文档库 最新最全的文档下载
当前位置:文档库 › 模糊综合评价代码

模糊综合评价代码

模糊综合评价代码
模糊综合评价代码

附录2、各章节中编程计算的MatLab程序

2.1 模糊综合评判计算程序

模糊综合评判的过程:

○1、灰色关联分析,求权重(程序见Relation);

○2、模糊聚类分析,划分等级(程序见F_class);

○3、隶属度计算,求隶属函数(程序见Subjection和subject);

○4、模糊综合评判,计算各单元等级(程序见F_judge)。

各步骤的程序如下:

(1)Relation:灰色关联分析程序

主程序:

% 灰色关联分析:--母序列必须置为第一行!即x(1,:)

clear;

sq={'母指标','断层分维值','隔水层厚度','太会含水层水压','开采深度'}; m=5;n=81;

fid=fopen('data1_no E_ZH.dat','r');

X_t=fscanf(fid,'%g',[n m]); % 从数据文件读入数据。

fclose(fid);

x=X_t';

fori=1:m

D(i,:)=initia_MAX(x(i,:),n);

end

fori=1:m-1

DT(i,:)=abs(D(1,:)-D(i+1,:));

end

max=DT(1,1);min=DT(1,1);

fori=1:m-1

for j=1:n

if max

max=DT(i,j);

elseif min>DT(i,j)

min=DT(i,j);

end

end

end

yita=0.5;

fori=1:m-1

gama_t(i)=0;

for j=1:n

xigma(i,j)=(min+yita*max)/(abs(DT(i,j))+yita*max);

gama_t(i)=gama_t(i)+xigma(i,j);

end

end

gama(1)=1.0; % 母序列对自己的关联度总是为1。

disp(strcat(sq(1),'-to-',sq(1))),disp(gama(1))

fori=1:m-1

gama(i+1)=gama_t(i)/n;

disp(strcat(sq(i+1),'-to-',sq(1))),disp(gama(i+1))

end

disp('归一化处理如下:')

gama_all=0;

fori=1:m

gama_all=gama_all+gama(i);

end

fori=1:m

weight(i)=gama(i)/gama_all;

disp(sq(i)),disp(weight(i))

end

子程序:initia_MAX(X,n)

function X1=initia_MAX(X,n)

% 初始化,亦即无量纲化,对地质数据,采用最大值化为宜。

max=X(1);

fori=1:n

if max

max=X(i);

end

end

X1=X./max;

(2)F_class:模糊聚类程序

% 模糊聚类--减数法或相关系数法建立F关系。

clear;

m=4;n=81;

fid=fopen('data_class.dat','r');

X_t=fscanf(fid,'%g',[n m]); % 从数据文件读入数据。

fclose(fid);

X=X_t;

choice=input('Input the value of choice: 1-相关系数法,2-绝对值减数法 '); switch choice

case 1

fori=1:n

for j=1:n

xi_all=0; xj_all=0;

for k=1:m

xi_all=xi_all+X(i,k);

xj_all=xj_all+X(j,k);

end

xi_ave=xi_all/m;

xj_ave=xj_all/m;

dt_x=0; dt_xi2=0; dt_xj2=0;

for k=1:m

dt_x=dt_x+abs(X(i,k)-xi_ave)*abs(X(j,k)-xj_ave);

dt_xi2=dt_xi2+(X(i,k)-xi_ave)^2;

dt_xj2=dt_xj2+(X(j,k)-xj_ave)^2;

end

r(i,j)=dt_x/(sqrt(dt_xi2)*sqrt(dt_xj2));

end

end

case 2

tr0=0;

while tr0==0

c=input('Input the value of c;'); fori=1:n

for j=1:n

d_all=0;

for k=1:m

d_all=d_all+abs(X(i,k)-X(j,k));

end

r(i,j)=1-c*d_all;

end

end

if r>zeros(n,n)

tr0=1;

end

end

otherwise

disp('You input the wrong value!');

end

disp(r);

r_t=r;

fori=1:1000

rr=multiply_F(r_t,r_t);

ifrr==r_t

disp('OK!');break;

else

r_t=rr;

disp('NOT OK! Cycle times is:');disp(i); end

end

disp(rr);

tr='y';

whiletr=='Y'|tr=='y'

nmta=input('Input the value of nmta: '); fori=1:n

for j=1:n

ifrr(i,j)>=nmta

R(i,j)=1;

else

R(i,j)=0;

end

end

end

disp(R);

fori=1:n

k=1;

for j=i:n

if R(i,j)==1

C_t(k)=j;

k=k+1;

end

end

C{i}=C_t;

disp(C{i});

clearC_t;

end

tr=input('Are you go on ? (Y/N)','s');

end

n_class=n;

fori=n:-1:1

for j=i-1:-1:1

x=C{i};y=C{j};

for k=1:length(C{j})

for l=1:length(C{i})

if x(l)==y(k)

C{i}=[0];

n_class=n_class-1;

continue;

end

end

end

end

end

disp('The number of classes is:');disp(n_class);

disp('They are as follow:');

fori=1:n

disp(C{i});

end

(3)Subjection:隶属函数计算程序(配合子程序sugject)

主程序:

% 建立隶属函数--即某单元(i)在某项指标上(Ui)对某评语等级(Vj)的隶属度(Rij)。clear;

M=[0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020;

0.024 0.028 0.032 0.036 0.040 0.044 0.048 0.052 0.056 0.060;

0.066 0.072 0.078 0.084 0.090 0.096 0.102 0.108 0.114 0.120;

0.126 0.132 0.138 0.144 0.150 0.156 0.162 0.168 0.174 0.180]; F=[ 7.5 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 75.0;

82.5 90.0 97.5 105.0 112.5 120.0 127.5 135.0 142.5 150.0;

175.0 200.0 225.0 250.0 275.0 300.0 325.0 350.0 375.0 400.0;

440.0 480.0 520.0 560.0 600.0 640.0 680.0 720.0 760.0 800.0]; Q=[0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50;

3.25

4.00 4.75

5.50

6.25

7.00 7.75

8.50

9.25 10.0;

