文档库 最新最全的文档下载
当前位置:文档库 › 盐胁迫下小麦生理生化机制研究计划

盐胁迫下小麦生理生化机制研究计划

盐胁迫下小麦生理生化机制研究计划
盐胁迫下小麦生理生化机制研究计划

盐胁迫下小麦生理生化机制研究计划

1 .立项依据

土壤盐渍化是世界范围内影响作物产量的主要非生物胁迫因子之一。由于世界上存在大量盐碱地和盐渍化土壤,相当大的一部分农作物品种因受不同程度盐害的影响难以发挥其增产和优质潜力。影响作物产量的各种环境因素中,干旱和盐碱造成的减产在40%以上。据统计,全球大约有3.8亿hm2土地存在不同程度的盐渍化,约占可耕地面积的10%。中国目前有0.2亿hm2以上盐碱地和0.07亿hm2以上盐渍化土壤,约占可耕地面积的20%。盐渍土是中国分布广、类型多、对农业生产影响较大的一种低产土壤。盐渍化土壤的开发利用有多种途径,筛选作物的耐盐品种并加以利用是一种行之有效的措施,它对加速抑盐脱盐进程,提高产量都具有重要意义。

小麦(Triticum aestivum L.)是世界上主要的粮食作物,世界上35%以上的人以小麦为主要食物,全世界小麦种植面积超过任何其他作物。因此,开展小麦耐盐生理的研究和实践,已引起人们的广泛重视。近年来国内外小麦育种、栽培和生理学家们在植物的耐盐性方面开展了大量工作,研究了植物耐盐性的生理机制探讨了其遗传规律,对小麦品种资源进行了耐盐性筛选,对小麦耐盐性进行了多方面的深入研究,并取的了很大进展。土壤盐渍化是世界范围内影响作物产量的主要非生物胁迫因子之一,也是农作物减产的主要原因之一。相当大的一部分农作物品种因受不同程度盐害的影响难以发挥其增产和优质潜力。据统计,影响作物产量的各种环境因素中,干旱和盐碱造成的减产在40%以上。如何提高植物的耐盐性成为当前一个迫切需要解决的科学问题。因此,开展小麦耐盐性的研究,已引起人们的广泛重视。要选育高耐盐性的植物品种,必须深入研究植物的耐盐机理。

2 .研究方案

( 1 )研究目标、研究内容和拟解决的关键问题

系统研究盐胁迫下小麦各种生理生化指标的变化,可以从多方面揭示小麦耐盐机制,丰富小麦抗盐生理内容,为抗盐品种选择和盐碱地小麦栽培提供理论依据

1盐胁迫对种子萌发和出苗的影响

种子发芽是小麦生长发育的开始,小麦芽期对盐胁迫的忍耐程度反映的是在盐胁迫条件下种子吸水膨胀萌动生根的综合能力。种子耐盐性及其机制是植物耐盐性早期鉴定及耐盐个体与品种早期选择的基础。小麦品种种子发芽率、发芽指数、活力指数、幼苗苗长这些指标可以反映种子的发芽速度、发芽整齐度和幼苗健壮的趋势,反映不同小麦品种种子发芽期耐盐性的强弱

2农艺性状对盐胁造的反应

苗期是小麦生长由异养过渡到自养的敏感时期,而冬麦返青和春麦播种出苗后正好是土壤返盐的时期,此期小麦扎根浅,是盐害容易发生的时期。因此,小麦的苗期耐盐性对于小麦生产十分重要

3 盐胁迫下渗透调节物质的积累

3.1 有机物质的积累

盐胁迫条件下渗透调节能力的增加与各种渗透调节物质的主动积累是分不开的,其中游离脯氨酸、可溶性糖和蛋白质以及甜菜碱对小麦渗透调节能力的维持起着主要作用。因此,对在盐胁迫下有机物质的含量变化测定掌握非常重要。

3.2 无机盐的积累

盐胁迫对植物的伤害主要是渗透胁迫和离子效应。植物体在盐胁迫下,可以通过在液泡中积累无机盐离子进行渗透调节。盐胁迫对小麦生长、离子吸收及分配的影响,从离子平衡分析的角度对小麦抗盐机理进行分析研究,

