文档库 最新最全的文档下载
当前位置:文档库 › 对连续式冬化工艺的分析

对连续式冬化工艺的分析

对连续式冬化工艺的分析
对连续式冬化工艺的分析

=1.2457(kg /t 油)

售G Na 2SiO 3?9H 2O =所需费用:1.2457×8.00元/kg=9.97(元/t 油)

G NaOH 实际=[1.1693×(100-30)%+0.5]÷96%=1.3734(kg/t 油)

售NaOH 所需费用:1.3734×4.00元/kg =5.49(元/t 油)

该法用碱所需费用:9.97+ 5.49=15.46(元/t 油)

硅酸钠——烧碱脱酸法比烧碱脱酸法在各自最高精炼效率时(1t 脱胶油)多得碱炼成品油:

G =y -x =972.78-931.33=41.45(kg /t 油)

若碱炼成品油的成本价按8.00元/kg 计算(假设其他费用相同),硅酸钠——烧碱脱酸法比烧碱脱

酸法(1t 脱胶油)多收入:

41.45×8.00-(15.46-6.96)=323.1(元/t 油)

若200t/d 大豆一次浸出油厂,每天得脱胶油29t ,采用硅酸钠——烧碱脱酸法比烧碱脱酸法一年(按生产200d 计算)可多收入:

323.1元/t 油×29t/d ×200d/a =187.398(万元/a)

可见,硅酸钠——烧碱脱酸法碱炼大豆油,在硅酸钠浓度为15%,NaOH 浓度为9.7%时,其经济效益是非常可观的。

主要参考文献

1 韩景生主编.油脂精炼工艺学,北京:财政经济出版社2 苏望懿主编.油脂加工工艺学,湖北科学技术出版社

收稿日期:1996—11—12

对连续式冬化工艺的分析

李 嶙

北京南顺油脂有限公司(北京房山:102401)

摘要:介绍Alfa -Laval 炼油设备的连续式中和冬化过程,并对冬化工艺和操作参数作了分析。关键词:葵花籽油 冬化 结晶罐 离心机 冷冻系统 我公司于1993年从瑞典Alfa-Laval 公司引进日处理毛油200t 的连续式炼油生产线。该生产线包括冬化工序,安插在中和工段内,其工艺与国内技术有较大区别,

现就此作一介绍。1

 工艺流程

2 工艺

2.1 磷酸脱胶与碱炼

毛葵花籽油在热量回收换热器E001内预热

8

中 国 油 脂 1997年第22卷第1期

后,在E002内用蒸汽加热到85℃~90℃。加入磷酸,在M001内高速混合以脱除磷脂胶体和金属离子(磷酸用量:85%浓度的磷酸,按油质量流量的0.1%加入)。油在进入M002A前第一次加液碱,高速混合以皂化游离脂肪酸(碱用量:浓碱稀释成14.2%,按总碱量20%的超量加入)。然后油进入离心机S001脱皂(进口压力为5.5×105Pa,出口压力为3.5×105Pa,轻相出口油中含皂500×10-6)。

加碱量计算公式为:

油流量L/h×(F FA%-1)×120

2820×浓碱浓度mol/h

=浓碱流量L/h

2.2 冬化脱蜡

在离心机轻相出口向油内加入90℃软水,做为助结晶剂(加水量为油体积流量的3%左右)。油与水在泵P003内高速混合并加压。经热量回收换热器E001和E005预冷至30℃,进E006内用制冷剂冷却到8℃以下,进入结晶罐(制冷剂为乙二醇,用冷冻机冷冻后储存于乙二醇缓冲罐BT020,采用两台低温离心泵维持冷冻循环和工作循环)。三个串联的结晶罐均为25m3容积,配有低速搅拌器,油的平均停留时间为8h。用一台单螺杆泵将油打出,通过调节螺杆泵进口阀门的开度控制T004内的液位,以保证8h以上停留时间。油经E005升温(低于20℃)后进入M004。在此第二次加碱,作为促分离的辅助剂(液碱用量为:浓碱稀释为6.9%的淡碱,按油体积流量的1%加入)。油与碱低速混和后进S002脱去蜡质和皂(进口压力0.2×105Pa,出口压力1.7×105Pa)。

结晶罐液位控制计算公式:

a.毛油流量150t/d(6.8m3/h)

T002液位100%=25m3

T003液位100%=25m3

T004液位20%=5m3

共计55m3,停留时间8h。

b.毛油流量200t/d(9m3/h)

T002液位100%=25m3

T003液位100%=25m3

T004液位88%=22m3

共计72m3,停留时间8h

2.3 水洗

从S002轻相出来的油进热量回收换热器E003预热,用蒸汽在E004内加热到85℃~90℃,进M005。在此第二次加入软水,用低速搅拌水洗(水用量为油体积流量的11%)。在离心机S003处分离出皂水(进口压力为4.5×105Pa,出口压力为2×105 Pa,轻相出口油中含皂100×10-6),油进干燥器D001真空脱水。至此,中和冬化工序完成。

3 主要设备

3.1 脱蜡离心机

采用一台PX—80型自清式离心机脱蜡。离心机转速1460r/m in~1500r/min,具有转鼓自清排渣系统,因此可以在不到20℃的温度下进行分离操作。油从离心机底部进入,在顶部轻相与重相出口处有一个向心泵,靠向心泵上三只界面管来控制分离界面,调节离心机顶部的旋钮,可从离心机外部调节界面管的伸缩,改变两相分离界面。

3.2 冷冻机

采用一台30HR140型冷冻机用于对乙二醇制冷剂的制冷。该机最低制冷温度-5℃,采用4台压缩机,处理能力879228kJ/h。上下两个冷却器水容量共有180L。

3.3 板式换热器

采用0.5mm厚不锈钢板作换热片,换热和密封效果均很好。以脱蜡时将油冷却至8℃的换热器E006为例:换热面积47.28m3,容积130.6L(油和乙二醇各65.3L),油最大流量9200kg/h,乙二醇最大流量16702kg。

4 几点分析

4.1 米糠油、玉米胚芽油、葵花籽油等油品含有较多的蜡和高融点脂,在加工和食用过程中对浊点和风味等指标有很大影响,需要用冬化方法脱除。

冬化方法有多种,按生产方式分有间歇冬化和连续式冬化,按分离方式分有过滤法和立波弗克分离法等等。目前采用过滤法的间歇冬化加工方法在国内较普遍。

4.2 该生产线的冬化工艺属于立波弗克分离法,即利用固脂与蜡质的结晶带有极性,能将阴离子洗涤剂溶液吸附在结晶的周围,使晶体分散悬浮于洗涤剂溶液中,而液体油脂不带极性。因此形成两相:油相和含有结晶悬浊液的水相,可以用离心机予以分离。

与国内比较普遍采用的间歇式布袋过滤法相比,由于立波弗克分离法在油相与固相中加入了洗涤剂水相,并使固相以悬浮颗粒的形式“溶解”于水相。故而可以使用离心机形成大规模连续生产。4.3 该生产线的冬化工艺对油脂冷却过程处理很独特,从离心机S001脱皂后的油从85℃~90℃降温到8℃以下的结晶温度只经过了三个板式换热器