11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0;

30.0 40.0 50.0 60.0 70.0 80.0 90.0 100. 110. 120.];

A=[ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0;

5.3 5.6 5.9

6.2 6.5 6.8

7.1 7.4 7.7

8.0;

8.4 8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0;

13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0];

R=[0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250;

0.265 0.280 0.295 0.310 0.325 0.340 0.355 0.370 0.385 0.400;

0.420 0.440 0.460 0.480 0.500 0.520 0.540 0.560 0.580 0.600;

0.620 0.640 0.660 0.680 0.700 0.720 0.740 0.760 0.780 0.800]; D=[0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00;

2.20 2.40 2.60 2.80

3.00 3.20 3.40 3.60 3.80

4.00;

4.40 4.80

5.20 5.60

6.00 6.40 6.80

7.20 7.60

8.00;

8.40 8.80 9.20 9.60 10.0 10.4 10.8 11.2 11.6 12.0];

H=[ 6 12 18 24 30 36 42 48 54 60;

64 68 72 76 80 84 88 92 96 100;

105 110 115 120 125 130 135 140 145 150;

155 160 165 170 175 180 185 190 195 200];

S=[0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10;

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20;

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30;

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50];

fid=fopen('subjec_dat.dat','r');

A_t=fscanf(fid,'%g',[8 34]); % 从数据文件读入数据。

fclose(fid);

A=A_t'; % 各单元(行数)的各项指标(列数)统计结果(矩阵)

% 注:34个单元,每个单元8项指标,每个指标4个评语等级,故要生成34个8×4矩阵。m0=4; % 评语集的维数;

m=34;n=8; % 指标集的维数,m-单元个数,n-指标个数;

for j=1:n % 第一循环开始

switch j

case 1

X_T=M;ver=0; % 指标值为升序时ver=0,降序时ver=1,下同!

case 2

X_T=F;ver=0;

case 3

X_T=Q;ver=0;

case 4

X_T=A;ver=0;

case 5

X_T=R;ver=0;

case 6

X_T=D;ver=0;

case 7

X_T=H;ver=0;

case 8

X_T=S;ver=0;

otherwise

disp('指标个数> 8 ----修改程序!');

end

for i=1:m % 第二循环开始

for k=1:m0 % 第三循环开始

X=[A(i,j),X_T(k,:)];

switchver

case 0

if k==1

chs=1;

else if k==m

chs=3;

else

chs=2;

end

end

case 1

if k==1

chs=3;

else if k==m

chs=1;

else

chs=2;

end

end

end

R_T=subject(X,length(X),chs);

R(j,k,i)=R_T(1);

end % 第三循环结束

end % 第二循环结束

clear X_T;

end % 第一循环结束

% 归一化处理:

clear R_T;

R_T=R;

clear R;

fori=1:m

for j=1:n

all=0;

for k=1:m0

all=all+R_T(j,k,i);

end

for k=1:m0

R(j,k,i)=R_T(j,k,i)/all;

end

end

end

% 输出到文件......

fid=fopen('subjec_ans.dat','w');

fprintf(fid,'\n');

fori=1:m

fprintf(fid,'\n%s%d%s\n','R(',i,')');

for j=1:n

fprintf(fid,'%6.4f %6.4f %6.4f %6.4f\n',R(j,:,i));

end,fprintf(fid,'\n');

end

fclose(fid);

disp('各单元的指标对应各评语等级的隶属度');

disp(R);

子程序:subject

function r=subject(x,n,choice)

% 建立隶属函数--即某单元(i)在某项指标上(Ui)对某评语等级(Vj)的隶属度(Rij)。x_all=0;

fori=1:n

x_all=x_all+x(i);

end

x_ave=x_all/n;

dt_a=0;

fori=1:n

dt_a=dt_a+(x(i)-x_ave)^2;

end

dt2=dt_a/(n-1);

% disp('Input the value of choice:');

% choice=input('1-偏小型 2-中间型 3-偏大型 ');

switch choice

case 1

fori=1:n

if x(i)<=x_ave

r(i)=1;

else

r(i)=exp(-(x(i)-x_ave)^2/dt2);

end

end

case 2

fori=1:n

r(i)=exp(-(x(i)-x_ave)^2/dt2);

end

case 3

fori=1:n

if x(i)>=x_ave

r(i)=1;

else

r(i)=exp(-(x(i)-x_ave)^2/dt2);

end

end

otherwise

disp('The value of "choice" is wrong !');

end

(4)F_judge:模糊综合评判程序

% 模糊评判--矩阵相乘

clear

A=[0.153 0.160 0.151 0.094 0.088 0.117 0.096 0.141]; % 权重集(矩阵)m0=4;n=8; % 评价矩阵维数,m0-评语集的维数,n-指标个数;

m=34; % 单元个数;

fid=fopen('subjec_ans.dat','r');

fori=1:m

Tmp=fscanf(fid,'%s',1);

R_t=fscanf(fid,'%g',[m0 n]); % 从数据文件读入数据。

R{i}=R_t';

end

fclose(fid);

fori=1:m

B{i}=A*R{i};

end

fid=fopen('F_judge_ans.dat','w');

fprintf(fid,'%s\n','The answers:');

fprintf(fid,'%s\n',' ⅠⅡⅢⅣ');

fprintf('%s\n','The answers:');

fprintf('%s\n',' ⅠⅡⅢⅣ');

fori=1:m

disp(B{i});

fprintf(fid,'%6.4f %6.4f %6.4f %6.4f\n',B{i});

end

fclose(fid);

模糊综合评判法的应用案例

第三节 模糊综合评判法的应用案例 二、在物流中心选址中的应用 物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。 基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。这些模型及算法相当复杂。其主要困难在于: (1) 即使简单的问题也需要大量的约束条件和变量。 (2) 约束条件和变量多使问题的难度呈指数增长。 模糊综合评价方法是一种适合于物流中心选址的建模方法。它是一种定性与定量相结合的方法,有良好的理论基础。特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。 1.模型 ⑴ 单级评判模型 ① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为 12(,,,)k U U U U = 且应满足: 1 , k i i j i U U U U φ=== ② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。 ③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。 ④ 单级综合评判B A R =

