文档库 最新最全的文档下载
当前位置:文档库 › uart_poll ARM驱动代码

uart_poll ARM驱动代码

uart_poll ARM驱动代码
uart_poll ARM驱动代码

#include"s5pc100.h"

//发送1个字符

void put_char(const char data)

{

while( !(UART0.UTRSTAT0 & 0x2) );

UART0.UTXH0 = data;

if(data == '\n')

put_char('\r');

}

//接收1个字符

char get_char()

{

volatile unsigned char temp ;

while( !(UART0.UTRSTAT0 & 0x1) );

temp = U ART0.URXH0;

return temp;

}

//发送1个字符串

void put_string(const char *pstr)

{

while(*pstr != '\0')

put_char(*pstr++);

}

//软件延时

void soft_delay( unsigned int mloop )

{

while( --mloop>0 );

}

//主函数

int main()

{

volatile char recvbyte;

//波特率由 UBRDIV 与 UDIVSLOT0共同决定

//665000000/(16*115200) - 1 = 0x23

UART0.UBRDIV0 = 0X23; //设置波特率115200 bps UART0.UDIVSLOT0 = 0x0080;

//GPA0.GPA0CON = 0X22; //设置UART接口引脚

//GPA0.GPA0PULL = 0x55;

//TX FIFO TRIGER | RX FIFO TRIGER | TX FIFO RESET | RX FIFO RESET | FIFO EN

// [7:6] [5:4] [2] [1] [0]

UART0.UFCON0 = 0X00; //FIFO设置寄存器, 禁止使用FIFO //

UART0.UMCON0 = 0X00; //MODEM设置寄存器,禁止使用AFC //INFRARED MODE | PARITY MODE | STOP BIT | WORD LEN

//[6] [5:3] [2] [1:0]

UART0.ULCON0 = 0x03; //UART LINE CONTROL,设置数据位格式8 n 1

UART0.UCON0 = (1<<9) | (1<<8) | (1<<2) | (1<<0);

put_string("open uart device ok !\n");

while(1)

{

recvbyte = get_char();

put_char( recvbyte );

}

}

.text

.global _start

_start:

@初始化所有常用的模式堆栈

ldr r0,stacktop /*get stack top pointer*/ /********svc mode stack********/

mov sp,r0

sub r0,#128*4 //512 byte for irq mode of stack /****irq mode stack**/

msr cpsr,#0xd2

mov sp,r0

sub r0,#128*4 //512 byte for irq mode of stack /***fiq mode stack***/

msr cpsr,#0xd1

mov sp,r0

sub r0,#0

/***abort mode stack***/

msr cpsr,#0xd7

mov sp,r0

sub r0,#0

/***undefine mode stack***/

msr cpsr,#0xdb

mov sp,r0

sub r0,#0

/*** sys mode and usr mode stack ***/

msr cpsr,#0x10

mov sp,r0 //1024 byte for user mode of stack

b main

stop:

b stop

stacktop:

.word stack+4*512

.data

stack: .space 4*512

.end

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

嵌入式点亮一个LED灯的程序

飞凌OK6410开发板(裸板)第一个点亮LED灯程序,主要的C程序,完整程序请下载附件。 #define rGPMCON (*(volatile unsigned *)(0x7F008820)) #define rGPMDAT (*(volatile unsigned *)(0x7F008824)) #define rGPMPUD (*(volatile unsigned *)(0x7F008828)) void msDelay(int time) { volatile unsigned int i,j; for(i = 0; i < 2000000; i++) for(j=0; j

1.设计要求 EM-STM3210E开发板上有一个LED灯D1,编写程序点亮该灯。 2.硬件电路连接 在开发板上,D1与STM32F103ZE芯片上的引脚PF6相连,如下图所示。 3.软件程序设计

根据任务要求,程序内容主要包括: 1、配置Reset and clock control (RCC)以使能GPIOF端口模块的时钟 2、配置GPIOF端口的PF6引脚(50MHz,推挽输出) 3、调用STM32标准固件库函数GPIO_WriteBit以令PF6引脚输出高电平,从而点亮LED灯D1。 整个工程用户只需要实现源代码文件:main.c,其他工程文件由MDK和STM32标准固件库提供。 main.c文件的内容如下: [cpp] /** ********************************************************** ******************** * @file main.c * @author Max Liao * @version * @date 02-Novenber-2012 * @brief Main program body ********************************************************** ******************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/

ARM嵌入式系统中双口RAM的驱动开发及应用_图文.