9

1997年第22卷第1期 中 国 油 脂

E001、E005和E006,冷却过程停留时间不过几十秒钟。

国内一些单位这一冷却过程要在48h~72h 以上,并对降温速度要求严格。这是为了控制结晶的大小,小晶体不易过滤,大晶体含油较多。而我们这套生产线将晶体“溶解”于水相,离心机分离的不是油相与固相,而是油相与水相,这样对晶体的大小要求不高。同时,由于小晶体含油少,在水相中分散好,反而对分离有利。冷却快有利于小晶体的形成,因此选用快速冷却法。

相应的由于对晶体的要求不同,使得油在结晶罐内的停留时间大大缩短,只有8h。这就使我们省去了冷却和结晶罐的投资,并节省了能源。

4.4 该生产线将冬化工序按排在中和工段内,而不像通常那样,在中和、脱色、脱臭之后再进行脱蜡。

对于这样的安排,分析其原因是为了节省一台离心机。对于连续生产线,在中和工段必须有两台离心机。一台用于脱皂,另一台用于水洗。而脱蜡过程也需要两台离心机,一台脱蜡,一台水洗。共用4台离心机。如果将脱蜡过程与中和工序安排在一起,脱蜡水洗与脱皂水洗在一台离心机内完成,只要3台离心机即可。但这样安排也带来一个问题:固脂和蜡的晶体与皂混在一起从离心机的重相出来,很难回收。由于离心机S001出口油中含皂在500×10-6,这时作为脱蜡促结剂而加入的水起到了水洗的作用。在S002重相出口不仅有晶体,还有皂包含在水相里。因为我厂将S001与S002重相都引入一个皂脚罐,所以无法对S002重相作化验分析,其中含蜡量不得而知。

4.5 该生产线日处理毛油200t,而我公司在生产中对毛葵花籽油流量控制在150t/d。这是因为离心机S001没有自清排渣系统,用于脱皂生产时容易堵塞。采用150t/d的处理量S001不易堵塞。并且螺杆泵P004的进口处自控阀门失灵,使得T004液位没有自控,只能手控。采用150t/d的处理量时, T004只要20%的液位即可保证8h以上停留时间,调节的余量大。

4.6 从我厂生产葵花籽色拉油的效果看,在中和工段内插入冬化工序对后面的脱色、脱蜡工段没有影响,成品色拉油经

5.5h、0℃冷冻试验澄清透明,完全符合国家标准。

4.7 总体上看,这条生产线在冬化工艺上技术较新,能形成大规模连续生产,值得国内厂家借鉴。

收稿日期:1996—11—27

?简讯?

《中国油脂》杂志再次被确定为中文核心期刊

[本刊讯] 近期出版的《中文核心期刊要目总览》(第二版)上,《中国油脂》杂志再次被确定为中文核心期刊。

这本由北京大学图书馆和北京高校图书馆期刊工作者研究会合编的第二版《中文核心期刊要目总览》,继承了第一版的编辑宗旨,但在研究方法和编排体例上作了许多改进。由254名专家和期刊工作者以文献计量学原理为依据,重新研制、筛选131类学科的中文核心期刊,研制者采用索引法、文摘法、引文分析法等科学方法,从全国正在出版的包括自然科学、社会科学在内的10331种期刊中筛选出1578种为核心期刊,并请288名学科专家进行了鉴定。

《中国油脂》杂志属食品工业类,食品工业类专业期刊共有182种,通过初选、综合筛选和引文分析,共筛选出14种期刊为核心期刊,《中国油脂》杂志排名第3。

《中国油脂》杂志荣获陕西省优秀科技期刊评比一等奖

[本刊讯]在1996年11月27日—29日召开的陕西省科技期刊编辑学会96阎良年会上,公布了1995年度陕西省科技期刊审读评比结果,我刊——《中国油脂》杂志荣获“陕西省优秀科技期刊一等奖”,并颁发了奖励证书。

来自陕西省科技期刊界的近90名代表参加了本届年会,陕西省科技期刊编辑学会领导介绍了1995年度科技期刊评比情况,公布了获奖期刊的名单。会上,与会代表还就科技期刊今后的发展及如何面向市场、走向市场进行了热烈的讨论。

蒋新正 供稿

10中 国 油 脂 1997年第22卷第1期

内墙砖工艺流程

内墙砖工艺流程 墙砖的抗折强度以及规格尺寸符合设计或者样品要求,地砖的颜色一致,表面平整、无凸凹和翘曲现象,并且要求地砖的尺寸方正、无掉角,面层没有质量问题和影响美观的残缺现象,边角整齐。地砖的材质均要求有出厂证明和产品合格证,和相关的检查报告。尽量选用同一批砖,保证表面光滑、图案正确、颜色一致。板块的长宽厚允许偏差不得超过1mm;平整度用直尺检查,空隙不得超过±0.5mm。内墙砖工艺流程: 1、基层处理。 (1)首先将凸出的墙面混凝土凿平,然后进行冲洗。对用钢模板施工的光滑混凝土墙面,应进行”毛化处理”。 (2)在拆模后,用斩斧将其表面斩毛,再用硬钢丝刷一遍,将其表面尘土、污垢清除干净。 2、找规矩贴灰饼冲筋。墙面及四角找规矩时,竖向必须从顶层用大线锤吊线垂直,并在墙面的阴阳角、门窗两基层处理侧以及凸出墙面的柱、垛等部位,根据垂直线,分层设点或以每一步脚手架设点,用1:3水泥沙浆粘贴50×50MM灰饼。横向根据垂直线,以门窗口上下标高为标准,拉水平交圈通线,找直套方,贴好门窗口处灰饼。山墙及边角处,每隔1.2~1.5m贴一个灰饼,然后用1:3水泥砂浆抹竖向或横向冲筋,作为基层抹灰的厚度依据。 3、基层抹灰:厚度一般为15MM,用1:3水泥沙浆分二遍抹成。第

一遍抹灰厚约67mm,铁抹子压实,待稍干后,即可进行第二遍抹灰。第二遍灰应按冲筋抹满,用尺刮平,低凹处足,然后用木抹子搓毛,终凝后注意保养。基层抹灰应按高级抹灰质量标准检查表面平整、面垂直、阴阳角方正,不符合要求的应返工修整,发现空壳裂纹现象,应返工重抹。根据天气情况,施工时门窗关闭隔离,防止冻裂。 4、弹线排砖:按粘贴面积计算纵横皮数,水平控制线以室内施工标准水平线为依据,根据瓷砖规格尺寸,每隔5—10皮弹一道线,有墙裙的应把墙裙上口线弹出。垂直控制线根据水平控制线套方,每隔1m左右弹一条。如用压顶条、阴阳三角条等配件时,镶边位置预先分配好,然后分尺寸、划皮数,进行预排。瓷砖排列方法一般为二种,一种是横竖都在一直线上,俗称直线排列;另一种是竖缝错开半砖,俗称骑缝排列。 5、浸砖:挑选规格、颜色一致的瓷砖,放在水中浸泡2h,直至不泛泡为止,取出晾干或擦净备用。 6、粘贴:粘贴砂浆一般为1:1水泥砂浆,用披灰法粘贴。粘贴时,先在两端最下皮控制瓷砖上口外表挂线,然后在瓷砖的背面披上34m厚度的砂浆,紧*底尺板表面贴,垂直以认定瓷砖一侧,对准墙上所弹的垂线。贴上墙的瓷砖,用多抹子木柄轻敲砖面,使瓷砖面附线平整,粘结牢固。另外,粘贴时如采用掺胶水粘结层厚度一般为2-3mm,涂抹工具最好把钢抹子一边做成锯齿形,使爱作既省力又使粘结砂浆或胶泥厚度抹得均匀。贴上墙的瓷砖应用手轻压或用橡皮锤轻敲,使瓷