⑵多层次综合评判模型 一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。所以,需采用分层的办法来解决问题。 2.应用 运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7. 表3-7 物流中心选址的三级模型

模糊综合评价模型及实例

模糊综合评价模型 模糊综合评价模型(Fuzzy Synthetic Evaluation Model) 目录 [隐藏] 1 什么是模糊综合评价模型? 2 模糊评价的基本思想 3 模糊综合评价模型类别[1] o 3.1 模糊评价基本模型 o 3.2 置信度模糊评价模型 4 模糊综合评价模型的运用 5 模糊综合评价模型案例分析 o 5.1 案例一:模糊综合评价模型在企业跨国并购风险评价中的 应用[2] 6 参考文献 [编辑] 什么是模糊综合评价模型? 模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。 [编辑]

模糊评价的基本思想 许多事情的边界并不十分明显,评价时很难将其归于某个类别,于是我们先对单个因素进行评价,然后对所有因素进行综合模糊评价,防止遗漏任何统计信息和信息的中途损失,这有助于解决用“是”或“否”这样的确定性评价带来的对客观真实的偏离问题。 [编辑] 模糊综合评价模型类别[1] [编辑] 模糊评价基本模型 设评判对象为P: 其因素集 ,评判等级 集。对U中每一因素根据评判集中的等级指标进行模糊评判,得到评判矩阵: (1) 其中,r ij表示u i关于v j的隶属程度。(U,V,R) 则构成了一个模糊综合评判模型。确定 各因素重要性指标(也称权数)后,记为,满足,合成得 (2) 经归一化后,得 ,于是可确定对象P的评判等级。 [编辑] 置信度模糊评价模型 (1) 置信度的确定。 在(U,V,R)模型中,R中的元素r ij是由评判者“打分”确定的。例如 k 个评判者,要求每个评判者u j对照作一次判断,统计得分和归一化后产生

12 模糊综合评价模型

二 模糊综合评价模型 模糊综合评判方法,是一种运用模糊数学原理分析和评价具有“模糊性”的事物的系统分析方法。它是一种以模糊推理为主的定性与定量相结合、精确与非精确相统一的分析评价方法。由于这种方法在处理各种难以用精确数学方法描述的复杂系统问题方面所表现出的独特的优越性,近年来已在许多学科领域中得到了十分广泛的应用。 2.1 模糊综合评判模型 2.1.1单层次模糊综合评判模型 给定两个有限论域 U={u 1,u 2,…,um } (1) V={v 1,v 2,…,v n } (2) (1)式中,U 代表所有的评判因素所组成的集合;(2)式中,V 代表所有的评语等级所组成的集合。 如果着眼于第i(i=1,2,…,m)个评判因素u i ,其单因素评判结果为R i =[r i1,r i2,…,r in ],则m 个评判因素的评判决策矩阵为 111121221 2221 2 n n m m m mn R r r r R r r r R R r r r ???? ????????==???? ???? ???????? (3) 就是U 到V 上的一个模糊关系。 如果对各评判因数的权数分配为:1,2,,m A a a a ??=?? (显然,A 是论域U 上的一,个模糊子集,且101,1m i i i a a =≤≤=∑)则应用模糊变换的合成运算,可以得 到论域V 上的一个模糊子集,即综合评判结果: 1,2,,n B A R b b b ??=?=?? (4) 2.1.2多层次模糊综合评判模型 在复杂大系统中,需要考虑的因素往往是很多的,而且因素之间还存在着不同的层次。这时,应用单层次模糊综合评判模型就很难得出正确的评判结果。所以,在这种情况下,就需要将评判因素集合按照某种属性分成几类,先对每一类进行综合评判,然后再对各类评判结果进行类之间的高层次综合评判。这样,就产生了多层次模糊综合评判问题。 多层次模糊综合评判模型的建立,可按以下步骤进行: (1)对评判因素集合U ,按某个属性,将其划分成m 个子集,使它们满足: 1 () m i i i j U U U U i j =?=????=Φ≠?∑ (5)

模糊综合评价法

作业 某市直属单位因工作需要,拟向社会公开招聘8 名公务员,具体的招聘办法和程序如下: (一)公开考试:凡是年龄不超过30 周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目有:综合基础知识、专业知识和“行政职业能力测验”三个部分,每科满分为100 分。根据考试总分的高低排序选出16 人选择进入第二阶段的面试考核。 (二)面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、表达能力等综合素质。按照一定的标准,面试专家组对每个应聘人员的各个方面都给出一个等级评分,从高到低分成A/B/C/D 四个等级,具体结果如表1所示。 现要求根据表1中的数据信息对16 名应聘人员作出综合评价,选出8 名作为录用的公务员。

折衷型模糊多属性决策方法 (1)折衷型模糊决策的基本原理 折衷型模糊决策的基本原理是:从原始的样本数据出发,先虚拟模糊正理想和模糊负理想,其中模糊正理想是由每一个指标中模糊指标值的极大值构成;模糊负理想是由每一个指标中模糊指标值的极小值构成。然后采用加权欧氏距离的测度工具来计算各备选对象与模糊正理想和模糊负理想之间的距离。在此基础上,再计算各备选对象属于模糊正理想的隶属度,其方案优选的原则是,隶属度越大,该方案越理想。 (2)折衷型模糊决策的基本步骤 Step1:指标数据的三角形模糊数表达 下面运用以上的定义将定性、定量指标以及权重数据统一量化为三角形模糊数. 1) 对于定性指标,可以将两极比例法改进为三角模糊数比例法。再利用三角模糊数比例法将定性指标转化为定量指标,其具体的转化形式见表2。 表2 定性指标向定量指标转化的三角模糊数比例法 2) 对于精确的定量指标值,也写成三角模糊数的形式。设a 是一个具体的精确数,由三角模糊数的定义,则a 表示成三角模糊数的形式为:

(完整版)基于层次分析法的模糊综合评价模型

2016江西财经大学数学建模竞赛 A题 城市交通模型分析 参赛队员: 黄汉秦、乐晨阳、金霞 参赛队编号:2016018 2016年5月20日~5月25日

承诺书 我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写): A 我们的参赛队编号为2016018 参赛队员(打印并签名) : 队员1. 姓名专业班级计算机141 队员2. 姓名专业班级计算机141 队员3. 姓名专业班级计算机141 日期: 2016 年 5 月 25 日

编号和阅卷专用页 江西财经大学数学建模竞赛组委会 2016年5月15日制定

城市交通模型分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。 首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u == ∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w == ∑ []R W R W R W R W R W W R W O 5 5 4 4 3 3 2 2 1 1 ,,,,==计算出权重值,经过一致性检验公式 RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着在改进方案中,我们具体以交叉口为中心建立模型,其中包括道路长度、宽度、车辆平均长度、车速等等考虑因素。通过车辆排队长度可以间接判断交通拥堵情况,不需要测量车速、时间等因素而浪费的人力物力和财力,有效的提高了工作成本和效率。为管理城市交通要道提供了良好的模型和依据。 【关键字】交通拥堵 层次分析法 模糊综合评判 绩效评价 隶属度

模糊综合评价案例计算分析

模糊综合评价方法 1、基本思想和原理 基本思想 在客观世界中,存在着大量的模糊概念和模糊现象。模糊数学就是试图用数学工具解决模糊事物方面的问题。 模糊综合评价是借助模糊数学的一些概念,对实际的综合评价问题提供一些评价的方法。具地说,模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级状况进行综合性评价的一种方法。 原理 首先确定被评价对象的因素(指标)集合评价(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权向量进行模糊运算并进行归一化,得到模糊综合评价结果。 其特点在于评判逐对象进行,对被评价对象有唯一的评价值,不受被评价对象所处对象集合的影响。综合评价的目的是要从对象集中选出优胜对象,所以还需要将所有对象的综合评价结果进行排序。 2. 模糊综合评价法的模型和步骤 步骤 步骤1 确定评价对象的因素论域, 有m个评价指标,表明评价对象的各个因素。 步骤2 确定评语等级论域

评语集是对被评价对象的各个评价结果的集合,用V表示, 有n个评价结果,其中表示第j个评价结果。 步骤3 进行单因素评价,建立模糊矩阵R, 单独从一个因素出发进行评价,以确定评价对象对评价集合V的隶属程度,称为单因素模糊评价。 在构造了等级模糊子集后,对被评价对象的每个因素进行量化,即确定从单因素来看被评价对象对各等级模糊子集的隶属度,进而得到模糊关系矩阵, 其中,表示被评价对象从因素来说对等级模糊子集的隶属度。一个被评价对象在某个因素方面的表现是通过模糊向量来刻画的(在其他评价方法中多是由一个指标实际值来刻画,因此模糊评价需要更多的信息),称为单因素评价矩阵,可以看作是因素集U和评价集V之间的一种模糊关系,即影响因素和评价对象之间的“合理关系”。 在确定隶属关系时,通常是专家打分,然后统计结果,根据绝对值减数法求得,即, 其中,c可以适当选取,使得0≤≤1。 步骤4 确定评价因素的模糊权向量 因为各评级因素的重要程度不同,所以要对个因素分配一个相应的权数,(i=1,2,3…m),≥0,。A即为权重集。

数学建模模糊综合评价法

学科评价模型(模糊综合评价法) 摘要:该模型研究的是某高校学科的评价的问题,基于所给的学科统计数据作出综合分析。基于此对未来学科的发展提供理论上的依据。 对于问题1、采用层次分析法,通过建立对比矩阵,得出影响评价值各因素的所占的权重。然后将各因素值进行标准化。在可共度的基础上求出所对应学科的评价值,最后确定学科的综合排名。(将问题1中的部分结果进行阐述) (或者是先对二级评价因素运用层次分析法得出其对应的各因素的权重(只选取一组代表性的即可),然后再次运用层次分析法或者是模糊层次分析法对每一学科进行计算,得出其权重系数)。通过利用matlab确定的各二级评价因素的比较矩阵的特征根分别为:4.2433、2、4.1407、3.0858、10.7434、7.3738、3.0246、1 对于问题2、基于问题一中已经获得的对学科的评价值,为了更加明了的展现各一级因素的作用,采用求解相关性系数的显著性,找出对学科评价有显著性作用的一级评价因素。同时鉴于从文献中已经有的获得的已经有的权重分配,对比通过模型求得的数值,来验证所建模型和求解过程是否合理。 对于问题3、主成份分析法,由于在此种情况下考虑的是科研型或者教学型的高校,因此在评价因素中势必会有很大的差别和区分。所以在求解评价值的时候不能够等同问题1中的方法和结果,需要重新建立模型,消除或者忽略某些因素的影响和作用(将问题三的部分结果进行阐述)。 一、问题重述

学科的水平、地位是评价高等学校层次的一个重要指标,而学科间水平的评价对于学科本身的发展有着极其重要的作用。而一个显著的方面就是在录取学生方面,通常情况下一个好的专业可以录取到相对起点较高的学生,而且它还可以使得各学科能更加深入的了解到本学科的地位和不足之处,可以更好的促进该学科的发展。学科的评价是为了恰当的学科竞争,而学科间的竞争是高等教育发展的动力,所以合理评价学科的竞争力有着极其重要的作用。鉴于学科评价的两种方法:因素分析法和内涵解析法。本模型基于某大学(科研与教学并重型高校)的13个学科在某一时期内的调查数据,包括各种建设成效数据和前期投入的数据。 通过计算每一级、每一个评价因素所占的权重,确定某一学科在评价是各因素所占的比重,构建评价等级所对应的函数。通过数值分析得出学科的评价值。需要解决一下几个问题: 1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。 2、模型分析,给出建立模型的适用性、合理性分析。 3、假设数据来自于某科研型祸教学型高校,请给出相应的学科评价模 型。 二、符号说明与基本假设 2.1符号说明 符号说明 S——评价数(评价所依据的最终数值) X——影响评价数值的一级因素所构成的矩阵