4 盐胁迫下抗氧化酶活性

4.1 细胞质膜透性增大

植物控制物质进出细胞的性质就是细胞质膜透性,生活细胞的物质交换能否正常进行,主要决定于细胞质膜透性的正常维持。不少研究结果都表明,在盐胁迫处理下,幼苗根和叶的细胞膜均受到伤害,但耐盐性较强的品种,细胞膜透性增加较少,伤害率较低(7%~13%)耐盐性较弱的材料,细胞膜透性增加较多,伤害率较强(16~24%),通过对细胞质膜透性的研究来比较耐盐品种的强弱。

4.2 抗氧化保护系统

植物特别是耐盐植物在长期的进化过程中,形成一套较为精细的去除、中和及捕获活性氧的抗氧化防御体系,主要包括抗氧化酶系统和非酶系统的抗氧化剂类。通过对抗氧化防御体系的研究是判断耐盐品种的一个重要方面。

5 盐胁迫下小麦品种对钾钠吸收运输的选择性

小麦品种间产生耐盐性差异的原因可能是由于不同品种对钾钠吸收和运输的选择性的差异造成的,所以对钾钠吸收运输的选择性的研究是十分必要的。

6 盐胁迫对多胺含量的影响

多胺(polyamine,PA)广泛存在于原核生物和真核生物细胞中,是一类低分子脂肪族含氮碱,是进化中高度保守的有机多聚阳离子。高等植物中常见的多胺有腐胺(Put)、亚精胺(Spd)、精胺(Spm)等。许多研究表明,多胺具有在植物体内能影响:DNA、RNA和蛋白质的生物合成,促进生长和发育,延迟衰老的作用,并与植物的抗逆性关系密切。

7 质膜NADPH氧化酶活性

NADPH氧化酶是植物质膜氧化还原系统的主要酶类之一,在质膜活性氧的产生中起重要作用。

8 盐胁迫对小麦光合作用的影响

8.1 盐胁迫对光合速率及叶片气孔导度的影响

盐胁迫使各小麦品种的光合速率降低,且品种不同降幅不同。大部分品种幼苗的叶绿素含量对低浓度的NaCl胁迫反应不敏感,而对高浓度NaCl胁迫的反应则较敏感;随着NaCl浓度的增加,叶绿素含量显著降低。耐盐性强的小麦品种的净光合速率及气孔导度均显著高于耐盐性弱的品种。说明耐盐性强的小麦品种的光合结构对环境的适应性强,在盐胁迫下能够维持较好的气孔导性和光合速率。