非线性动力系统的连续线性化模型及其数值计算方法

垫拯生』选盆煎!!! 非线性动力系统的连续线性化模型及其数值计算方法。 苏志霄郑兆昌 (清华大学工程力学系,北京,100084) 谁≮ 'I广 摘要秭4用Taylor级数展开导出了任意自治或非自治非线性动力系统的瞬时线性化方程,该线性方程的连续变化描述了系统的全部复杂动力行为。 进一步求解系统的线性化方程,得到一种非线性动力系统数值计算的新 的递推格式,计算实例表明其精度高于传统的Houbolt、Wilson.o及 Newmark-13等方法,且在计算时间步长较大时,仍然具有足够的计算精 度3文末通过数值计算研究了Duffing方程和vanderPol方程的混沌及 周期特性。 关键词非线性动力系统连续线性化模型Dumng方程vailderPol方程 近年来,非线性动力系统的定性分析方法在低维系统中的应用已逐步完善。然而。由于非线性系统一般不存在解析解,因此通常利用逐步积分法、有限差分法[1,2]及其他方法,如Taylor变换法[3】等数值算法得到其数值解。各种数值方法均是基于时间历程上的差分方法,也即通过各种形式的函数曲线来近似代替时间步长上振动系统的实际响应形式。 运动学研究历史上,静止被认为是运动的瞬时存在状态。与此类似,线性结构可认为是非线性系统的瞬时表现形式,线性系统的连续变化反映了非线性动力系统的全部复杂行为。非线性系统的瞬态响应依赖于该瞬时的线性结构,而该时刻线性结构的确定又依赖于上一连续瞬时非线性系统的响应。因此,非线性系统的响应具有连续递推性。由此观点可发展为非线性动力系统的连续线性模型理论。本文即从此出发,推导了一般自治或非自治非线性动力系统的瞬态线性方程,精确求解该线性化方程得到非线性系统的一种新的数值算法。该方法本质上以瞬态线性结构的精确响应来近似代替离散时间段内非线性系统的响应,区别于传统差分方法中以直线或各种曲线近似代替的思想。计算实例表明该方法较传统方法相比,大大提高了计算精度。文末计算了强迫Duffmg方程与强迫vallderP01方程的混沌及周期特性。 1非线性系统的连续线性化模型 考虑相空间中的,l维自治或非自治非线性系统 ‘国家重点基础研究发展规划项目(编号:G1998020316)。国家自然科学基金资助项目(NO.19972029),中国博士后科学基金资助项目(中博基【1999】)17号。

原料药生产新趋势:连续化生产

原料药生产新趋势:连续化生产摘要: 随着原料药行业的竞争日益激烈,各大原料药生产企业对于生产的效率、产能等要素的要求不断提高,而目前传统生产模式(批次模式)显然已不能满足生产需求。本文通过对连续化生产概念及过程的阐述,改变传统生产模式,对工艺设备提出新的技术要求,为原料药生产提出更经济更灵活的新方案。同时,质量源于设计,新工艺离不开专业设备及专业技术的支持。本文将介绍我公司的几种连续化生产设备,为推进连续化生产的进程做出努力。 关键词:原料药;连续化生产 随着科学与技术的长足进步,连续化生产的概念在各大制造研讨会及各大原料药生产企业之间逐步被提及并日渐熟知,此项新的生产模式为药品生产提供了一个更高效、更经济、更具柔性的可行性方案。 一、国内目前原料药生产模式及弊端 目前国际流行或者说大多数企业所采用的原料药生产模式依旧是传统生产模式即间歇性批次生产模式(或者说是一系列操作的串联),在生产过程中,每个单元生产结束后都需要进行检测,检验合格后方能可以进入下个单元。一个批次产品从投入到产出所对应的工艺阶段及时间均是高度一致的,各个环节视同最终的产品,一旦某个环节检验出产品不合格,即将同一批次的所有产品均视同不合格被抽调出来,进行复验等工作。 间歇性批次生产模式中每个单元实际生产耗时并不长,而大部分时间主要用于产品周转与检验。为了缩短生产时间提高效率,大多生产企业建厂之初都采取加大每批次的投放量以减少取样次数及中间检验次数达到缩短时间提高效率目的,但同时也带来相应的弊端:一是设备体积、重量等越来越大,变得笨重、不灵活;二是由于投放量的增加,用于周转的料桶随之增加,变得数量众多,堆积在厂房内,占用大量厂房空间,降低厂房的利用率;三是增大设备成本、维护、维修、保洁等费用;四是库存难以预测,更换批次时间长,市场反应慢等。 二、原料药生产新趋势——连续化生产

聚合工艺危险性分析

编号:SM-ZD-28969 聚合工艺危险性分析Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

聚合工艺危险性分析 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1固有危险性 固有危险性是指聚合反应中的原料、产品、中间产品等本身具有的危险有害特性。 1.1火灾危险性 参加聚合反应介质的自聚和燃爆危险性: 单烯烃聚合单体包括液态的乙烯、丙烯、氯乙烯、苯乙烯等,都属于甲类火灾危险性易燃液体。二烯聚合所指的单体主要包括丁二烯、双环戊二烯、苯乙烯、丙烯腈、乙烯、丙烯等都是易燃物质,其蒸气能与空气形成爆炸性混合物。有些单体的储存温度低于沸点,所以需要在氮气保护下储存。有些单体是在压力下储存,在向储罐投单体前,应彻底用氮气置换。除乙烯、丙烯外其他单体都有自聚的特性,生成聚合物后容易堵塞输送管道。二烯烃(丁二烯、双环戊二烯)不仅能自聚,而且还能生成过氧化物,这是一种有爆炸危险的不稳定物质。

日用瓷与建筑陶瓷生产工艺流程

日用陶瓷与建筑陶瓷生产工艺流程 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧

密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土 粘土主要是由铝硅酸盐岩石(火成的、高质的、沉积的)如长石岩、伟晶花岗岩、斑岩、片麻岩等长期风化而成,是多种微细矿物的混和体。 粘土通常分为: (1)高岭土——也称瓷土,为高纯度粘土,烧成后呈白色,主要用于制造瓷器。 (2)陶土——也称微晶高岭土,较纯净,烧成后略呈浅灰色,主要用于制造陶器。 (3)砂质粘土——含有多量细砂、尘土、有机物、铁化物等,是制造普通砖瓦的原料。 (4)耐火粘土——也称耐火泥,此种粘土含杂质较少,熔剂大