基于AHP的模糊综合评价算法及应用

基于AHP的模糊综合评价算法及应用 徐亮 中国矿业大学(北京校区)资源学院(100083) E-mail:xuliang_168@https://www.wendangku.net/doc/f89678116.html, 摘 要:在应用AHP的多方案综合评价中,由于判断矩阵的一致性检验难以通过,就很难准确求取各方案的权重值,因此本文提出了一种基于AHP和模糊理论的综合评价算法。该算法采用AHP求取各层次指标的权重,采用模糊方法确定各方案的属性值,并将此算法应用在信息系统性能的综合评价中。 关键词:层次分析法;模糊评价;信息系统;算法 针对多方案综合评价问题中,判断矩阵的一致性检验难以通过,单一的应用层次分析法在求取各方案的权重值时就有了局限性[1],本文在AHP方法中专家组相对于优选目标的每一个指标的实现程度进行两两比较时,引入模糊评价矩阵和评价集的隶属度向量从而得到所需求的综合评价指标,提出了一种基于AHP和模糊理论的综合评价算法。结合信息系统性能评价指标体系研究的基础上,根据评价工作的系统性、动态性、可操作性和定性分析与定量分析相结合的原则,此算法不仅提高了AHP中专家模糊性权重判断的准确性;对于促进信息系统的建设,及时维护和改进信息系统的缺陷和功能,加速信息化进程,具有十分重要的意义。 1. 建立评价指标 中国矿业大学(北京校区)研究生院在2004年重新设计开发了教务信息系统,经过一段时间的使用,为了对新系统的使用效果和系统性能进行综合评价,建立指标体系以反映所评价信息系统性能的主要特征和基本状况。 经调查研究,确定如下评价指标,以保证综合评价的全面性和可信度[2],如图1所示: 图1 MIS性能评价的AHP算法 2. 计算权重 在构造n阶方阵A之前,我们要用1-9标度含义表列出八个指标的相对重要程度之比,如表1所示。 表1 标度含义表 标度值 两者关系 1 3 5 7 9 2,4,6,8 两者同等重要 前者比后者重要 前者比后者稍重要 前者比后者强烈重要 前者比后者极端重要 表示上述相邻判断的中间状态 若元素a与元素b的重要性之比为a ij, 那么元素b与元素a的重要性之比为a ij=1/a ji

模糊综合评价方法的理论基础

AHP ――模糊综合评价方法的理论基础 1.层次分析法理论基础 1970-1980年期间,著名学者Saaty最先开创性地建立了层次分析法,英文缩写为AHP。该模型可以较好地处理复杂的决策问题,迅速受到学界的高度重视。后被广泛应用到经济计划和管理、教育与行为科学等领域。AHP建立层次 结构模型,充分分析少量的有用的信息,将一个具体的问题进行数理化分析,从而有利于求解现实社会中存在的许多难以解决的复杂问题。一些定性或定性与定 量相结合的决策分析特别适合使用AHP。被广泛应用到城市产业规划、企业管 理和企业信用评级等等方面,是一个有效的科学决策方法。 Diego Falsini、Federico Fondi 和 Massimiliano M. Schiraldi( 2012)运用AHP 与DEA的结合研究了物流供应商的选择;Radivojevi?、Gordana和Gajovi?, Vladimir(2014)研究了供应链的风险因素分析;K.D. Maniya 和 M.G. Bhatt(2011) 研究了多属性的车辆自动引导机制;朱春生(2013)利用AHP分析了高校后勤 HR配置的风险管理;蔡文飞(2013)运用AHP分析了煤炭管理中的风险应急处理;徐广业(2011)研究了 AHP与DEA的交互式应用;林正奎(2012)研究了城市保险业的社会责任。 第一,递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层(总目标层):只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层(准则层和子准则层):包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层(方案层):表示实现各决策目标的可行方案、措施等,也称为方案典型的递阶层次结构如下图1:

模糊评价方法的基本步骤

模糊综合评价 模糊综合评价法是一种基于模糊数学的综合评标方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。其基本步骤可以归纳为: ①首先确定评价对象的因素论域 可以设N 个评价指标,12(,, ...)n X X X X =; ②确定评语等级论域 设12n =(W ,W , ...W )A ,每一个等级可对应一个模糊子集,即等级集合。 ③建立模糊关系矩阵 在构造了等级模糊子集后,要逐个对被评事物从每个因素(=1,2,,n)i X i ……上 进行量化,即确定从单因素来看被评事物对等级模糊子集的隶属度i X (R ),进而 得到模糊关系矩阵11112122122212nm ......=..................m m n n n nm X r r r X r r r X r r r ??????????????????????????(R )(R )R=(R ),其中,第i 行第j 列元素,表示某个被评事物i X 从因素来看对j W 等级模糊子集的隶属度。 ④确定评价因素的权向量 在模糊综合评价中,确定评价因素的权向量:12(,, ...)n U u u u =。一般采用层 次分析法确定评价指标间的相对重要性次序。从而确定权系数,并且在合成之前归一化。 ⑤合成模糊综合评价结果向量 利用合适的算子将U 与各被评事物的R 进行合成,得到各被评事物的模糊综合评价结果向量B 即:

111212122 2121212nm ......(,, ...)(,, ...)...............m m n m n n nm r r r r r r U R u u u b b b B r r r ??????===?????? 其中,i b 表示被评事物从整体上看对j W 等级模糊子集的隶属程度。 ⑥对模糊综合评价结果向量进行分析 实际中最常用的方法是最大隶属度原则,但在某些情况下使用会有些很勉强,损失信息很多,甚至得出不合理的评价结果。提出使用加权平均求隶属等级的方法,对于多个被评事物并可以依据其等级位置进行排序。