ARM开发与应用 中文核心期刊《微计算机信息>(嵌入式与SOC)2007年第23卷第3—2期 文章编"号:1008-0570(2007)03—2—0134—03 ARM嵌入式系统中双口RAM的驱动开发及应用 Applicationanddriverdevelopmentofdual-port RAM inembeddedsystem (1.中国科学院声学研究所;2.中国科学院研究生院)张震1,2李淑秋1 ZHANGZHEN LISHUQIU 摘要:基于ARM的RISC处理器广泛应用于各种数字系统中.本文以AT91RM9200为系统平台,设计了一种基于双口RAM的 实时数据接口,针对双口RAM的“乒乓”传输方式在Linux2.6下设计并开发了其驱动程序,最终实现了数据源与处理器问不 间断、快速的数据传输。 关键词:嵌入式系统;双端口RAM;Linux2.6;驱动程序中图分类号:1.1B鹞.1文献标识码:A Abstract:RISCprocessorsbasedon

ARM are wildly usedinvariousdigitalsystems.Thisarticletook AT91RM9200 as systemplat? form,anddesigned a real-timedatainterfacebased on dual-port RAM(DPRAM),and also developedthedriverforLinux2.6 to implementthe“Ping-Pong”transmissionoftheDPRAM.Moreover,continuesandfast

CAN总线在嵌入式Linux下驱动程序的实现

CAN总线在嵌入式Linux下驱动程序的实现 时间:2009-11-05 09:41:22 来源:微计算机信息作者:黄捷峰蔡启仲郭毅锋田小刚 1 引言 基于嵌入式系统设计的工业控制装置,在工业控制现场受到各种干扰,如电磁、粉尘、天气等对系统的正常运行造成很大的影响。在工业控制现场各个设备之间要经常交换、传输数据,需要一种抗干扰性强、稳定、传输速率快的现场总线进行通信。文章采用CAN总线,基于嵌入式系统32位的S3C44B0X微处理器,通过其SPI接口,MCP2510 CAN控制器扩展CAN总线;将嵌入式操作系统嵌入到S3C44B0X微处理器中,能实现多任务、友好图形用户界面;针对S3C44B0X微处理器没有内存管理单元MMU,采用uClinux嵌入式操作系统。这样在嵌入式系统中扩展CAN设备关键技术就是CAN设备在嵌入式操作系统下驱动程序的实现。文章重点解决了CAN总线在嵌入式操作系统下驱动程序实现的问题。对于用户来说,CAN设备在嵌入式操作系统驱动的实现为用户屏蔽了硬件的细节,用户不用关心硬件就可以编出自己的用户程序。实验结果表明驱动程序的正确性,能提高整个系统的抗干扰能力,稳定性好,最大传输速率达到1Mb/s;硬件的错误检定特性也增强了CAN的抗电磁干扰能力。 2 系统硬件设计 系统采用S3C44B0X微处理器,需要扩展CAN控制器。常用的CAN控制器有SJA1000和MCP2510,这两种芯片都支持CAN2.0B标准。SJA1000采用的总线是地址线和数据线复用的方式,但是嵌入式处理器外部总线大多是地址线和数据线分开的结构,这样每次对SJA1000操作时需要先后写入地址和数据2次数据,而且SJA1000使用5V逻辑电平。所以应用MCP2510控制器进行扩展,收发器采用82C250。MCP2510控制器特点:1.支持标准格式和扩展格式的CAN数据帧结构(CAN2.0B);2.0~8字节的有效数据长度,支持远程帧;3.最大1Mb/s的可编程波特率;4.2个支持过滤器的接受缓冲区,3个发送缓冲区; 5.SPI高速串行总线,最大5MHz; 6.3~5.5V宽电压范围供电。MCP2510工作电压为3.3V,能够直接与S3C44B0X微处理器I/O口相连。为了进一步提高系统抗干扰性,可在CAN控制器和收发器之间加一个光隔6N137。其结构原理框图如图1: 图1.S3C44B0X扩展CAN结构框图图2.字符设备注册表 3 CAN设备驱动程序的设计 Linux把设备看成特殊的文件进行管理,添加一种设备,首先要注册该设备,增加它的驱动。设备驱动程序是操作系统内核与设备硬件之间的接口,并为应用程序屏蔽了硬件细节。在linux中用户进程不能直接对物理设备进行操作,必须通过系统调用向内核提出请求,