地下工程数值方法

《地下工程数值方法》 读书报告 专业:地下工程 姓名:张恒 学号:09017011

地下工程数值方法探讨 (张恒 09017011) 摘要:岩体工程中的岩土力学数值分析方法得到了迅速发展,出现了各种各样的数值分析方法。归纳和总结了前人关于数值分析方法的研究成果,对各种方法的研究现状和最新进展进行评述,并作了岩体工程问题的现代数值分析方法总的概论,最后提出了解决问题的思路、方法和建议。 关键字:地下工程,数值方法,数值模拟 1 引言 数值模拟是解决岩土工程问题的有效手段,它已越来越多地应用于岩土体稳定性、岩土工程设计和岩土工程基本问题分析中。为了获得岩土工程的设计参数或对岩体力学状态的评估,比较有效的方法有类比法、解析法、现场测试法、物理模拟法和数值模拟法。类比法适用于有历史经验记录的类似现场,而对历史经验较少的现场,它得到的结论是不可靠的,甚至是错误的;现场测试工作往往只能在一个很小的范围内进行,很难以小范围的测试代表复杂的大范围的工程岩土体;解析法只能在简化的前提下,给出一些最简单问题的解,它对复杂介质、复杂边界或动态问题,常常无能为力。因此,数值方法的出现和不断发展是一种必然。 岩土体不同于一般固体力学研究的对象,有限单元法、边界单元法、有限差分法等均能成功地应用于均质(或较均质)、物理力学性质清楚的材料(如金属)的力学分析,也能够较成功地分析较均质的岩土体的应力应变问题。数值方法甚至通过方法本身的发展,如引入节理单元、增强非线性分析能力等手段,可分析含不连续界面和多介质的较复杂的岩土体的力学行为。但随着岩土力学学科的发展和人们对岩土体科学认识的进一步深化,仅依靠固体力学中常用的数值分析方法已不能满足岩土力学数值分析的要求。显然,岩土力学的数值模拟问题比其它工程力学问题复杂得多,迫切需要建立更加简洁有效的新的数值方法。 正因为上述原因,岩土力学数值方法的研究一直是岩土力学学科中被关注的热点,近年来相继出现了一系列新的数值方法,如有限元中的节理单元法(joint element,JE)、离散单元法(discrete element method,DEM)、块体理论(block theory,BT)、不连续变形分析(discontinuous deformation analysis,DDA)、

精细化工的连续化改造

农药、医药、染料、助剂等精细化工产品一般的规模小、产量低、生产步骤多,但品类繁多,远超基础大宗化工产品。除了其一般定义所述的特点外,还有一个重要的特征是,由于它们在工业化过程中受历史条件的决定,不像基础化工产品的生产那样在工艺上得到过比较充分的研究,因此表现出精细产品粗糙生产的现象,具体表现为设备简陋,现场观感不佳,使用多个反应釜完成相同的反应,使用大量的水或溶剂进行工艺分离,最终使企业的安全、环保、成本、质量等目标要素提升不起来,市场竞争力软弱,更有甚者在当前环保和安全严格的门槛前倒下。 可喜的是,我国由于近些年制造业的大发展,新技术的发展也非常了不起,有不少已代表了国际水准。在此针对上述精细化工存在的系统性短板,介绍一些专门做间歇生产工艺转换成连续化工艺的科技公司,该公司多年已悄然做过不少产品的连续化实例,当前制造业表面静稳,但转型升级暗潮涌动。向外做生意,市场已经生化均质;而向看实力,做功,可能对企业的提升会有蓦然回首的效果,新的技术需要好好关注。 医药、农药等化工间歇生产工艺的重大变革 —-生产线连续化规模化提升技术 在我国,虽然大型石油化工及基础化工产业生产过程基本都是连续自动化的,然而超过92%的产品品种,尤其是全球年需求总量在十万吨以下的品种,几乎均是间歇化的生产过程为主。其生产装置几乎是实验室过程的单纯放大,可以称之为大实验室。这些工厂在工艺技术上还算成熟,但其

诞生过程中工程化技术却没有得以认真的研究,可以说,每个间歇作业的化工装置,都隐藏着对生产、安全、节能、环保不利的因素。 传统生产方式中,专利发明人在实验室完成间歇式工艺技术的发明,并用同样的条件进行了工艺过程的完善,以最小代价获得合格产品,进而形成了某个产品的工艺技术。在放大生产时,实验室方法与手段被照搬——可称之为中型实验室。在产品获得市场认可进一步进行工厂化生产时,同样按此过程,使得生产装置成为大实验室。 一般说来,完善的生产装置应当由两大部分组成,即工艺技术和工程技术。上述大实验室式的生产车间表明工厂具有可行的工艺技术,但通常无法真正做到节能、降耗、减排和本质安全,缺乏核心竞争力。 大部分装置都是由合成单元及后处理单元组成。间歇生产在合成单元采用的反应器通常都是反应釜。后处理单元通常是以提纯回收、精制为目的,主要涉及固液分离(过滤、干燥等)、气液分离(蒸发、浓缩等);均相及非均相的液液分离(结晶、萃取、分相、精馏等)。连续化是工程技术的一种体现形式,任何工艺技术均可以通过工程技术的引入而实现连续化生产,即便这个工艺过程涉及到气、液、固多相物料的组合。 工程技术通常也是由反应工程技术和后处理工程技术组成。 一、关于反应工程连续化 传统间歇生产过程中,最常见的反应设备是反应釜,它仿佛是万能设备,几乎适用于所有的反应过程。正因如此,我们在考虑反应时,大脑中首先想到的就只是反应釜,事实上,这是一种极不恰当的选择。 众所周知,合成产品(如基础原料、医药产品、农药、染料及各