层次分析法与模糊综合评价的区别

层次分析法与模糊综合判别的区别与联系 1、层次分析法 [ 参考文献:吋义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社,2006] 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重要的物品,如重量最大的物品,即至少要确定各物品的相对重量。这时,经验和常识告诉我们,可以利用两两比较的方法来达到目的。 若在没有称量仪器的条件下对一组物体的重量进行估计,则可以通过爱对比较这组物体相对重量的方法,得出每对物体相对重量比的判断,从而形成比较判断矩阵,再通过求解判断矩阵的最大特征根和它所对应的特征向量问题,就能计算出这组物体的相对重量。 将此方法应用到复杂的社会、经济和科学管理等领域中,就能确定各种方案、措施、政策等 相对于总目标的重要性排序情况,以供领导者决策。 一般的层次分析法模型由图5-1 所示,分为目标层、准则层、指标层、方案层组成。需要注意几点: (1)层次分析法的评价结构并非是上述部分一成不变的,其中的当指标层因素较少时准则层可以省去(图5-2 ),当某一准则对应的指标层元素过多时可以将其指标层细分为“子准则层和指标层”(图5-4 )。由于层次分析法是利用两两比较完成的,为了便于人的比较与判别,每层的元素个数在3~7 之间为佳,超过7 以后增加了比较判断的难度,因此当元素过多时,可以将其分类后分成两层或多层来判别。 (2)准则层与指标层之间的关系可以对比一下图5-1 和图5-4 ,即每个准则可能有独 用的指标体系,也可能是各准则之间共用某几个指标。 (3)层次分析法的特点是基于某个目标,对多个待评价方案进行评价,从而得到方案的重要性排序。具体到某个问题,其并无相应的数据。而模糊综合判别有相应的基础数据。两者可以结合一起用,比如常用的是模糊综合评判过程中,权重可以由层次分析法计算。 层次分析法的骤如下: 1)在作者建立评价模型后,根据经验对每层里的各个元素建立重要性判别矩阵,从判 别矩阵中可以得到某一层中各个指标的归一化权重(表5-1中的W B,W C1,W C2,W C3,W C4)。(表5-1和5-2 的数据为图5-1 模型的) 2)由层与层之间权重的传递可以得到最低层(具体指标层)的综合权重。如图5-1 所示的图中有得到各个C ij的综合权重W ij(表5-2第2列)。 3)最后,在指标层与方案层之间建立判别矩阵,针对每一个指标C ij 都需要建立一个各 方案A i的比较矩阵,判别A针对C j的重要性w A i (表5-2的每一行)。最后将指标C ij的综合权重W ij与W Ai进行乘法求和,从而得到方案A的最终综合权重刀(W ij心Ai),即为续表5-2的最后一行。

模糊综合评价方法案例

模糊综合评价方法在物流中心选址的应用 物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。 基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。这些模型与算法相当复杂。其主要困难在于: (1)即使简单的问题也需要大量的约束条件和变量; (2)约束条件和变量多使问题的难度呈指数增长。 模糊综合评判方法是一种适合于物流中心选址的建模方法。它是一种定性与定量相结合的方法,有良好的理论基础。特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。 1、模型 (1)单级评判模型 ①将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为 且应满足: 1 ,k i i j i U U U U ===?U I ② 权重A 的确定方法很多,在实际运用中常用的方法有:层次分析法、Delphi 法、专家调查法、加权平均法。 ③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。 ④ 单级综合评判B A R =o . (2)多层次综合评判模型 一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。所以,需采用分层的办法来解决问题。 2、应用 运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见下表: 物流中心选址的三级模型

基于模糊层次分析法的环境综合评价

大庆石油学院学报第32卷第2期2008年4月JOURNAL OF DAQING PET ROLEU M INS TIT UT E V o l.32No.2A pr.2008 基于模糊层次分析法的环境综合评价 王 怡1,2 (1.大庆石油学院经济管理学院,黑龙江大庆 163318; 2.西南财经大学工商管理学院,四川成都 610074) 摘 要:分析环境综合评价的影响因素,建立环境综合评价指标体系,包括社会生活系统、环境经济系统、环境资源 系统、环境技术系统和环境管理系统.运用模糊层次分析方法对我国2006年的环境状况进行综合评价.该方法同普通 层次分析法的区别在于判断矩阵的模糊性,能够简化人们判断目标相对重要性的复杂程度,借助模糊判断矩阵实现由定 性向定量的转换,评价结果可信度较高. 关 键 词:模糊层次分析法;环境综合评价;影响因素;指标体系 中图分类号:X508 文献标识码:A 文章编号:10001891(2008)02010003 0 引言 环境评价是对环境系统状况的价值的评定、判断和提出对策[1].通过环境评价可以掌握环境规制手段对社会经济的影响,利用评价结果的反馈,不断调整规制措施,促进区域经济、社会、资源与环境的协调发展.在环境评价中,层次分析法是运用较多的评价方法.如金菊良[2]将基于加速遗传算法的层次分析法应用在水环境系统工程中,用以实行快速自适应全局优化搜索;胡秀芳、钱鹏[3]采用模糊数学中的多层次综合评价方法对环境质量进行评价,建立了切实可行的综合评价数学模型;邓燕雯[4]探讨了环境价值的集中评价方法,包括收益资本化法、边际机会成本法、总经济价值评估法等.在实际的环境评价中,由环境问题导致的经济效果定量分析比较容易,而社会效果通常采用定性分析.对于那些局部的、间接的和相对的指标,难以用综合的定量指标分析.运用层次分析法处理不肯定、不明确、带有模糊性的评价指标时,往往发生环境评价结果与环境的实际状况不一致的现象.笔者在建立环境综合评价指标体系的基础上,采用模糊判断矩阵评价环境指标,利用层次分析法[5]确定上层指标的综合判断权值,并确保该权值的一致性,得到环境评价的综合发展指数值. 1 评价指标体系 1.1 影响因素 环境 社会和经济系统是一个复合系统,具有系统性和动态性的特点.因此,构建的环境综合评价指标体系是一个包含多因素、全方位的评价指标体系框架.社会生活系统、环境经济系统、环境资源系统、环境技术系统及环境管理系统等因素对环境综合评价的效果产生直接的影响[3].社会生活系统主要考察城市居民的生活质量及环境因素对生活质量的影响;环境经济系统反映在一定的环境规制政策下,用于环境保护的投入和环保产业的发展水平;环境资源系统是构建综合评价指标体系的重要组成部分,环境质量的提高不仅有赖于废弃排放的减低,还要充分利用排放和废弃来创造经济效益,实现经济和生态效益的双赢;技术对环境保护具有推动作用,通过对环境科技成果转化和应用,能够有效地促进 三废 的达标排放和总量控制,加快环保产业的发展,提高地区的竞争力;环境管理系统是环境综合评价重中之重,反映了环境规制的效率,包括环境政策本身的效率及环境规制带来的社会效率.这些影响因素之间相互关联、相互作用,具有较强的耦合性. 收稿日期:20070917;审稿人:肖艳玲;编辑:王文礼 作者简介:王 怡(1975-),女,博士生,主要从事产业经济、规制方面的研究.