USB鼠标嵌入式驱动系统

USB鼠标嵌入式驱动系统 朱娟光华长春大学 吉林省 E-mail:zhuj_guanghua@ https://www.wendangku.net/doc/f010312808.html, 王帅中国科学院长春光 学精密机械与物理研究 所 吉林长春 张舒阳王津立李赵希 长春大学光华学院 吉林长春 摘要:该论文设计了一种USB鼠标基于AT89S52单片机的嵌入式驱动系统。这AT89S52控制USB的主控芯片,SL811HS实现控制USB鼠标的功能。硬件给出该系统的原理框图。软件介绍系统的实现原理和USB总线重新插入行动的装置检测、设备速度检测等。嵌入式USB驱动系统有重要的参考价值,USB主机系统的设计。 关键词——USB数目;SL811HS;AT89S52单片机 I.简介 USB设备因其便捷和高性价比特点,被广泛用于日常工作和生活中。例如,USB 磁盘,USB相机,USB鼠标,USB键盘,等等。单片机(SCM)有成熟的技术和高性价比,被广泛用于自动化领域中。但是单片机没有USB主机接口配置,从而导致直接控制USB外围设备有困难。如果我们在单片机系统中增加USB主机接口、通过接口控制USB从动装置设备,单片机系统的功能将大大扩展。该系统为单片机加上USB主机接口。使用常见的51单片机连接特殊解决USB接口芯片。这个解决方案具有良好的灵活性和简单的移植。它为低成本产品的开发提供了一个广阔的前景。系统选用Atmel公司的AT89S52单片机。USB的主控制芯片是芯片赛浦路斯的公司的SL811HS。SL811HS可以在任何一个主机或从动模型使用,它支持USB1.1的全速和低速数据传输。当在主机模式下工作时,就可以自动检测到嵌入SL811HS的行为。本论文介绍方法AT89S52控制SL811HS以完成USB控制的方法。例如,USB鼠标控制计划的情况。 II.系统硬件 系统的硬件如图一所示。AT89S52和SL811HS的电压分别为5V和3.3V。虽然电压不同,AT89S52和SL811HS的参数可以根据噪音容忍参数直接连接。

LED驱动程序设计

LED驱动程序设计 分类:ARM系统进阶班(arm裸机程序)2012-08-24 13:23 1561人阅读评论(0) 收藏举报 首先声明,此文章是基于对国嵌视频教程中tiny6410有关视频教程的总结,为方便大家的复习。再次予以感谢,感谢国嵌各位老师为我们提供如此好的视频教程,为对于想要迈入嵌入式大门却迟迟找不到合适方法的学子们指引一条光明的方向。好了,接下来步入正题,此处将介绍tiny6410 LED驱动程序的设计。

2 下面来看看tiny6410关于LED 的原理图如图(1)所示:

图1 LED原理图 3 LED实例,代码如下所示:(代码摘自\光盘4\实验代码\3-3-1\src\main.c) main.c [cpp]view plaincopy 1./********************************************************** 2.*实验要求:用Tiny6410上的4个LED资源实现跑马灯程序。 3.*功能描述: Tiny6410用下面4个引脚连接了LED发光二极管,分别是 4.* GPK4--LED1 5.* GPK5--LED2 6.* GPK6--LED3 7.* GPK7--LED4 8.* 本程序将控制这四个管脚的输出电平,实现跑马灯的效果 9.*日期: 2011-3-10 10.*作者:国嵌 11.**********************************************************/ 12.#include "def.h" 13.#include "gpio.h" 14. 15.#define LED1_ON ~(1<<4) 16.#define LED2_ON ~(1<<5) 17.#define LED3_ON ~(1<<6) 18.#define LED4_ON ~(1<<7) 19. 20.#define LED1_OFF (1<<4)

eink嵌入式驱动

起因 2007年,苹果公司推出了第一代的iPhone,后来这款产品完全改变了人们对于智能手机的理解和认识,智能手机以及衍生的后PC产品功能不断强化,正在一步步取代着原本PC 才能做的事情。而就是这样一个背景下,亚马逊公司却反其道而行,推出了一款功能无比单一的产品:Kindle。Kindle不但软件上设计成只能用来看书,就连硬件上也选用了一块基本只能用来看书的屏幕:黑白EPD屏幕。这种屏幕只能显示黑白颜色(或者灰阶),响应速度也非常慢(大约400ms-1s),而且还不能主动发光,必须要借助环境光才能显示……然而这种屏幕却也有一些非常重要的优点,比如显示效果非常接近纸张,不刺眼,只有在刷新时耗电等等。几年后,国产厂家也进军了这一领域,把这类使用EPD屏幕的电纸书的价格做到了千元以下。当时我就买了一台,着实是被这种显示屏的效果给吸引住了。当时我就想着要是能自己用单片机驱动起来玩一玩就好了。无奈当时自己技术差,屏幕也贵,没能顺利实施。最近发现大尺寸(6英寸,型号ED060SC4)的E-Ink屏幕价格已经降到了50以内,于是决定开始研究下它的驱动,也顺便做个最简单的应用:台历。 初步研究 首先,为了各位方便阅读,先来区分几个名词,首先是EPD,EPD并非是E-Paper Display (电子纸显示器)的缩写,而应该是Electrophoretic Display即电泳显示器的缩写。E-Ink 则是PVI公司的注册商标,用于指代他们旗下的EPD产品。但是并非只有PVI公司生产电子纸,天马、龙亭、友达、佳显和LG等公司都在生产类似且兼容的EPD产品,所以最好称他们为EPD而非E-Ink。电子纸这个概念就比较笼统了,EPD是一种电子纸,但是也有很多基于其它技术的电子纸,比如说Ch-LCD、PN-LCD、HR-TFT LCD等等,比如Pebble 所使用的HR-TFT LCD也被宣传为电子纸,但实际上并非EPD。

