轴上,则其边界条件为u x 0 0 , u x l 0。 4.一根长为 l 的均匀弦,两端 x0 和 x l 固定,弦中张力为T0。在 x h 点,以横向力F0拉 弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f(0)=0,f(l)=0;_____。 5、下列方程是波动方程的是D。 A u tt a2u xx f ; B u t a2u xx f ; C u t a2u xx; D u tt a2u x。 6、泛定方程u tt a2u xx0要构成定解问题,则应有的初始条件个数为B。 A 1 个; B 2 个; C 3 个; D 4 个。 7.“一根长为 l 两端固定的弦,用手把它的中u h u 点朝横向拨开距离 h ,(如图〈 1〉所示)然后放0x l / 2 手任其振动。”该物理问题的初始条件为 ( D)。图〈 1〉 2h x, x[0, l ] u t h A .u t l2 l B.0 o u t0 2h(l x), x, l ]t 0 l [ 2 2h l x, x [ 0,] u t l2 C.u t0h D.02h l (l x), x [,l ] l2 u t t00 8.“线密度为,长为 l 的均匀弦,两端固定,开始时静止,后由于在点x0(0 x0l ) 受谐变力 F0 sin t 的作用而振动。”则该定解问题为(B)。 u tt a2 u xx F0 sin t(x x ) ,(0x l ) A . u

数学物理方法第08章习题

第八章 习题答案 8.1-1 证明递推公式: (1)()()()x l x x x l l l P P P 1=' -'- (2)()()()()x l x x x l l l P 1P P 1+=' -'+ (3)()()()()x l x x l l l P 12P P 11+=' -'-+ 证明:基本递推公式 ()()()()()x l x l x x l l l l 11P 1P P 12+-++=+ ① ()()()()x x x x x l l l l ' -'+'=-+P 2P P P 11 ② (1)将①式对x 求导后可得: ()()()()()()()x l x l x l x x l l l l l '++'=++'++-11P 1P P 12P 12 ③ 由③-()?+1l ②可得 (目的:消去()x l ' +1P ) ()()()()()()x l x l x x l l l l P 1P 12P 12+-++'+ ()()()()()x l x x l x l l l l '++'+-'=--P 12P 1P 11 整理可得:()()()x l x x x l l l P P P 1=' -'- (2)将()()()x l x x x l l l P P P 1=' -'-乘以l 得: ()()()x l x l x lx l l l P P P 21=' -'- ④ 由③-④得 (目的:消去()x l ' -1P ) ()()()()()()x l x l x x l l l l '+=++'++12P 1P 1P 1 整理可得:()()()()x l x x x l l l P 1P P 1+=' -'+ (3)由2×③-()12+l ×②可得: (目的:消去()x l ' P ) ()()()()()()x l x l x l l l l '++'+++-+11P 12P 12P 24 ()()()()()x l x l x l l l l P 12P 22P 211++' ++'+- 整理可得:()()()()x l x x l l l P 12P P 11+=' -'-+

数学物理方法

数学物理方法 Mathematical Methods in Physics 课程编号:22189906 总学时:72学分:4 课程性质:专业必修课 课程内容:数学是物理学的表述语言。复变函数论和数学物理方程是学习理论物理课程的重要的数学基础。该课程包括复变函数论和数学物理方程两部分。复变函数论部分 介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。数学物 理方程部分包括物理学中常用的几种数学物理方程的导入、解数学物理方程的分 离变量法、作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔 函数及其性质以及格林函数的基本知识。该课程有着逻辑推理抽象严谨的特点, 同时与物理以及工程又有着紧密的联系,是理工科学生必备的数学基础知识。我 们将把抽象的数学知识和在物理学中的应用结合起来,使学生不但能学习数学本 身,同时还能提高学生运用所学数学知识解决实际问题的能力。 先修课程:高等数学 参考书目:《数学物理方法》(陆全康、赵蕙芬编),第二版高等教育出版社《数学物理方法》(吴崇试)第二版,北京大学出版社 力学和热学 (1)与(2) Mechanics and Thermal Physics (1) and (2) 课程编号:22189936、22189937 总学时:28、72 学分:2、4 课程性质:专业必修课 课程内容:本课程由力学和热学两大部分组成。力学和热学都是大学物理的基础部分,是物理学各门课程的重要基础课程。力学的主要内容包括三方面:在牛顿力学方面, 主要学习牛顿定律、动量定理和动量守恒定律、动能原理及机械能守恒定律;在 刚体定轴转动方面,主要学习转动定律和角动量守恒;在振动和波方面,主要学 习简谐振动和平面简谐波。热学的主要内容包括分子物理学和热力学,主要学习 温度,热力学第一定律、第二定律,热机效率及熵增加;气体分子运动论的基本 方法,气体压强公式,分子平均动能,气体分子的麦克斯韦速率分布律,能量均 分定理。 先修课程:高等数学A(1) 参考书目:《力学》,漆安慎、杜婵英,高等教育出版社,1997年;《热学教程》(第二版),黄淑清、聂宜如、申先甲编,高等教育出版社,1994年