聚合工艺危险性分析复习课程

聚合工艺危险性分析 1固有危险性 固有危险性是指聚合反应中的原料、产品、中间产品等本身具有的危险有害特性。 火灾危险性 参加聚合反应介质的自聚和燃爆危险性: 单烯烃聚合单体包括液态的乙烯、丙烯、氯乙烯、苯乙烯等,都属于甲类火灾危险性易燃液体。二烯聚合所指的单体主要包括丁二烯、双环戊二烯、苯乙烯、丙烯腈、乙烯、丙烯等都是易燃物质,其蒸气能与空气形成爆炸性混合物。有些单体的储存温度低于沸点,所以需要在氮气保护下储存。有些单体是在压力下储存,在向储罐投单体前,应彻底用氮气置换。除乙烯、丙烯外其他单体都有自聚的特性,生成聚合物后容易堵塞输送管道。二烯烃(丁二烯、双环戊二烯)不仅能自聚,而且还能生成过氧化物,这是一种有爆炸危险的不稳定物质。 单烯烃聚合反应的引发剂(催化剂)一般是不稳定物质,有的为强氧化剂,有的可分解爆炸,有的易自燃,与空气或其他物质接触可发生激烈的化学反应,甚至引起爆炸,如过氧化物、偶氮化合物、烷基铝和三氟化硼。 爆炸危险性 如烯烃聚合所需单体丁二烯、双环戊二烯、苯乙烯、丙烯腈、乙烯、丙烯等易燃物质的蒸气能与空气形成爆炸性混合物,有些单体的储存温度低于沸点,所以需要在氮气保护下储存,有些单体是在压力下储存的,在向储罐投单体前,应彻底用氮气置换。除乙烯、丙烯外其他单体都有自聚的特性,生成聚合物后容易堵塞输送管道。二烯烃(丁二烯、双环戊二烯)不仅能自聚,而且还能生成过氧化物,这是一种有爆炸危险的不稳定物质。 中毒危险性 环氧乙烷、苯乙烯、氯乙烯等反应物具有一定的毒性。如环氧乙烷属于高度危害,氯乙烯属于极度危害,其余大多属于轻度危害,如乙烯、苯乙烯等。 2工艺过程的危险性 (1)本体聚合:这种聚合方法往往由于聚合热不易传导散出而导致危险。例如在高压聚乙烯生产中,每聚合乙烯会放出3.8MJ的热量,倘若这些热量未能及时移去,则每聚合1%的乙烯,即可使釜内温度升高12~,待升高到一定温度时,就会使乙烯分解,强烈放热,有发生暴聚的危险。一旦发生暴聚,则设备堵塞,压力骤增,极易发生爆炸。 (2)溶液聚合

陶瓷地砖的生产工艺和流程

建筑陶瓷是包括几百种以上砖陶、土器制品的统称,范围广,种类多,其中仅砖的分类方法就各有差别,以下介绍几种常见分类方法: 1、按GB/T4100-2006国家标准分: λ瓷质砖:E≤0.5% λ炻瓷砖:0.5%≤E≤3% λ细炻砖:3%≤E≤6%,一般为釉面地砖 λ陶质砖:Eλ炻质砖:6%>10%,一般为釉面墙砖 2、按适用场所分类: λ外墙砖:用于外墙墙面装饰的各种砖,以低吸水率为好; λ内墙砖:用于内墙墙面装饰的各种砖; λ室内地砖:在室内地面使用的各种砖; λ室外地砖:包括庭院砖、广场砖、人行道砖等,以低吸水率为好; λ特殊用砖:如游泳池砖、超市砖、工业用砖等。 超市砖要求超强耐磨,工业砖要求耐强酸强碱等。 3、按产品的制作工艺分: λ亚面砖: * 运用亚面釉生产的产品; * 具有表面柔和无光的装饰效果; * 特点是表面发涩,防滑,主要用于厨房、卫生间。 ---------------------------------------------------------------------------------- λ亮面砖: * 运用各种效果釉生产的产品; * 砖面根据不同的设计、使用不同的效果釉、运用不同的工艺呈现不同的装饰效果。例:金属釉产品可以生产出仿金属效果的瓷砖; * 特点是产品丰富多彩,用途广,可以根据产品的特点选择使用于各种场合。 ---------------------------------------------------------------------------------- 毛面砖: * 运用模具生产,表面具有凹凸的亚面砖; * 具有仿真、仿古等装饰效果; * 较强的止滑功能,室内外均能使用。 ---------------------------------------------------------------------------------- 半抛砖: * 运用表面半抛、柔抛等方式制作,半抛面可以根据不同设计,有块状、点状和各种图形状; * 表面呈现各种光影折射效果,绚丽多彩; * 适用室内各类装饰。 ---------------------------------------------------------------------------------- λ全抛砖: * 运用全抛技术生产的产品,分通体抛光砖和釉面抛光砖,通体抛光砖颜色稀少、花纹简单,但优质的通体抛光砖耐磨性较好。釉面抛光砖五彩缤纷、图案丰富,表面平整晶亮,清晰可鉴发丝,

危险化学品知识及工艺危险性分析.

对本建设项目危险有害因素的辨识,主要依据《企业职工伤亡事故分类》GB6441-1986、《生产过程危险和有害因素分类与代码》GB/T13861-1992、《职业病范围和职业病患者处理办法的规定》(1987年11月5日卫生部、劳动人事部、财政部、中华全国总工会发布)等法规、标准的规定。 3.1 危险有害物质的识别和确认分析结果 3.1.1原料、中间产品、最终产品理化性能指标 本建设项目原料:乙醇、甲酸、乙二醛、硝酸、硫酸、氢氧化钠等。 产品:甲酸乙酯、乙醛酸。副产品:乙二酸、硝酸钠、亚硝酸钠 中间产物:一氧化氮,为有毒气体。 辅助材料:氨,制冷介质,为有毒气体。 本建设项目中主要物质的危险特性见 3.0.0-1、3.0.0-2。

表3.0.0-1 物质的理化特性表 序号名称外观与形状 熔点 (-℃) 沸点(-℃) 饱和蒸气压 (kPa) 相对密度(水=1) 溶解性备注 1 乙醇无色液体,有酒香-114.1 78.3 5.33 0.79 混溶于水,可溶于氯仿、甘油、醚多种有机溶剂 2 甲酸无色透明发烟液体,有强 烈刺激性酸味 8.2 100.8 0.67 1.23 与水混溶,不溶于烃类,可混溶 于乙醇 3 乙二醛淡黄色液体,微有臭味15 50.5 29.3 1.1 4 溶于水、醇、醚 4 硝酸无色透明发烟液体,有酸味-42 86 4.4 1.50 5 硫酸无色透明油状液体,无嗅10.5 330 0.13 1.083 与水混溶 6 甲酸乙酯无色流动液体,有芳香气味-79 54.3 13.33 0.92 微溶于水,溶于苯、乙醇、乙醚等多数有机溶剂 7 乙醛酸淡黄色透明液体,有芳香气 味 98 111 1mmHg 1.42 溶于水,微溶于苯、乙醇、乙醚等 多数有机溶剂 8 氢氧化钠溶液纯品为无色液体无资料无资料无资料无资料与水混溶 9 乙二酸无色透明结晶体189.5 100℃升 华 1.90 易溶于乙醇,溶于水,微溶于乙 醚,不溶于苯和氯仿。 10 硝酸钠 无色透明或白微带黄色的菱 形结晶,味微苦,易潮解。306.8 无资料无资料 2.26水=1 易溶于水、液氨,微溶于乙醇、 甘油。 11 亚硝酸钠 白色或淡黄色细结晶,无臭, 略有咸味,易潮解271 320(分 解) 无资料 2.17水=1 易溶于水,微溶于乙醇、甲醇、 乙醚。 12 氨无色有刺激性气体-77.7 -33.5 506.62(4.7 ℃) 0.6空气=1 易溶于水、乙醇、乙醚。 13 一氧化氮无色气体-163.6-151无资料无资料微溶于水 2