嵌入式LED灯显示

【设计题目】 矩阵LED字符显示控制系统设计 【设计目的】 1.掌握无操作系统下的硬件软件设计原理和方法; 2.进一步熟悉ARM 处理器的基本结构、指令集、存储系统以及基本接口编程; 3.熟悉嵌入式系统各部件的硬件初始化过程以及基本IO控制方法。 4.掌握矩阵LED 的应用原理 【设计内容】 1.利用sys_init初始化程序,利用串口实现PC和开发板的数据通信; 2.编写S3C2410X 处理器的点阵屏驱动程序; 3.编写S3C2410X 处理器的点阵屏应用程序。 4. 当程序运行等待要求从串口输入学生姓名的字符串在矩阵LED上显示出来。【实验环境】 硬件:Embest EduKit-IV 平台,ULINK2 仿真器套件,PC 机; 软件:μVision IDE for ARM 集成开发环境,Windows XP。 【相关知识综述】 背景知识、原理算法等 一、硬件部分 1.点阵屏的结构电路

图1点阵屏的结构电路 图上QL1-QL16为行驱动信号,每个信号控制一行, LR1~LR16 是点阵屏的列驱动信号,每一个信号控制一列。当行信号为高电平而列信号为低电平,对应的LED 就会亮。 2,S3C2410与点阵屏的连接 LL1 LL8 LL7 LL9

图2 S3C2410ARM处理器与两片CD4094连接得到16位行选信号图以上电路可以通过S3C2410GPIO口把CPU的并行数据(16位两个字节的数据)打入到两个CD4094芯片中并锁存起来变成LL1-LL16的行选信号。 各信号的作用如下表1;

3.点阵屏的保护电路 图3 点阵屏的保护电路图 为了保护LED 屏加了对应的电阻实现行限流作用,即LL1-LL16变为RQ1-RQ16 4.LED 的驱动 加入行驱动电路的目的是实现LED 灯的驱动。这样由RQ1-RQ16变为行驱动信号QL1-QL16。Q11-QL16为图1中的行驱动信号。

基于项目驱动的嵌入式综合开发

实训报告 实训名称:基于项目驱动的嵌入式综合开发姓名: 院(系): 专业班级: 学号: 指导教师: 实习时间:

一、实训目的 (一)实习目的 本实训课程是针对嵌入式软件专业学生专门设计的,通过本课程设置的几个嵌入式综合项目的系统学习,可以使学生由浅入深的对嵌入式Linux系统进行全面学习,能够独立胜任嵌入式Linux应用开发、系统开发、驱动开发等多方面工作,并注重敬业团队精神培养。 1)增强学生的理论联系实际的能力 2)通过实训了解企业项目开发流程和学习新技术的方法 3)通过实训项目了解企业项目开发过程中文档的整理方法和问题的分析方法 4)通过实训项目加强学生对基础课程的运用能力,使其认识到基础知识的重要性5)通过实训争强学生对本专业和未来工作岗位的理解,端正心态,明确就业目标6)通过实训争强学生的编程技能,培养其良好的编码风格和编码习惯 (二)方法 本实训课程安排在学校实验室统一进行实训,学生上机独立完成规定实训项目。 (三)任务 要求每位同学独立完成实训题目的编程、调试、优化与测试,并交付使用。要求强化编程思维、编程能力和代码优化的能力,撰写《实训报告》(含:需求分析、总体设计、算法分析及设计中遇到的主要问题和解决方法,设计中尚存的不足与心得体会)。上交完成的所有源程序及相关文件。