【最新】数学物理方法试卷(全答案)

嘉应学院 物理 系 《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别? (6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F (z )的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数F (z )的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A ,先找出函数f(z)的奇点 ; B ,把函数在 的环域作洛朗展开 1)如果展开式中没有负幂项,则 为可去奇点; 2)如果展开式中有无穷多负幂项,则 为本性奇点; 3)如果展开式中只有有限项负幂项,则 为极点,如果负幂项的最高项为 ,则 为m 阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) 这两曲线族在区域上正交。()()???==2 1,,C y x v C y x u 3)和都满足二维拉普拉斯方程。(称为共轭调和函数) ()y x u ,()y x v ,4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出挑选性的表达式(6分) )(x δ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ6、写出复数的三角形式和指数形式(8分)2 31i +三角形式: ()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+指数形式:由三角形式得:313 π ρπ?i e z ===7、求函数 在奇点的留数(8分)2) 2)(1(--z z z 解:奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z 1)1(1lim )2)(1()2(!11lim Re 22222)2(\-=?? ????--=?????---=→→z z z z z dz d sf z z

数学物理方法

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

高中物理力学学习中数学方法的应用策略研究

高中物理力学学习中数学方法的应用策略研究 摘要:物理是学生高中学习中的重点科目,也是一大难点科目,随着物理知识 难度性的增加,学生学习过程中面临着越来越多的困难,一旦没有良好的学习方 法和解题思路,很容易打击学习物理的自信心和积极性,影响学习兴趣,造成学 习效率低下,物理成绩难以提升。数学方法作为一种有效的解题方法在学习高中 物理力学知识中有重要应用作用,能够促进思维发展,降低学习难度。本文阐述 了数学方法在高中物理力学学习中的应用作用,并提出了一些具体的应用策略, 以期为高中生物理力学知识的学习进步提供一点参考意见。 关键词:数学方法;高中物理;力学;应用策略 高中物理力学知识与数学知识之间存在着一定的相通性,我们在学习物理 力学知识以及解题过程中,科学合理的运用数学方法能够加深对物理概念和现象 的理解,全面掌握物理知识点之间的联系,将抽象的知识具体化,复杂的问题简 单化,攻克物理学习中的难关。因此,研究高中物理力学学习中数学方法的应用 策略对高中生的物理学习有重要现实意义。 一、数学方法在高中物理力学学习中的应用作用 (一)加深对物理知识的理解 高中物理力学知识相较于初中物理知识难度性更大,导致我们学生在理解 物理知识时很难深刻掌握,不能熟练的运用物理知识解答物理问题,经常面对物 理力学题目没有解答思路,影响了解题效率和准确性[1]。在学习物理力学知识时,应用数学方法能够获取解题灵感,拓展解题思路,在分析题目过程中,应用数学 思维掌握题目中力学特征,更好的理解各个物理量之间的联系,采取有效的数学 方式简化解题步骤,降低解题难度。 (二)借助数学知识验证结果 在学习物理力学知识时,很多学生反映不能理解教学内容,无法保证解题 答案的准确性。借助数学知识能够有效解决这些问题,由于力学知识和数学知识 有一定的相同性,我们可以利用学习过的数学知识将力学题目模型化,将难以分 析理解的物理难点变成数学知识点,获得题目答案。除此以外,为了保证答案的 准确性,可以利用数学思维和数学方式验证结果,这一过程不仅能够强化对数学 知识的理解和应用,还能够提高解题水平[2]。 (三)应用数学知识推导物理公式 一直以来,物理力学公式的学习和应用都是我们高中物理学习中的难点所在。在攻克这一难关上,我们可以应用数学知识推导出物理公式。比如,在学习“直线运动”这部分物理知识时,可以利用三角法和代数法明确直线运动的轨迹和 规律,借助数学知识中适量运算方式分析直线运动中的速度与位移,总结二者的 分解与合成过程,推导出速度和位移的物理公式。不仅如此,我们还可以将推导 出来的物理公式进行更深层次的关系式推导,利用数学知识降低接受新知识、掌 握新公式的难度,促进对物理公式的吸收消化,让物理公式不再是我们学习中难 以攀登的高山,而是变得简单清晰起来。 二、高中物理力学学习中数学方法的具体应用策略 (一)数形结合方法 我们在数学学习中,为了挖掘出题目中的隐藏条件,提升解题效率经常使