基于.层次分析法的模糊综合评价

校园环境质量的模糊综合评价方法 信息与计算科学2003级马文彬 指导教师杜世平副教授 摘要:本文应用模糊数学理论,把模糊综合评价方法具体应用到校园环境质量综合评价研究中,结合校园的实际情况将环境评价系统根据需要分成若干个指标,建立了因子集、评价集、隶属函数和权重集,实现对校园环境的质量等级综合评判。采用层次分析法计算评价的权重集,并对取大取小算法和评价结果的最大隶属度原则进行了改进,取得较好的效果。实例表明:模糊综合评价方法可操作性强、效果较好,可在一般环境的质量评价中广泛应用。 关键词:校园环境质量,模糊综合评价,层次分析法,权重 Fuzzy Comprehensive Evaluation Method for the Environment Quality of university Campus MA Wen-bin Information and Computational Science , Grade 2003 Directed by Du Shi-ping (Associate Prof ) Abstract: In this paper,based on fuzzy mathematics theory, the fuzzy comprehensive evaluation is applied in the environment quality evaluation of university campus,combining the actual situation list to evaluate the general level of university campus by fuzzy comprehensive evaluation. By setting up the factor sets, the evaluation sets, subjection functions and the weighting sets. Implementation of the Campus Environment Quality Level comprehensive evaluation. The evaluation of the weighting sets are made by AHP. The choosing big or small algorithm and the maximal subjection degree of the evaluation result is improved, and the effect is very good.The applying example indicates: the researched method is feasible and effective, it can be used widely in the environment quality assessment. Keywords:Environment quality of university campus,Fuzzy Comprehensive Evaluation,Analytical Hierarchy Process,Weighting

什么是模糊综合评价模型

什么是模糊综合评价模型? 模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。 [编辑] 模糊评价的基本思想 许多事情的边界并不十分明显,评价时很难将其归于某个类别,于是我们先对单个因素进行评价,然后对所有因素进行综合模糊评价,防止遗漏任何统计信息和信息的中途损失,这有助于解决用“是”或“否”这样的确定性评价带来的对客观真实的偏离问题。 [编辑] 模糊综合评价模型类别[1] [编辑] 模糊评价基本模型 设评判对象为P: 其因素集 ,评判等级集 。对U中每一因素根据评判集中的等级指标进行模糊评判,得到评判矩阵: (1) 其中,r ij表示u i关于v j的隶属程度。(U,V,R) 则构成了一个模糊综合评判模型。确定各因素重要性指标(也称权数)后,记为, 满足,合成得

(2) 经归一化后,得 ,于是可确定对象P的评判等级。[编辑] 置信度模糊评价模型 (1) 置信度的确定。 在(U,V,R)模型中,R中的元素r ij是由评判者“打分”确定的。例如 k 个 评判者,要求每个评判者u j对照作一次判断,统计得分和归 一化后产生 , 且, 组成 R 。其中既代表u j关于v j的“隶属程度”,也反映了评判u j为v j的集0 中程度。数值为1 ,说明u j为v j是可信的,数值为零为忽略。因此,反映这种集中程度的量称为“置信度”。对于权系数的确定也存在一个信度问题。 在用层次分析法确定了各个专家对指标评估所得的权重后,作关于权系数的等级划分,由此决定其结果的信度。当取N个等级时,其量化后对应于[0,l]区间上N次平分。例如,N取5,则依次得到[0,0.2],[0.2,0.4],[0.2,0.6],[0.6,0.8],[0.8,l]。对某j个指标,取遍k个专家对该指标评估所得的权重,得。作和式 (3) 其中d ij表示数组中属于的个数,a0= 0,b N= 1。 取(4)

模糊综合评价模型及实例

模糊综合评价模型 [编辑] 什么是模糊综合评价模型? 模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。 [编辑] 模糊评价的基本思想 许多事情的边界并不十分明显,评价时很难将其归于某个类别,于是我们先对单个因素进行评价,然后对所有因素进行综合模糊评价,防止遗漏任何统计信息和信息的中途损失,这有助于解决用“是”或“否”这样的确定性评价带来的对客观真实的偏离问题。 [编辑] 模糊综合评价模型类别[1] [编辑] 模糊评价基本模型

设评判对象为P: 其因素集 ,评判等级 集。对U中每一因素根据评判集中的等级指标进行模糊评判,得到评判矩阵: (1) 其中,r ij表示 u i关于v j的隶属程度。(U,V,R)则构成了一个模糊综合评判模型。确定各 因素重要性指标(也称权数)后,记为,满足,合成得 (2) 经归一化后,得 ,于是可确定对象P的评判等级。 [编辑] 置信度模糊评价模型 (1) 置信度的确定。 在(U,V,R)模型中,R中的元素r ij是由评判者 “打分”确定的。例如k 个评判者,要求每 个评判者u j对照 作一次判断,统计得分和归一化后产生 , 且 , 组成R0。其中既 代表u j关于v j的“隶属程度”,也反映了评判u j为v j的集中程度。数值为1 ,说明u j为v j是可 信的,数值为零为忽略。因此,反映这种集中程度的量称为“置信度”。对于权系数的确定也存在一个信度问题。 在用层次分析法确定了各个专家对指标评估所得的权重后,作关于权系数的等级划分,由此决定其结果的信度。当取N个等级时,其量化后对应于[0,l]区间上N次平分。例如,N取5,则依次得到[0,0.2],[0.2,0.4],[0.2,0.6],[0.6,0.8],[0.8,l]。对某j个指标, 取遍k个专家对该指标评估所得的权重,得。作和式 (3) 其中d ij表示数组中 属于的个数,a0 = 0,b N = 1。