三、实训报告 3.1 项目1名称 智能手环 3.1.1 实训内容 本次实训内容是制作智能手环,需要实现计步,测量温度,显示时间,电量,报警等功能。具体模块如下: (1)LED模块:显示电量 (2)ADC模块:模数转换 (3)PWM模块:蜂鸣器报警 (4)KEY模块:按键控制 (5)RTC模块:实时时钟 (6)计步以及温度显示模块 (7)总体实现 3.1.2 实训过程及相关结果 首先需要搭建软硬件环境,安装Ubuntu系统,安装交叉编译工具链。然后需要下载调试硬件连接,安装串口驱动等。环境搭建完成之后需要实现相应的每一个功能,具体功能如下: (1)LED模块:显示电量 此模块主要功能为点亮LED灯,以此来实现手环的点亮显示功能。 原理图如下: 在项目目录下分别创建led.c,led.h,main.c文件,根据芯片手册所分析的对应寄存器数据,在

编写嵌入式Linux设备驱动程序的实例教程

编写嵌入式Linux设备驱动程序的实例教程 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 在linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如

果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把

嵌入式驱动开发期末复习

1、嵌入式Linux的设备文件的属性是由3部分信息组成的,它们分别是 2、字符型设备主设备号的添加和注销分别通过调用函数register_chrdev和unregister_chrdev 来实现,这两个函数原型在linux/fs.h 文件说明。 3、假定目标板的/lib目录下有模块文件leds.o,该目录也是用户的当前目录,则可以使用$insmod /lib/leds.o 命令安装leds.o模块,使用$rmmod leds.o 删除该模块。 4、Linux驱动程序的加载有两种方式,一种是静态加载方式,另一种是动态加载方式。 5、Makefile文件中的命令行必须以Tab 键开头,否则报语法错。 6、搭建嵌入式开发环境,连接目标板,一般使用ftp 、 nfs、串口调试方 式连接。 7、mini6410开发板触摸屏驱动使用了input框架。 8、块设备以块为单位传输数据。 9、信号量的物理意义是当信号量值大于零时表示可分配资源的个数;当信号量值小于零 时表示等待该资源的任务的个数。 选择题 1、关于交叉编译描述正确的是 D 。 A. 编译器运行在目标机,生成的可执行文件在宿主机上运行 B.编译器运行在宿主机,生成的可执行文件在宿主机上运行 C.编译器运行在目标机,生成的可执行文件在目标机上运行 D.编译器运行在宿主机,生成的可执行文件在目标机上运行 2、Linux网络设备驱动中用于在Linux网络子系统中的各层之间传递数据的数据结构为 B A.net_device B. sk_buff C. net_dev D. skb 3 有关Linux内核裁剪下列说法错误的是 B 。 A.可以使用make menuconfig命令进行内核的配置 B. 所有的配置项都可以按以编译入内核,编译成模块,不编译三种方式配置 C.使用make zImage命令会编译生成内核镜像文件zImage D. 嵌入式Linux内核编译时应该采用交叉编译器 4、不需要编译内核的情况是 D 。 A 删除系统不用的设备驱动程序时 B 升级内核时 C 添加新硬件时 D 将网卡激活 5、RTC属于 A 总线设备。 A.platform B.PCI https://www.wendangku.net/doc/f010312808.html,B D.SPI 6、Linux文件系统的目录结构是一棵倒挂的树,文件都按其作用分门别类地放在相关的目 录中。现有一个外部设备文件,它应该在 C 目录中。 A./bin B./etc C./dev D./lib 7、用下列 A 命令可以查看Linux驱动程序注册时自动分配的主设备号。 A. cat /proc/devices B. cat /bin/devices C. vi /proc/devices D. vi /user/local/devices 8、使用 B 命令可以查看程序hello是基于哪一种体系结构指令集编译的。 A. cat hello B. vi hello C. ./hello D. file hello 9、NAND FLASH和NOR FLASH的区别正确的是 D 。

嵌入式Linux内核驱动开发学习路线图

【原创】嵌入式Linux内核驱动开发学习路线图 -------作者:尚观嵌入式 为什么选择学习嵌入式? 嵌入式系统无疑是当前最热门最有发展前途的IT应用领域之一,同时也是当今IT 领域仅存的几个金领职位之一。当前的中国IT人才面临严重的“后继乏人”,而且这种缺口由于培训缺乏、教育模式等原因造成的,而缺口最大的,就是高级IT人才。如果你从事的IT培训不专业,面对竞争越来越激烈的职场,基本找不到工作。据专家预测,嵌入式每年人才缺口在30万左右。 嵌入式行业平均薪资分布 嵌入式职业发展讲解视频 视频中主要讲解什么样的人适合从事嵌入式行业、嵌入式行业从业人员需要具备哪些基本素质、嵌入式行业的特点以及嵌入式行业的现状与发展。 嵌入式研发方向职业生涯讲解视频(1)嵌入式研发方向职业生涯 讲解视频(2) 嵌入式研发方向职业生涯讲解视频(3) 嵌入式研发方向职业生涯讲解视频(4)嵌入式研发方向职业生涯讲解视频(5) ARM+Linux嵌入式底层内核驱动方向学习总体路线图