连续硝化反应工艺生产流程介绍及图示

连续硝化反应工艺生产流程介绍及图示 连续硝化生产工艺流程包括配酸碱混合工艺、硝化工艺、水洗工艺和萃取工艺四种工艺流程。 四个工艺流程分别如下: 一、配酸配碱工艺流程如图2.1所示。 配酸配碱工艺流程 上图所示为配酸配碱工艺流程图,该工艺流程由配酸工艺流程、配碱工艺流程两部分组成。对配酸部分的工艺流程、控制需求进行如下说明: 1、按照工艺要求,在储料罐中提取定量的浓度98%的硫酸溶液和浓度80%的硫酸溶液,还有浓硝酸溶液,量取时使用计量罐作为定量标准; 2、把上述步骤中计量罐中量取的三种物料分别送到混酸配制釜,之后使用搅拌器进行搅拌,此时需控制配置釜内的温度。最后把得到

的混酸溶液在泵的作用下送入到混酸储罐中进行储存; 3、把上述步骤中得到的混酸溶液在泵的作用下送入到混酸中间罐。 上述步骤为配酸工艺流程,配碱的工艺流程与之类似,配碱的工艺流程是为了得到混酸溶液,然后把它存储在混酸储罐中待用。在这一流程中,系统应该对液碱计量罐以及废水计量罐的液位进行监控,并对液位数据设置上下限报警以及与泵的联锁启停功能,同时需检测液碱配制釜内的温度并在上位机显示。 二、硝化反应流程如图2.2所示。 硝化反应工艺流程 上图所示为硝化反应的工艺流程图,对其流程和控制需求进行如下说明: 1、在泵的作用下,把废硫酸中间罐和萃取硝化物储罐以及混酸中间罐中的物料送入到硝化反应器中,之后进行硝化反应。 注意:在上述步骤供物料的过程中,系统应该对三个储罐中液位

进行监控,同时,对萃取硝化物储罐液位进行数的据设置,以实现上、下限的报警功能,为废硫酸中间罐和混酸中间罐的液位数据设置上下限报警以及与泵的联锁启停功能。 2、在这个过程中,系统应该对硝化反应器的各反应管出口温度以及夹套冷却管中的冰盐水温度,根据夹套冷却管内的冰盐水温度控制其调节阀的开度,以达到控制反应釜内的温度的目的,确保安全生产。 三、水洗工艺流程如图2.3所示。 水洗工艺流程 上图所示为水洗工艺流程图,该工艺流程由水洗、碱洗两部分组成,对工艺的流程和控制需求进行说明: 1、在泵的作用下,把液碱中间罐中的物料送入到碱洗管中,物料的供给过程中要使用蒸汽加热器为物料进行加热,以达到工艺所需温度,之后,在泵的作用下,把粗硝化物储罐中的物料送入到碱洗管中;

化工企业工艺装置危险性分析

化工企业工艺装置危险性分析化工企业的高危险工艺生产装置主要是指含有硝化、磺化、卤化、强氧化、重氮化、加氢等化学反应过程和存在高温(≥300℃)、高 压(≥10MPa)、深冷(≤-29℃)等极端操作条件的生产装置。 高危险储存装置主要指剧毒品、液化烃、液氨、低闪点(≤-18℃) 易燃液体、液化气体等危险化学品储存装置。 (一)高危险生产装置的危险性 下面,介绍六类常见的最主要的高危险生产装置的危险性。 1、硝化反应。有两种:一种是指有机化合物分子中引入硝基取代氢 原子而生成硝基化合物的反应,如苯硝化制取硝基苯、甘油硝化制 取硝化甘油;另一种是硝酸根取代有机化合物中的羟基生成硝酸酯 的化学反应。生产染料和医药中间体的反应大部分是硝化反应。 硝化反应的主要危险性有: (1)爆炸。硝化是剧烈放热反应,操作稍有疏忽、如中途搅拌停止、 冷却水供应不足或加料速度过快等,都易造成温度失控而爆炸。(2)火灾。被硝化的物质和硝化产品大多为易燃、有毒物质,受热、 磨擦撞击、接触火源极易造成火灾。

(3)突沸冲料导致灼伤等。硝化使用的混酸具有强烈的氧化性、腐蚀性,与不饱和有机物接触就会引起燃烧。混酸遇水会引发突沸冲料事故。 2、磺化反应。磺化反应是有机物分子中引入磺(酸)基的反应。磺化生产装置的主要类型: (1)烷烃的磺化。如生产十二烷基磺酸钠、 (2)苯环的磺化。如生产苯磺酸钠类。 (3)各种聚合物的磺化和氯磺化。如生产各种颜料、染料的磺化等。 磺化反应的主要危险性有: (1)火灾。常用的磺化剂,如浓硫酸、氯磺酸等是强氧化剂,原料多为可燃物。如果磺化反应投料顺序颠倒、投料速度过快、搅拌不良、冷却效果不佳而造成反应温度过高,易引发火灾危险。 (2)爆炸。磺化是强放热反应,若不能有效控制投料、搅拌、冷却等操作环节,反应温度会急剧升高,导致爆炸事故。 (3)沸溢和腐蚀。常用的磺化剂三氧化硫遇水生成硫酸,会放出大量热能造成沸溢事故,并因硫酸的强腐蚀性而减少设备寿命。

陶瓷砖生产工艺流程

陶瓷的定义 ?陶瓷的定义: 以粘土为主要原料加上其他天然矿物原 料经过拣选、粉碎、混练、煅烧等工序制 作的各类产品称作陶瓷。分为日用陶瓷、 建筑陶瓷、电瓷。以上陶瓷制品使用的主 要原料是自然界的硅酸盐矿物(如粘土、 长石、石英)所以又归属硅酸盐类及制品 范畴。 陶瓷发展史 ?我国是陶瓷生产大国,陶瓷生产有悠久历史和辉煌成就。我国最早烧制的是陶器。由于古代人民经过长期实践,积累经验,在原料的选择和精制、窑炉的改进及烧成温度的提高,釉的发展和使用有了新的突破,实现陶器到瓷器的转变。陶瓷工业的新工艺、新技术、新设备层出不穷。

世界瓷砖生产量 ?目前世界瓷砖的生产和消费都获得了较大的发展。2008年世界瓷砖产量84.95亿㎡,比07年增长3.5%左右。在世界瓷砖生产总量中,亚洲处于主导地位,生产量亚洲为61.4%,欧洲为21.6%,美洲为13.5%,消费的比例大致为亚洲为58.9%,欧洲为20.1%,美洲为15.7%。我国生产量大概34亿㎡,占世界生产份额达40%左右,西班牙生产量在5亿㎡左右,意大利生产量在5亿左右。 陶瓷行业布局 ?生产基地以佛山为主 ?新的生产基地目前在江西兴起

瓷砖分类瓷砖 陶质砖瓷质砖 地砖 内墙砖 抛光瓷质砖炻质砖外墙砖 渗花砖微粉砖瓷质釉面砖 ?我公司生产的 瓷砖品种繁 多,现以地砖 生产过程为例 对我公司的生 产工艺流程做 个简单的介绍。 瓷砖的分类原则 ?1、吸水率:用水加入砖底看水吸收快慢陶质砖:E>10% 炻质砖:0.5%< E ≤ 10% 瓷质砖:E≤0.5% ?2、透光性: 陶质砖:不透光 炻质砖:透光性差 瓷质砖:透光