模糊层次评价计算步骤

层次分析法与模糊评价在企业招聘中的应用 黄岳钧1李树丞2 (1,2湘潭大学商学院2湖南大学商学院湖南湘潭411105) 摘要:如何从众多的应聘者中甄选出适合于本企业的人才是人力资源管理所面临的重要课题之一。目前用人单位在招聘员工时,通常只是对众多的应聘人员进行简单的考察。因受各种主客观因素的影响,对应聘人员的评价难免有失公正。文章以某大型企业高层次人才的胜任力模型为例,设计了在招聘过程中甄选应聘者的指标体系,在评估方法上,采取定性与定量相结合的方法,运用层次分析法(AHP)确定了指标权重系数,针对甄选指标的模糊性,建立了评估的模糊综合评价模型,并进行了应用实例评估,结果表明,所建立的应聘者甄选评估体系是实际可操作的。 关键词:胜任力模型;层次分析法;模糊评价 一、胜任力模型概述 "胜任力"(competency)这个概念最早由哈佛大学教授David·McClelland于1973年正式提出,是指"能将某一工作中有卓越成就者与普通者区分开来的个人的深层次特征,它可以是动机、特质、自我形象、态度或价值观、某领域知识、认知或行为技能等任何可以被可靠测量或计数的并且能显著区分优秀与一般绩效的个体特征。 胜任力模型是指构成每一项工作所必须具备的胜任力总和。一个完整的胜任力模型,通常包含了一个或多个群组,而每个群组底下又包含了若干个胜任力特征,且每个胜任力特征都有着一个描述性定义及3~5级行为描述或在工作中可以展现出这个才能的特定行为[1]。 近三十年来,胜任力模型作为最好的方法之一而应用于人员招聘和发展流程上,并被广泛地接受。一个构建完好的源于组织的商业战略的胜任力模型,能够帮助组织定义出在某一工作岗位上作出优异表现所必需的行为和个人特质。该岗位特征模型能明确担任该岗位工作的人员所应具备的胜任特征及其组合结构,也可以成为从外显到内隐特征进行人员素质测评的重要尺度和依据,从而为人力资源的招聘工作提供了科学的依据[2]。也就是说,胜任力模型成为一个“标杆”,依据这一标杆来评估新员工。 现代人力资源管理要求运用科学的评价系统对应聘者的素质、知识及潜能等方面做出客观公正的评价[3]。有效的招聘既使企业得到了良好的人力资源,同时也为人员的保持打下了基础,有助于减少因人员流动过于频繁而带来的损失,增强组织的凝聚力,提高士气,增强员工对组织的忠诚度。德斯勒曾在其著作中介绍,“公司招募过程质量的高低会明显地影响应聘者对企业的看法”[4]。在有效的胜任力评价模型中,对应聘者个人的评估是决定其是否聘用、确定其薪酬和入职及在职培训内容的依据。在评估方法上,应当采取定性与定量相结合的方法,建立评估模型,合理确定评估指标体系和指标权重,进行有效的员工甄选。由于指标在不同程度上存在模糊性和层次性,在招聘过程对员工的各方面素质的综合评价可以采用层次分析法与模糊综合评价相结合进行。 二、员工招聘评价指标设计 不同岗位的评价指标侧重点不同,指标权重也不一样,准确、合理的权重可使招聘者能 作者简介:黄岳钧,(1982-),男,衡阳人,湘潭大学硕士研究方向:管理科学与工程人力资源管理李树丞,(1943-),男,哈尔滨人,原湖南大学副校长,原湘潭大学校长,教授,博导

模糊综合评价法

模糊综合评价法 一、基本思想和原理 在客观世界中,存在着大量的模糊概念和模糊现象,模糊数学就是试图用数学工具解决模糊事物方面的问题。 模糊综合评价是借助模糊数学的一些概念,对实际的综合评价问题提供一些评价的方法,具体说,模糊综合评价就是以数学为基础,应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,从多个因素对被评价事物隶属度等级状况进行综合性评价的一种方法。 模糊综合评价的原理 首先确定被评价对象的因素(指标)集合评(等级)集;再分别确定各个因素的权重及它们的隶属度向量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的全向量进行模糊运算并进行归一化,得到模糊综合评价结果。 其特点在于评判逐对象进行,对被评价对象有唯一的评价值,不受被评价对象所处对象集合的影响。综合评价的目的是从对象集中选出优胜对象,所以还需要将所有对象的综合评价结果进行排序。 二、模糊综合评价法的模型和步骤 1.确定评价对象的因素论域 U={u1,u2,u3···m} 也就是说有m个评价指标,标明我们对被评价对象从哪些方面来进行评判描述。 2.确定评语等级论域 评语集是评价者对被评价对象可能做出的各种总的评价结果组成的集合,用V表示: V={v1,v2,v3···n} 实际上就是对被评价对象变化区间的一个划分,其中v1代表第i个评价结果,n为总的评价结果数。 具体等级可以依据评价内容适当的语言进行描述,比如评价产品的竞争力可用V=(好、较好、一般、较差、差)等。 3.进行但因素评价,建立模糊关系矩阵R 单独从一个因素出发进行评价,以确定评价对象对评价集合V的隶属程度,称为单因素模糊评价,在构造了等级模糊子集后,就要逐个对被评价对象从每个因素ui(i=1,2,···m)上进行量化,也就是确定从单因素来看被评价对象各等级模糊子集的隶属度,进而得到模糊关系矩阵: R=

相关文档