8.2 盐胁迫对叶绿素和类胡萝卜素含量以及希尔反应活力的影响

8.3 盐胁迫对小麦PSⅡ光化学效率(Fv/Fm)的影响

( 2 )研究方法,技术路线、试验方案

进行各个实验方面的数据测定,综合分析,不同参数的测定使用不同的方法。( 3 )进度安排

根据指导老师的安排进行。

生物化学课后答案张丽萍

9 糖代谢 1.假设细胞匀浆中存在代谢所需要的酶和辅酶等必需条件,若葡萄糖的C-1处用14C 标记,那么在下列代谢产物中能否找到14C 标记。 (1)CO 2;(2)乳酸;(3)丙氨酸。 解答: (1)能找到14C 标记的CO 2 葡萄糖→→丙酮酸(*C 1) →氧化脱羧生成标记的CO 2。 (2)能找到14C 标记的乳酸 丙酮酸(*C 1)加NADH+H +还原成乳酸。 (3)能找到14C 标记的丙氨酸 丙酮酸(*C 1) 加谷氨酸在谷丙转氨酶作用下生成14C 标记的丙氨酸。 2.某糖原分子生成 n 个葡糖-1-磷酸,该糖原可能有多少个分支及多少个α-(1—6)糖苷键(*设:糖原与磷酸化酶一次性作用生成)?如果从糖原开始计算,lmol 葡萄糖彻底氧化为CO 2和H 2O ,将净生成多少mol ?ATP? 解答:经磷酸化酶作用于糖原的非还原末端产生n 个葡萄糖-1-磷酸, 则该糖原可能有n +1个分支及n +1个α-(1—6)糖苷键。如果从糖原开始计算,lmol 葡萄糖彻底氧化为CO 2和 H 2O, 将净生成33molATP 。 3.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别? 解答:(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H + 。 NADH+H +代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。 (2) 生成ATP 的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP 。 葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP (甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡糖-6-磷酸,果糖-6-磷酸至果糖1,6--二磷酸分别消耗了1mol ATP, 在无氧条件下净生成2mol ATP 。在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H +进入呼吸链将生成2× ATP ,所以净生成7mol ATP 。 4.O 2没有直接参与三羧酸循环,但没有O 2的存在,三羧酸循环就不能进行,为什么?丙二酸对三羧酸循环有何作用? 解答:三羧酸循环所产生的3个NADH+H +和1个FADH 2需进入呼吸链,将H +和电子传递给O 2生成H 2O 。没有O 2将造成NADH+H +和FADH 2的积累,而影响三羧酸循环的进行。丙二酸是琥珀酸脱氢酶的竟争性抑制剂,加入丙二酸会使三羧酸循环受阻。 5.患脚气病病人丙酮酸与α–酮戊二酸含量比正常人高(尤其是吃富含葡萄糖的食物后),请说明其理由。 解答:因为催化丙酮酸与α–酮戊二酸氧化脱羧的酶系需要TPP 作酶的辅因子, TPP 是VB 1的衍生物,患脚气病病人缺VB 1, 丙酮酸与α–酮戊二酸氧化受阻, 因而含量比正常人高。 6.油料作物种子萌发时,脂肪减少糖増加,利用生化机制解释该现象,写出所经历的主要生化反应历程。 解答:油料作物种子萠发时,脂肪减少,糖増加,表明脂肪转化成了糖。转化途径是:脂肪酸氧化分解成乙酰辅酶A,乙酰辅酶A 经乙醛酸循环中的异柠檬酸裂解酶与苹果酸合成酶催化, 生成草酰乙酸,再经糖异生转化为糖。 7.激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失.利用生化机制解释该现象。 解答:激烈运动时, 肌肉组织中氧气供应不足, 酵解作用加强, 生成大量的乳酸, 会感到肌肉酸痛,经过代谢, 乳酸可转变成葡萄糖等其他物质,或彻底氧化为CO 2和 H 2O , 因乳酸含量减少酸痛感会消失。 8.写出UDPG 的结构式。以葡萄糖为原料合成糖原时,每增加一个糖残基将消耗多少ATP? 解答:以葡萄糖为原料合成糖原时 , 每增加一个糖残基将消耗3molATP 。过程如下: ATP G 6P ADP +--+垐?噲?葡萄糖(激酶催化), G 6P G 1P ----垐?噲?(己糖磷酸异构酶催化), 2G 1P UTP UDPG PPi PPi H O 2Pi --+++??→垐?噲?(UDPG 焦磷酸化酶催化), 再在糖原合成酶催化下,UDPG 将葡萄糖残基加到糖原引物非还原端形成α-1,4-糖苷键。

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0.2%~0.25%时就会造成危害。钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP 羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高是由于Na+活化了离子转移系统,尤其是对质膜上的Na+、K+与A TP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察和计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备和材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml 容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法和步骤 1.预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

生物化学习题及答案

习题试题 第1单元蛋白质 (一)名词解释 1.兼性离子(zwitterion); 2.等电点(isoelectric point,pI); 3.构象(conformation); 4.别构效应(allosteric effect); 5.超二级结构(super-secondary structure); 6.结构域(structur al domain,domain); 7. 蛋白质的三级结构(tertiary stracture of protein);降解法(Edman de gradation);9.蛋白质的变性作用(denaturation of protein);效应(Bohr effect);11.多克隆抗体(polyclonal antibody)和单克隆抗体(monochonal antibody);12.分子伴侣(molecular chapero ne);13.盐溶与盐析(salting in and salting out)。 (二)填充题 1.氨基酸在等电点时,主要以__________离子形式存在,在pH>pI的溶液中,大部分以________离子形式存在,在pH<pI的溶液中,大部分以________离子形式存在。 2.组氨酸的pK1(α-COOH)值是,pK2(咪唑基)值是,pK3(α-NH3+)值是,它的等电点是__________。 的pK1=,pK2= ,pK3=9,82,其pI等于________。 4.在近紫外区能吸收紫外光的氨基酸有________、________和_________。其中_______的摩尔吸光系数最大。 5 .蛋白质分子中氮的平均含量为_______,故样品中的蛋白质含量常以所测氮量乘以_______即是。 6.实验室常用的甲醛滴定是利用氨基酸的氨基与中性甲醛反应,然后用碱(NaOH)来滴定_________上放出的__________。 7.除半胱氨酸和胱氨酸外,含硫的氨基酸还有_________,除苏氨酸和酪氨酸外,含羟基的氨基酸还有__________,在蛋白质中常见的20种氨基酸中,__________是一种亚氨基酸,___________不含不对称碳原子。 8.蛋白质的氨基酸残基是由_________键连接成链状结构的,其氨基酸残基的______称蛋白质的一级结构。 9.β-折叠片结构的维持主要依靠两条肽键之间的肽键形成________来维持。 10.在螺旋中C=O和N—H之间形成的氢键与_______基本平行,每圈螺旋包含_____个氨基酸残基,高度为___