工艺危险性分析报告

山东天泰钢塑有限公司 工艺危险性分析报告 一、产品及工艺简介 1)1、3、4号线生产工艺:将硫磺块放入燃硫炉内燃烧,产生二氧化硫气体,经引风机引入旋风除尘器进行净化,再进入风冷器和水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。 2)2号线生产工艺:将硫磺块放入溶硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 3)5号线生产工艺:将硫磺块放入粗硫池内用蒸汽熔化,经过过滤器滤去杂质,打入精硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫

的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 反应方程式为: S+O 2=SO 2 2NH 3·H 2 O+SO 2 =(NH 4 ) 2 SO 3 +H 2 O 3)生产工流程简图如下图所示。 二、工艺的危险性分析及处置措施 1生产装置 1.1生产过程危险因素分析 ①管路输送物料过程中,系统密封不严,发生物料泄漏,可能发生火灾、爆炸、中毒窒息事故。 ②设备、设施防静电设施不合格,物料流速过快,有可能产生静电火花引发火灾爆炸事故。 ③设备、法兰、管道密封不严或锈蚀穿孔,发生高温物料喷溅,可能发生中毒、灼烫事故。 ④作业场所通风不良,可能发生中毒和窒息事故。 ⑤操作人员劳动防护用品穿戴不齐或失效,也可能发生意外事故。 ⑥开停车前后,检修过程系统没有整体置换或置换不完全,系统内物料和空气形成爆炸性混合气体,遇明火、火花有引发火灾爆炸的

连续膨化工艺的安全性分析和安全技术示范文本

连续膨化工艺的安全性分析和安全技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

连续膨化工艺的安全性分析和安全技术 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 连续膨化硝酸铵工艺,从原材料硝酸铵的破碎、计 量、溶解、到螺旋输送等工序都是现行工业炸药生产中, 比较成熟可靠的工艺技术,硝酸铵的膨化与现行工业粉状 硝酸铵生产中真空干燥结晶工艺,就其化工原理没有本质 的区别,我国至今还有多家硝酸铵生产企业仍然沿用此种 工艺生产工业硝酸铵,实践证明是安全可靠的;民爆行业 各厂家就硝酸铵的破碎、溶解及输送方式基本相同,只是 膨化方式有所不同。 1连续膨化方案的确定 膨化硝酸铵炸药连续膨化生产工艺的关键:是硝酸铵 的连续膨化,而连续膨化方案的确定至关重要。通过对硝

酸铵现行生产企业的制备方法、间断法制备膨化硝酸铵以及对膨化硝酸铵特性的分析,对各种可能实现连续膨化的途径进行详细的论证、研究,最终确定了“动态进料、静态膨化”的连续膨化方案。该方案主要由连续膨化结晶机、冷凝器、真空泵等组成一个完整的连续真空膨化结晶系统。 2连续膨化结晶机结构及工作原理 膨化结晶机是由外壳为不锈钢材料制成、垂直放置的外圆柱体,其中部是一个固定、带蒸汽夹层起保温作用、横截面为矩形的环面。即为硝酸铵膨化的结晶盘,它将膨化结晶机内部沿上、下方向分成膨化空间和储料(仓)空间。膨化结晶机中心贯穿一条由上、下两段轴组成、其上轴中心有一通孔的传动主轴,它即是膨化结晶机的传动轴、同时中心通孔又是 硝酸铵溶液进入膨化结晶机的通道,该通道一直接到

化工企业工艺装置危险性分析

编号:SM-ZD-72838 化工企业工艺装置危险性 分析 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

化工企业工艺装置危险性分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 化工企业的高危险工艺生产装置主要是指含有硝化、磺化、卤化、强氧化、重氮化、加氢等化学反应过程和存在高温(≥300℃)、高压(≥10MPa)、深冷(≤-29 ℃)等极端操作条件的生产装置。 高危险储存装置主要指剧毒品、液化烃、液氨、低闪点(≤-18 ℃)易燃液体、液化气体等危险化学品储存装置。 (一)高危险生产装置的危险性 下面,介绍六类常见的最主要的高危险生产装置的危险性。 1、硝化反应。有两种:一种是指有机化合物分子中引入硝基取代氢原子而生成硝基化合物的反应,如苯硝化制取硝基苯、甘油硝化制取硝化甘油;另一种是硝酸根取代有机化合物中的羟基生成硝酸酯的化学反应。生产染料和医药中间体的反应大部分是硝化反应。

全抛釉瓷砖生产工艺简介

全抛釉瓷砖生产工艺简介 全抛釉瓷砖通过抛光仿古砖表面的一种特殊配方釉而形成的一种瓷砖。这种釉料是施于仿古砖面的最后一道釉,当前一般为透明面釉,施了全抛釉的全抛釉瓷砖集抛光砖与仿古砖优点于一体的,釉面如抛光砖般光滑亮洁,同时其釉面花色如仿古砖般图案丰富,色彩厚重或绚丽。其釉料特点是透明不遮盖底下的面釉和各道花釉,抛釉时只抛掉透明釉的薄薄一层,效果更是别具一格。 一、全抛釉瓷砖技术特点 运用多层特殊制造工艺,将全透析釉料下彩技术结合先进印刷工艺,令花纹俯在下层,低碳能源、清洁生产,表面光洁剔透,独有釉料精抛工序,与抛光砖比较可以减少90%的材料损耗,更加节能减排,绿色环保;并且取代了稀缺昂贵的高档石材,降低建筑装饰成本,保护自然资源。产品华贵大气,格调高雅,呈现如水晶般的璀璨炫丽,源于石材,更胜过石材。 二、工艺介绍 全抛釉是釉下彩,全抛釉瓷砖属于釉面砖。其坯体工艺类似于一般的釉面地砖,主要不同是它在施完底釉后就印花,再施一层透明的面釉,烧制后把整个面釉抛去一部份,保留一部份面釉层、印花层、底釉,全抛砖的主要目标是代替抛光砖。 1、原料成分: 其化学成份主要以:钾钠长石,方解石,石英,硅灰石,高岭土,氧化铝等组成; 2、原料加工:将上述原料经过研磨、干燥成粉用于成型; 3、成型:使用高吨位全自动压砖机成型; 4、干燥:将成型的砖坯干燥使其强度增加用于下道表面装饰工序; 5、施釉和印花:施釉和印花是仿古砖生产的重要工序,生产中主要工艺控制点基本集中在施釉线上,很多仿古砖产品通过印花技术使表面的花色得到改善,提高其品味。前几年,仿古砖主要通过云彩、磨釉产生花色不重复的效果,其后则趋向于用胶辊印花、干粉印花等手段来实现仿古、仿天然的图案。目前国内生产逐渐采用陶瓷喷墨打印技术。通过这些新技术在生产中的应用,使瓷砖的表面花纹随机变化,花色和品种多样,为取代天然材料的技术研究开辟了新的途径。 印花后的砖坯最后再上一道用于抛光的特殊透明釉。 6、烧成:烧成是陶瓷生产的心脏,为了使仿古砖的产品吸水率控制在0.5%以下,达到完全玻化的状态,烧成温度已提高到1200℃以上。此外,为了使瓷砖达到特殊的装饰效果,除了一次烧成之外,二次烧、三次烧技术也在仿古砖生产中得到了应用。 7、抛釉:釉面抛光采用弹性全抛工艺,通过抛釉使砖表面光亮柔和、平滑不凸出,显得晶莹透亮,釉下石纹纹理清晰自然,与上层透明釉料融合后,犹如一层透明水晶釉膜覆盖,使得整体层次更加立体分明。