基础学习Ⅰ---Linux入门 目前嵌入式主要开发环境有Linux、Wince等;Linux因其开源、开发操作便利而被广泛采用。而Linux操作系统也只是一个简单的操作系统,简单的使用对于嵌入式开发人员来说价值并不很高,真正有价值的是掌握Linux的基本服务和Linux的设计理念、思想,这对于嵌入式开发人员的长期发展是很极其重要的。Linux 系统有很多发行版,RedHat、Ubuntu、Fedora等。作为嵌入式开发人员,我们没有必要把精力放到使用哪个Linux发行版上,而是尽快把Linux系统尽快安装好。如果打算坚持长期学习,那么建议您把自己的电脑做成双系统,而不要在虚拟机上安装。 Ubuntu系统下载地址:https://www.wendangku.net/doc/f010312808.html,/?a=index&m=index&c=iframe&url=http%3A%2F%2Fwww.ubuntu.or https://www.wendangku.net/doc/f010312808.html,%2Fdesktop%2Fget-ubuntu%2Fdownload%2F A)经典书籍推荐:

嵌入式Linux驱动程序开发要点(20210201123523)

嵌入式Linux驱动程序开发要点 在Linux操作系统下有3类主要的设备文件类型:块设备、字符设备和网络设备。这种分类方法可以将控制输入/输出设备的驱动程序与其他操作系统软件分离开来。|字符设备与块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件 I/O 一般紧接着发生。块设备则不然,它利用一块系统内存作为缓冲区,若用户进程对设备的请求能满足用户的要求,就返回请求的数据;否则,就调用请求函数来 进行实际的I/O操作。块设备主要是针对磁盘等慢速设备设计的,以免耗费过多的CPU时间用来等待。网络设备可以通过BSD套接口访问数据。 每个设备文件都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有2个设备号,第一个是主设备号,标识驱动程序;第二个是从设备号,标识使用同一个设备驱动程序的、不同的硬件设备。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问驱动程序。 系统调用时操作系统内核与应用程序之间的接口,设备驱动程序是操作系统内核 与机器硬件之间的接口。设备驱动程序是内核的一部分,它完成以下功能: ?对设备初始化和释放 ?把数据从内核传送到硬件和从硬件读取数据 ?读取应用程序传送给设备文件的数据和回送应用程序请求的数据 ?佥测和处理设备出现的错误 MTD(Memory Tech no logy Device )设备是闪存芯片、小型闪存卡、记忆棒之类的设备,它们在嵌入式设备中的使用正在不断增加。MTD驱动程序是在Linux下专门为嵌入式环境开发的新的一类驱动程序。相对于常规块设备驱动程序,使用MTD驱动程序的 优点在于他们能更好的支持、管理给予闪存设备,有基于扇区的擦除和读/写操作的 更好的接口。 驱动程序结构 Linux的设备驱动程序可以分为3个主要组成部分: 1. 自动配置和初始化子程序,负责监测所要驱动的硬件设备是否存在和能否正常工作。如果该设备正常,则对这个设备及其相关的设备驱动程序需要的软件状态进行初始化。这部分驱动程序仅在初始化时被调用一次。 2. 服务于I/O请求的子程序,又称为驱动程序的上半部分。调用这部分程序是由于系统调用的结果。这部分程序在执行时,系统仍认为是与进行调用的进程属于同个进程,只是由用户态变成了核心态,具有进行此系统调用的用户程序的运行环境,因而可以在其中调用sleep()等与进行运行环境有关的函数。 3. 中断服务子程序,又称为驱动程序的下半部分。在Linux系统中,并不是直接从 中断向量表中调用设备驱动程序的中断服务子程序,而是由Linux系统来接 收硬件中断,再由系统调用中断服务子程序。中断可以在任何一个进程运行时产 生,因而在中断服务程序被调用时,不能依赖于任何进程的状态,也就不能调用任何

嵌入式Linux驱动开发基础总结(上篇)

嵌入式Linux驱动开发基础总结(上篇) 1, linux驱动一般分为3大类: *字符设备*块设备*网络设备 2, 开发环境构建: *交叉工具链构建*NFS和tftp服务器安装 3, 驱动开发中设计到的硬件: *数字电路知识*ARM硬件知识*熟练使用万用表和示波器*看懂芯片手册和原理图 4, linux内核源代码目录结构: *arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。*block/: 部分块设备驱动程序;*crypto: 常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验算法;*documentation/: 文档目录,没有内核代码,只是一套有用的文档;*drivers/: 放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如,/block 下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()。*fs/: 所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统, 例如fat和ext2;*include/: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录;*init/: 这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的好的起点之一;*ipc/: 这个目录包含核心的进程间通讯的代码;*kernel/: 主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/i386/kernel下;*lib/: 放置核心的库代码;*mm/:这个目录包括所有独立于cpu 体系结构的内存管理代码,如页式存储