生化习题及答案

一.选择题 1.唾液淀粉酶应属于下列那一类酶( D ); A 蛋白酶类 B 合成酶类 C 裂解酶类 D 水解酶类 2.酶活性部位上的基团一定是( A ); A 必需基团 B 结合基团 C 催化基团 D 非必需基团 3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C ); A 不可逆抑制 B 非竟争性抑制 C 竟争性抑制 D 非竟争性抑制的特殊形式 4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP; A 0 B -1 C 2 D 3 5.磷酸戊糖途径中,氢受体为( B ); A NAD+ B NADP+ C FA D D FMN 6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D ); A 辅酶Q B 细胞色素b C 铁硫蛋白 D FAD 7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A ); A 内膜外侧为正,内侧为负 B 内膜外侧为负,内侧为正 C 外膜外侧为正,内侧为负 D 外膜外侧为负,内侧为正 8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP; A 3 B 2 C 4 D 1 9.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C ); A 血浆脂蛋白 B 高密度脂蛋白 C 可溶性复合体 D 乳糜微粒 10.对于高等动物,下列属于必需氨基酸的是(B ); A 丙氨酸 B 苏氨酸 C 谷氨酰胺 D 脯氨酸 11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );

植物盐胁迫及其抗性生理研究进展解读

植物盐胁迫及其抗性生理研究进展 李艺华1罗丽2 (1、漳州华安县科技局华安 363800 2、福建农林大学园艺学院福州 350002 摘要:盐胁迫是制约农作物产量的主要逆境因素之一。本文综合了几年来植物盐胁迫研究的报道,对盐胁迫下植物生理生化和生长发育变化、植物自身生理系统的响应以及增强植物抗盐胁迫的方法进行综述和讨论。 关键词:植物抗盐胁迫生理 中图分类号:Q945.7 文献标识码:A 文章编号:1006—2327—(200603—0046—04 盐胁迫是目前制约农作物产量的主要逆境因素之一[1],既有渗透胁迫又有离子胁迫[2]。随着土壤盐渍化面积的扩展,许多非盐生植物因受盐胁迫而导致产量和品质的快速下降,已成为中国西北部和沿海地区迫切解决的难题。迄今,植物盐胁迫这方面有较多的研究报道,多数侧重于某一植物或是植物某一生长阶段耐盐胁迫性与抗盐胁迫性的研究,缺少对植物抗盐胁迫有一个较为系统的综合阐述。鉴于植物抗盐胁迫的研究面的广泛性和分散性,本文综合了几年来抗盐胁迫研究报道,对植物抗盐胁迫的生理机制做一个综合阐述,为阐明植物对盐胁迫的反应机制提供一个较系统的理论依据。 1 盐胁迫对植物生理生化和生长发育的影响 盐胁迫对植物生理生化的影响可分为三方面:离子毒害、渗透胁迫和营养亏缺。离子毒害作用包括过量的有毒离子钠和氯对细胞膜系统的伤害,导致细胞膜透性的增大,电解质的外渗以及由此而引起的细胞代谢失调;渗透胁迫是由于根系环境中盐分浓度的提高、水势下降而引起的植物吸水困难;营养亏缺则是由于根系吸收过程中高浓度Na和Cl 离子存在,干扰了植物对营养元素K、Ca和N的吸收,造成植物体内营养元素的缺乏,影响植物生长发育[1]。大量试验结果表明,盐胁迫不同程度地影响植物的光合作用、呼吸作用和渗透作用,影响植物的同、异化功能[3],当盐