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

高中物理中的数学知识与方法选读

高中物理中的数学知识与方法(选读) 目录: 前言 概念的描述与定义 矢量与矢量的运算 极限思想的体现 待定系数法的应用 (1)认识运动方程 (2)电学实验数据处理 解方程组 变力做功-数学和物理在解题思路中的差别 图象法解题 (1)识图辨析 (2)数形结合 导数在高中物理中的应用 (1)求速度和加速度 (2)求感应电动势 带电粒子在匀强磁场中做匀速圆周运动时,半径与轨迹的关系

前言 在多年的高中教学经历中,接触到很多学生在物理上学习得很努力、很认真,虽然在时间上大量的投入,但成绩总是差强人意。造成这种现象的原因其中之一是受到数学知识的制约,而很多物理问题都得用到数学工具和方法解决;另外一个原因是数学知识掌握得不错,平时数学成绩也好,但不能灵活运用到物理学习中来,对数学和物理两个学科只是独立地进行思考与学习,不能真正地融汇贯通。 高考《考试说明》中明确提出高中生应具备应用数学处理物理问题的能力,即能够根据具体问题列出物理量之间的数学关系式,根据数学的特点、规律进行推导、求解和合理外推,并根据结果得出物理判断、进行物理解释或作出物理结论。能根据物理问题的实际情况和所给条件,恰当地运用几何图形、函数图象等形式和方法进行分析、表达。能够从所给图象通过分析找出其所表达的物理容,用于分析和解决物理问题。 数学物理方法:对一个物理问题的处理,通常需要三个步骤:(1)利用物理定律将物理问题翻译成数学问题;(2)解该数学问题,其中解数学物理方程占有很大的比重,有多种解法;(3)将所得的数学结果翻译成物理,即讨论所得结果的物理意义。 数学与物理的联系:数学是物理的表述形式之一。其学科特点具有高度的抽象性,它能够概括物理运动的所有空间形式和一切量的关系。数学是创立和发展物理学理论的主要工具。物理原理、定律、定理往往直接从实验概括抽象出来,首先是量的测定,然后再建立起量的联系即数学关系式,其中就包含着大量的数学整理工作,本身就要大量的数学运算,才能科学地整理实验所观测到的量,找出它们之间的联系。 用数学语言来描述具体物理问题的能力培养,即能将具体问题转化为数学问题的能力,以期在数学技能与具体问题之间架起桥梁.在解决实际物理问题的时候,从建立坐标开始,包括确定自变量,找出函数关系以至积分上下限的确定等,都要以物理思想来指导.例如,

《高等数学》第四册(数学物理方法)

第一章 复数与复变函数(1) 1.计算 )(1)2; i i i i i -- = -- =-()122(12)(34)(2)5102122. ; 345(34)(34)59165 5 i i i i i i i i i i i i +-++--+++ = + =- =- --+-+5 5 51(3). ; (1)(2)(3) (13)(3) 102i i i i i i i = = = ------ 4 2 2 2 (4).(1)[(1)](2)4; i i i -=-=-=- 1 1 22 ())]a b a b i =+= 1 1 2 2 24s sin )]()(co s sin ); 2 2 i a b i θθθθ=+=++ 3. 设 1z = 2;z i = 试用三角形式表示12z z 及1 2z z 。 解: 121co s sin ;(co s sin ); 4 4 2 6 6 z i z i ππππ=+= + 121155[co s( )sin ( )](co s sin ); 2 4 6 4 6 2 12 12 z z i i π π π π ππ= + ++ = + 12 2[co s( )sin ( )]2(co s sin ); 4 6 4 6 12 12 z i i z ππππππ=- +- =+ 11.设123,,z z z 三点适合条件1230z z z ++=及1231; z z z ===试证明123,,z z z 是一个内接于单位圆 z =1 的正三角形的顶点。 证明:1230;z z ++=z 123231;312;;z z z z z z z z z ∴=--=--=-- 122331;z z z z z z ∴-=-=-123 ,,z z z ∴所组成的三角形为正三角形。 1231z z z === 123 ,,z z z ∴为以z 为圆心,1为半径的圆上的三点。 即123z ,z ,z 是内接于单位圆的正三角形。