嵌入式键盘及LED驱动实验

《嵌入式系统设计》 实验报告 (2011-2012学年第2学期)

实验三键盘及LED驱动实验—C语言实现方法 一、实验目的 1.学习键盘及LED驱动原理。 2.掌握ZLG7289芯片的使用方法。 二、实验内容 通过ZLG7289芯片驱动17键的键盘和8个共阴极LED,将按键值在LED上显示出来。 三、预备知识 1.掌握在ARM SDT 2.5或ADS1.2集成开发环境中编写和调试程序的基本过程。2.了解ARM应用程序的框架结构。 3.了解μC/OS-II多任务的原理。 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM7TDMI的JTAG仿真器、PC机Pentium100以上。 软件:PC机操作系统win98、Win2000或WinXP、ARM SDT 2.51或ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序 五、实验原理 ZLG7289A是一片具有串行接口的,可同时驱动8位共阴式数码管(或64只独立LED)的智能显示驱动芯片,该芯片同时还可连接多达64键的键盘矩阵,单片即可完成LED显示﹑键盘接口的全部功能。 ZLG7289A内部含有译码器,可直接接受BCD码或16进制码,并同时具有2种译码方式。此外,还具有多种控制指令,如消隐﹑闪烁﹑左移﹑右移﹑段寻址等。 ZLG7289A具有片选信号可方便地实现多于8位的显示或多于64键的键盘接口。其特点如下: a.串行接口无需外围元件可直接驱动LED。 b.各位独立控制译码/不译码及消隐和闪烁属性。 c.(循环)左移/(循环)右移指令。 d.具有段寻址指令方便控制独立LED。 e.键盘控制器内含去抖动电路。 表2-5 引脚说明 引脚名称说明 1 , 2 VDD 正电源 3 ,5 NC 悬空 4 VSS 接地 6 /CS 片选输入端,此引脚为低电平时,可向芯片发送指令及读取键盘数据

嵌入式实验四(Linux 内核移植及 LED 驱动测试)

实验四 Linux 内核移植及 LED 驱动测试 一、实验目的: 1.熟悉 Linux 内核基本目录结构,为后续 Linux 底层开发做准 备,熟悉 Linux 内核的配置及编译过程。 2.了解嵌入式 Linux 驱动开发基本方法,熟悉嵌入式 Linux 字 符设备驱动的开发框架。 二、实验内容: 1.下载或拷贝 Linux-3.14 源码。 2.针对实验箱配置内核。 3.编译内核并测试。 4.利用 Exynos4412 的 GPX2_7、GPX1_0、GPX2_4、GPX3_0 这 4 个 I/O 引脚控制 4 个 LED 发光二极管,使其闪烁。 三、实验原理: 1.Linux内核是Linux操作系统的核心,也是整个Linux功能 体现。它是用C语言编写,符合POSIX标准。Linux最早是由芬兰 黑客 Linus Torvalds为尝试在英特尔X86架构上提供自由免费的类Unix操作系统而开发的。该计划开始于1991年,这里有一份Linus Torvalds当时在Usenet新闻组comp.os.minix所登载的帖子,这份著名的帖子标志着Linux计划的正式开始。在计划的早期有一些Minix黑客提供了协助,而今天全球无数程序员正在为该计划无偿提供帮助。 Linux内核源代码非常庞大,随着版本的发展不断增加。它使用

1

目录树结构,并且使用Makefile组织配置编译。顶层目录的Makefile 是整个内核配置编译的核心文件,负责组织目录树中子目录的编译管理,还可以设置体系结构和版本号等。 嵌入式系统中内核移植需根据具体硬件配置对内核源码进行相应地修改、配置。 2. 如图所示,LED2~LED5分别与GPX2_7、GPX1_0、GPX2_4、 GPF3_5相连,通过GPX2_7、GPX1_0、GPX2_4、GPX3_0引脚的高低电平来控制三极管的导通性,从而控制LED的亮灭。 当这几个引脚输出高电平时发光二极管点亮;反之,发光二极管熄灭。 四、实验步骤及过程: 1.建立工作目录,将 Linux-3.14 内核源码解压到工作目录中。$ tar xvf linux-3.14.tar.xz $ cd linux-3.14 2.修改顶层 makefile 文件,指定体系结构及交叉编译工具。$ vim Makefile 修改: ARCH?= $(SUBARCH) CROSS_COMPILE?= $(CONFIG_CROSS_COMPILE:"%"=%)