生物化学课后习题答案

第二章糖类 1、判断对错,如果认为错误,请说明原因。 (1)所有单糖都具有旋光性。 答:错。二羟酮糖没有手性中心。 (2)凡具有旋光性的物质一定具有变旋性,而具有变旋性的物质也一定具有旋光性。 答:凡具有旋光性的物质一定具有变旋性:错。手性碳原子的构型在溶液中发生了 改变。大多数的具有旋光性的物质的溶液不会发生变旋现象。 具有变旋性的物质也一定具有旋光性:对。 (3)所有的单糖和寡糖都是还原糖。 答:错。有些寡糖的两个半缩醛羟基同时脱水缩合成苷。如:果糖。 (4)自然界中存在的单糖主要为D-型。 答:对。 (5)如果用化学法测出某种来源的支链淀粉有57 个非还原端,则这种分子有56 个分支。 答:对。 2、戊醛糖和戊酮糖各有多少个旋光异构体(包括α-异构体、β-异构体)?请写出戊醛糖的开链结构式(注明构型和名称)。 答:戊醛糖:有3 个不对称碳原子,故有2 3 =8 种开链的旋光异构体。如果包括α-异构体、 β-异构体,则又要乘以2=16 种。 戊酮糖:有2 个不对称碳原子,故有2 2 =4 种开链的旋光异构体。没有环状所以没有α-异 构体、β-异构体。 3、乳糖是葡萄糖苷还是半乳糖苷,是α-苷还是β-苷?蔗糖是什么糖苷,是α-

苷还是β -苷?两分子的D-吡喃葡萄糖可以形成多少种不同的二糖? 答:乳糖的结构是4-O-(β-D-吡喃半乳糖基)D-吡喃葡萄糖[β-1,4]或者半乳糖β(1→4) 葡萄糖苷,为β-D-吡喃半乳糖基的半缩醛羟基形成的苷因此是β-苷。 蔗糖的结构是葡萄糖α(1→2)果糖苷或者果糖β(2→1)葡萄糖,是α-D-葡萄糖的半缩 醛的羟基和β- D -果糖的半缩醛的羟基缩合形成的苷,因此既是α苷又是β苷。两分子的D-吡喃葡萄糖可以形成19 种不同的二糖。4 种连接方式α→α,α→β,β→α, β→β,每个5 种,共20 种-1 种(α→β,β→α的1 位相连)=19。 4、某种α-D-甘露糖和β-D-甘露糖平衡混合物的[α]25 D 为+ °,求该平衡混合物中α-D- 甘露糖和β-D-甘露糖的比率(纯α-D-甘露糖的[α]25 D 为+ °,纯β-D-甘露糖的[α]25 D 为- °); 解:设α-D-甘露糖的含量为x,则 (1-x)= X=% 该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率:= 5、请写出龙胆三糖[β-D-吡喃葡萄糖(1→6)α-D-吡喃葡萄糖(1→2)β-D-呋喃果糖] 的 结构式。. 6、水解仅含D-葡萄糖和D-甘露糖的一种多糖30g,将水解液稀释至平衡100mL。此水解液 在10cm 旋光管中测得的旋光度α为+ °,试计算该多糖中D-葡萄糖和D-甘露糖的物质的 量的比值(α/β-葡萄糖和α/β-甘露糖的[α]25 D 分别为+ °和+ °)。 解:[α]25 D= α25 D /cL×100= ( 30×1)×100= 设D-葡萄糖的含量为x,则 +(1-x)= X=%

生化练习题(带答案)