化工典型工艺过程危险性分析

化工典型工艺过程及危险性分析 Lhjlyby: 吸附过程及危险性分析 吸附是利用某些固体能够从流体混合物中选择性地凝聚一定组分在其表面上的能力,使混合物中的组分彼此分离的单元操作过程。 吸附现象早已被人们发现和利用,在人们生活中用木炭和骨灰使气体和液体脱湿和除臭已有悠久的历史。18世纪末在生产上已应用骨灰脱除糖水溶液中的色素,20世纪20年代首次出现从气体中分离酒精和苯蒸气以及从天然气中回收乙烷等碳氢化物的大型生产装置。 目前吸附分离广泛应用于化工、石油化工、医药、冶金和电子等工业部门,用于气体分离、干燥及空气净化、废水处理等环保领域。如常温空气分离氧氮,酸性气体脱除,从各种混合气体中分离回收H2、C02、CO、CH4、C2H4等气相分离;也可从废水中回收有用成分或除去有害成分,石化产品和化工产品的分离等液相分离。在吸附过程中选用的吸附剂活性炭等材料由于吸附热的积累或者由于空气进入吸附系统可能会引起活性炭的自燃,进而引起系统介质的燃烧。 吸附是一种界面现象,其作用发生在两个相的界面上。例如活性炭与废水相接触,废水中的污染物会从水中转移到活性炭的表面上。固体物质表面对气体或液体分子的吸着现象称为吸附,其中具有一定吸附能力的固体材料称为吸附剂,被吸附的物质称为吸附质。与吸附相反,组分脱离固体吸附剂表面的现象称为脱附(或解吸)。与吸收—解吸过程相类似,吸附—脱附的循环操作构成一个完整的工业吸附过程。吸附过程所放出的热量称为吸附热。 根据吸附剂对吸附质之间吸附力的不同,可以分为物理吸附与化学吸附。 物理吸附是指当气体或液体分子与固体表面分子间的作用力为分子间力时产生的吸附,它是一种可逆过程。吸附质分子和吸附剂表面分子之间的吸附机理,与气体液化和蒸汽冷凝时的机理类似。因此,吸附质在吸附剂表面形成单层或多层分子吸附时,其吸附热比较低,接近其液体的汽化热或其气体的冷凝热。 化学吸附是由吸附质与吸附剂表面原子间的化学键合作用造成,即在吸附质和吸附剂之间发生了电子转移、原子重排或化学键的破坏与生成等现象。因而,化学吸附的吸附热接近于化学反应的反应热,比物理吸附大得多,化学吸附往往是不可逆的。人们发现,同一种物质,在低温时,它在吸附剂上进行的是物理吸附;随着温度升高到一定程度,就开始产生化学变化,转为化学吸附。 在气体分离过程中绝大部分是物理吸附,只有少数情况如活性炭(或活性氧化铝)上载铜的吸附剂具有较强选择性吸附CO或C2H4的特性,具有物理吸附及化学吸附性质。 萃取过程及危险性分析 工业上对液体混合物的分离,除了采用蒸馏的方法外,还广泛采用液—液萃取。例如,为防止工业废水中的苯酚污染环境,往往将苯加到废水中,使它们混合和接触,此时,由于苯酚在苯中的溶解度比在水中大,大部分苯酚从水相转移到苯相,再将苯相与水相分离,并进一步回收溶剂苯,从而达到回收苯酚的目的。再如,在石油炼制工业的重整装置和石油化学工业的乙烯装置都离不开抽提芳烃的过程,因为芳香族与链烷烃类化合物共存于石油馏分中,它们的沸点非常接近或成为共沸混合物,故用一般的蒸馏方法不能达到分离的目的,而要采用液—液萃取的方法提取出其中的芳烃,然后再将芳烃中各组分加以分离。 液—液萃取也称溶剂萃取,简称萃取。这种操作是指在欲分离的液体混合物中加入一种适宜的溶剂,使其形成两液相系统,利用液体混合物中各组分在两相中分配差异的性质,易溶组分较多地进入溶剂相从而实现混合液的分离。在萃取过程中,所用的溶剂称为萃取

内墙砖生产工艺流程图及简述

内墙砖生产工艺流程图及简述 一、内墙砖生产工艺流程示意图 二、工艺流程说明 1、原料:各种原料进厂后存入密封好的储料仓库; 2、配料系统:按工艺要求,用铲车装入喂料机料斗,在装料过程产生的粉尘经布料除尘器吸收,吸收料粉用作原料使用; 3、球磨:原料车间根据技术科提供的配方装磨,按规定时间研磨到一

定细度后,化验、放浆、过筛; 4、干燥塔:有煤浆炉提供热源,干燥塔喷浆烘干制粉。煤浆炉、干燥塔工作产生的二氧化硫和粉尘经串联式旋风除尘和布袋除尘器脱硫净化器脱硫后按排放标准达标后排放,除尘料粉直接用作制浆使用;煤气发生炉制气经旋风除尘、电捕焦等工序后,提供给联合车间素烧、釉烧窑,煤气发生炉产生的酚水直接用作水煤浆制造,煤浆炉燃烧产生的炉渣,按区指定地点排往垃圾场;煤气发生炉产生的炉渣,外卖水泥厂做原料; 5、压制成型:料粉经过压机压制,制成生坯。压机在压砖过程中所产生的粉尘,经布袋除尘器吸收后,料粉用作原料使用,产生的废坯经收集回收用作生产原料; 6、素烧:将压机制成的生坯经窑炉烧制成素坯。产生的残次品经收集回收配与原料使用; 7、施釉:素烧制成的素坯施上底釉、面釉后进入到印花。磨边产生的废水经沉淀池沉淀后循环使用,不外排; 8、印花:将印花釉通过印花机印在釉面。磨边产生的废水经沉淀池沉淀后循环使用,不外排; 9、釉烧:印花后的素坯经窑炉烧制成釉砖。产生的废砖经收集回收配与原料使用; 10、磨边:烧制成的釉砖进行磨边。磨边产生的废水经沉淀池沉淀后循环使用,不外排;磨边产生的废泥经晾晒后用作原料使用; 11、烘干:水磨后砖经烘干窑烘干进入选级; 12、检验包装:经烘干后的砖经检选车间选级、分色、分级,包装成品

相关文档