嵌入式系统课程设计--基于ARM的LCD显示屏驱动程序设计

前言 (1) 1.系统设计 (1) 1.1涉及的软硬件简介 (1) 1.1.1 Proteus 7.8简介 (1) 1.1.2 RVDS简介 (2) 1.1.3 芯片LPC2106简介 (2) 1.2 LCD显示原理和初始化流程图 (3) 1.2.1 LCD显示简介 (3) 1.2.2 LCD相关参数 (4) 1.3 Proteus仿真电路 (7) 1.3.1 Proteus仿真元件清单 (7) 1.3.2 Proteus仿真电路图截图 (7) 1.4 程序代码分模块介绍 (8) 2.实验(测试)结果 (18) 3.总结 (19) 参考文献......................................................................................................... 错误!未定义书签。 前言 近年来,随着计算机技术及集成电路技术的发展,嵌入式技术日渐普及,在通讯、网络、工控、医疗、电子等领域发挥着越来越重要的作用。嵌入式系统无疑成为当前最热门最有发展前途的IT应用领域之一。 液晶显示器以其微功耗、体积小、显示内容丰富、超薄轻巧的诸多优点,在袖珍式仪表和低功耗应用系统中得到越来越广泛的应用。通过显示器同步显示元器件的状态可以更深刻地理解控制的原理。 通过Proteus模拟ARM7芯片设计,可以增强我们的自学能力和思考能力,掌握科学研究的方法,提高信息检索的能力以及获取与时俱进知识的能力。同时,使我们深刻学习了ARM的相关知识,增强对实际电路的感性认识,提高了分析问题,处理问题的能力。 运用Keil编译C语言,连接生成Hex文件和Axf文件。使用PROTEUS 7.8SP2仿真,选用ARM7 LPC2106 芯片和LCD1602,导入Hex或文件,然后进行软件仿真调试。 1.系统设计 1.1涉及的软硬件简介 设计中软件主要用到了模型仿真软件Proteus和编译套件RVDS(RealView Development Suite),硬件主要采用了NXP公司的LPC2106微控制器。 1.1.1 Proteus 7.8简介 Proteus软件是英国Labcenter electronics公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件

嵌入式系统VGA显示驱动实现

嵌入式系统VGA显示驱动实现 【摘要】本文在分析VGA显示时序的基础上,提出一种使用利用MCU自带的LCD控制器产生出VGA显示时序的方法,使图片的RGB数据按VGA时序输出;同时结合一个权电阻网络来实现VGA接口的RGB信号数模转换,完成VGA接口的显示驱动工作。经测试表明,该方法能可靠地实现VGA接口的显示驱动功能。 【关键词】VGA显示时序;LCD控制器;RGB信号 Abstract:The paper based on analysis of VGA displaying time,we proposed a method that the user can use a kind of LCD controller,owned by the MCU,to output the RGB image according to the VGA timing. Meanwhile,this design has designed a resister network to achieve the RGB signal digital-analog conversion,finally to achieve the VGA display.Repeated tests showed that the method can drive picture display reliably. Key words:VGA timing;LCD controller;RGB signal 1.引言 目前越来越多的嵌入式处理器上集成了LCD控制器。典型的如三星的S3C2440,Intel的Xscale系列。这样可方便地外接大屏幕的LCD。但是大屏幕LCD的价格都比较昂贵。另一方面,普通计算机的VGA接口显示器,保有量巨大、技术成熟,如果能通过接口转换手段,让嵌入式处理器直接支持VGA显示器,则能很大地利用现有资源,节约系统成本。 2.VGA接口与时序 VGA(Video Graphics Array)接口信号为模拟信号。其关键信号有5个,分别是Horizontal Sync水平同步信号(也叫行同步信号),垂直同步信号Vertical Sync(也叫场同步信号),Red红色Green绿色和Blue蓝色。电子枪从左至右,从上至下地进行扫描,每行结束时,用行同步信号进行同步;扫描完所有行后用场同步信号进行场同步。因电子枪偏转需要时间,所以扫完回转中,要对电子枪进行消隐控制;在每行结束后的回转过程中进行行消隐;在每场结束后的回转过程中进行场消隐,消隐过程中不发送电子束。 2.1 VGA接口 5.结论 本文提出了一种采用S3C2440的LCD控制器来实现VGA显示的方法。经测试表明,该方法能够很好的实现VGA显示。而今大部分的嵌入式处理器都包

相关文档