第一章蛋白质 选择题 1.某一溶液中蛋白质的百分含量为45%,此溶液的蛋白质氮的百分浓度为:E A.8.3% B.9.8% C.6.7% D.5.4% E.7.2% 2.下列含有两个羧基的氨基酸是:D A.组氨酸B.赖氨酸C.甘氨酸D.天冬氨酸E.色氨酸 3.下列哪一种氨基酸是亚氨基酸:A A.脯氨酸B.焦谷氨酸C.亮氨酸D.丝氨酸E.酪氨酸 4.维持蛋白质一级结构的主要化学键是:C A.离子键B.疏水键C.肽键D.氢键E.二硫键 5.关于肽键特点的错误叙述是:E A.肽键中的C-N键较C-N单键短 B.肽键中的C-N键有部分双键性质 C.肽键的羰基氧和亚氨氢为反式构型 D.与C-N相连的六个原子处于同一平面上 E.肽键的旋转性,使蛋白质形成各种立体构象 6.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有这种结构 B.有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 7.具有四级结构的蛋白质特征是:E A.依赖肽键维系四级结构的稳定性 B.在三级结构的基础上,由二硫键将各多肽链进一步折叠、盘曲形成 C.每条多肽链都具有独立的生物学活性 D.分子中必定含有辅基 E.由两条或两条以上具有三级结构的多肽链组成 8.含有Ala,Asp,Lys,Cys的混合液,其pI依次分别为6.0,2.77,9.74,5.07,在pH9环境中电泳分离这四种氨基酸,自正极开始,电泳区带的顺序是:B A.Ala,Cys,Lys,Asp B.Asp,Cys,Ala,Lys C.Lys,Ala,Cys,Asp D.Cys,Lys,Ala,Asp E.Asp,Ala,Lys,Cys 9.变性蛋白质的主要特点是:D A.粘度下降 B.溶解度增加

盐分胁迫对植物生长和生理影响

盐分胁迫对植物生长生理的影响 张华新,刘正祥等研究了光叶漆、银水牛果等11种树种后发现,盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,,各树种的根冠比值增大1 王润贤,周兴元,葛晋纲等人对草的研究后发现,在草坪草适应范围之内,根系活力和蛋白质含量呈先升后降的趋势,如超过忍受范围则持续下降。随盐分胁迫强度的增加和胁迫时间的延长,草坪草叶片的WSD上升,脯氮酸含量均表现为先升后降的趋势,但因胁迫程度和草种的不同,其峰值和下降幅度有较大差异。各项生理指标变化的趋势因草种的不同而有较大的差异,与其耐盐性有关,可以作为判定草坪草抗盐能力的评定依据。2 孙方行,李国雷对刺槐进行3天和17天盐胁迫处理后发现,MDA含量和细胞膜透性存在极显著正相关。叶绿素浓度和可溶性蛋白含量也存在极显著关。SOD活性和叶绿素浓度成负相关。从逐步回归分析可以看出细胞膜透性是影响高生长的主要指标3 张金香,钱金娥等人发现,经过前处理的1/2海水区中生长的苗木其叶、茎、根的生长量均超过淡水区中生长的苗木。说明一定程度的耐盐锻炼能够增强苗木对盐碱、干旱环境的适应能力4 张士功,高吉寅,宋景芝发现,6-苄基腺嘌呤、水杨酸、阿斯匹林,硝酸钙能够在一定程度上限制幼苗对Na+的吸收,阻滞其向地上部分运输的数量和速度。提高体内K+含量、向上运输效率,降低地上部分对Na+、K+的选择性(SNa+、K+>,同时6-苄基腺嘌呤还能够促进幼苗根系对Cl-的吸收,并有效地将Cl-限制在根部,阻滞Cl-向上运输,相对降低地上部分的Cl,这些都有利于

提高小麦幼苗抗盐性和对盐分胁迫的适应性5 王强,石伟勇,符建荣,指出,叶面喷施海藻液肥能提高黄瓜根冠比和干物质含量,提高根系总吸收面积和活跃吸收面积。不同浓度的海藻液肥均能降低盐胁迫对叶片质膜的伤害,提高SOD、POD等酶的活性,降低膜脂过氧化产物MDA的积累,提高脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质的含量6 许兴,郑国琦.等指出,在等渗条件下,NaCl胁迫引起的小麦叶片组织含水量的下降、胁迫伤害率的增大及叶片和根部的脯氨酸、可溶性糖、Na+、K+含量的增加,均大于PEG胁迫引起的变化7 郑国琦,许兴,徐兆桢研究了盐分胁迫对植物的伤害和探讨了植物的耐盐的生物学机理以及通过基于改良作物耐盐性的研究进程。8 吴忠东,王全九.研究发现,在不同的生育期降水量条件下,冬小麦对盐分胁迫有着不同的响应。生育期一般年和湿润年可以采用的最高矿化度为3 g/L,而在生育期偏旱年,如果不采取其他措施的条件下,可以采用的最高矿化度为2 g/L,该结果为合理开发利用当地的地下咸水资源提供了一定的依据。9 郭淑霞,龚元石在研究盐分胁迫对菠菜生长和吸氮量的影响后发现,对菠菜进行盐分胁迫,前 44 天,随着盐分胁迫程度增加,菠菜相对生长速率