数学物理方法习题

数学物理方法习题 第一章: 应用矢量代数方法证明下列恒等式 1、3r ?= 2、0r ??= 3、()()()()()A B B A B A A B A B ???=?-?-?+? 4、21 ()0 r ?= 5、()0A ???= 第二章: 1、下列各式在复平面上的意义是什么? (1)0; 2 Z a Z b z z -=--= (2) 0arg 4z i z i π -<<+; 1Re()2 z = 2、把下列复数分别用代数式、三角式和指数式表示出来。 1; 1i i e ++ 3、计算数值(a 和b 为实常数,x 为实变数) s i n 5i i ? s i n s i n ()i a z i b z a i b e -+ 4、函数 1 W z = 将z 平面的下列曲线变为W 平面上的什么曲线? (1)2 2 4x y += (2)y x = 5、已知解析函数()f z 的实部(,)u x y 或虚部(,)x y υ,求解析函数。 (1) 22 sin ;,(0)0;,(1)0x u e y u x y xy f u f ?==-+===; (2) (00)f υ== 6、已知等势线族的方程为22 x y +=常数,求复势。 第三章: 1、计算环路积分:

2 211132124sin 4(1).(2).1 1sin (3). (4). () 231 (5). (1)(3)z z z i z z z z z e dz dz z z z e dz dz z z z dz z z π π+=+====-+--+-? ???? 2、证明:21()!2!n n z n l z z e d n i n ξξ πξξ=? 其中l 是含有0ξ=的闭合曲线。 3、估计积分值 222i i dz z +≤? 第四章: 1、泰勒展开 (1) ln z 在0z i = (2)1 1z e -在00z = (3)函数2 1 1z z -+在1z = 2、(1) 1 ()(1)f z z z = -在区域01z <<展成洛朗级数。 (2) 1 ()(3)(4)f z z z = --按要求展开为泰勒级数或洛朗级数:① 以0z =为中心展开; ②在0z =的邻域展开;③在奇点的去心邻域中展开;④以奇点为中心展开。 3、确定下列函数的奇点和奇点性质 5 2 1 (1);(2)(1)s i n c o s z z z z -+ 第五章: 1、计算留数 (1) 2 (1)(1)z z z -+在1,z =±∞点。 (2) 3 1sin z e z -,在0z =点; (3) 31 cos 2z z -在孤立奇点和无穷远点(不是非孤立奇点);

数学方法在物理中的应用

数学方法在物理中的应用 一.极值分析 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等. 1.利用三角函数求极值 y =a cos θ+b sin θ =a 2+b 2(a a 2+b 2cos θ+b a 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=b a 2+b 2 则有:y =a 2+b 2(sin φcos θ+cos φsin θ) =a 2+b 2sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =a 2+b 2. 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2 +b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),当x =-b 2a 时,有极值ym =4ac -b24a (若二次项系数a>0,y 有极小值;若a<0,y 有极大值). 3.均值不等式 对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得 极大值 p24 ;对于三个大于零的变量a 、b 、c ,若其和a +b +c 为一定值q ,则当a =b =c 时,其积abc 取得极大值 q327 . 4.函数求导 二.迭代递推 无穷数列的求和,一般是无穷递减数列,有相应的公式可用. 等差:Sn =n(a1+an)2=na 1+n(n -1)2 d(d 为公差). 等比:Sn =a1(1-qn)1-q (q 为公比). ●例1: 如图8-2甲所示,一薄木板放在正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的正中间.木块和木板的质量均为m ,木块与木板之间、木板与

相关文档
相关文档 最新文档