生物化学习题及答案_酶

酶 (一)名词解释 值) 1.米氏常数(K m 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) (二)英文缩写符号 1.NAD+(nicotinamide adenine dinucleotide) 2.FAD(flavin adenine dinucleotide) 3.THFA(tetrahydrofolic acid) 4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide) 6.CoA(coenzyme A) 7.ACP(acyl carrier protein) 8.BCCP(biotin carboxyl carrier protein) 9.PLP(pyridoxal phosphate) (三)填空题

1.酶是产生的,具有催化活性的。2.酶具有、、和等催化特点。3.影响酶促反应速度的因素有、、、、和。 4.胰凝乳蛋白酶的活性中心主要含有、、和基,三者构成一个氢键体系,使其中的上的成为强烈的亲核基团,此系统称为系统或。 5.与酶催化的高效率有关的因素有、、、 、等。 6.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。 7.变构酶的特点是:(1),(2),它不符合一般的,当以V对[S]作图时,它表现出型曲线,而非曲线。它是酶。 8.转氨酶的辅因子为即维生素。其有三种形式,分别为、、,其中在氨基酸代谢中非常重要,是、和的辅酶。 9.叶酸以其起辅酶的作用,它有和两种还原形式,后者的功能作为载体。 10.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到个多肽。 11.全酶由和组成,在催化反应时,二者所起的作用不同,其中决定酶的专一性和高效率,起传递电子、原子或化学基团的作用。12.辅助因子包括、和等。其中与酶蛋白结合紧密,需要除去,与酶蛋白结合疏松,可以用除去。13.T.R.Cech和S.Alman因各自发现了而共同获得1989年的诺贝尔奖(化学奖)。 14.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类、、、、、和。

高级植物生理学04盐胁迫及其它

盐胁迫 全世界约有1/3的盐渍化土壤,我国约有250 多万公顷的各种盐渍土壤,主要分布在沿海地区或内陆新疆、甘肃等西北干旱、半干旱地区。随着工业污染加剧、灌溉农业的发展和化肥使用不当等原因, 次生盐碱化土壤面积有不断加剧的趋势。这些地区由于土壤中含有较多的盐类植物常受盐害而不能正常生长和存活,给农业生产造成重大损失。植物耐盐机理和耐盐作物品种的培育已成为当前的研究热点之一。综合治理盐渍土、提高植物的耐盐性、开发利用盐水资源已成为未来农业发展及环境治理所亟待解决的问题。 钠盐是形成盐分过多的主要盐类,NaCl和Na2SO4含量较多称为盐土,Na2CO3与NaHCO3含量过多称为碱土。自然界这两种情况常常同时出现统称为盐碱土。 一、盐胁迫对植物的伤害机理 盐害包括原初盐害和次生盐害。原初盐害是指盐离子的直接作用,对细胞膜的伤害极大;次生盐害是指盐离子的间接作用导致渗透胁迫,从而造成水分和营养的亏缺。 1、生理干旱。土壤盐分过多使植物根际土壤溶液渗透势降低,植物要吸收水分必须形成一个比土壤溶液更低的水势,否则植物将受到与水分胁迫相类似的危害,处于生理干旱状态。如一般植物在土壤盐分超过0. 2 %~0.5 %时出现吸水困难,盐分高于0. 4 %时植物体内水分易外渗,生长速率显著下降,甚至导致植物死亡。 2、直接盐害。(1)细胞内许多酶只能在很窄的离子浓度范围内才有活性,从而导致酶的变性和失活,以致于影响了植物正常的生理功能和代谢。高浓度盐分影响原生质膜,改变其透性,盐分胁迫对植物的伤害作用,在很大程度上是通过破坏生物膜的生理功能引起的。盐胁迫还可影响膜的组分用NaCl 和NaCO3溶液处理玉米幼苗发现膜脂中不饱和脂肪酸指数降低,饱和脂肪酸指数相对增多,这也证明了盐离子能影响膜脂成分的组成。(2)植物吸收某种盐类过多而排斥了对另一些营养元素的吸收,导致不平衡吸收,产生单盐毒害作用,还造成营养胁迫。如Na+浓度过高时,减少对K+的吸收,同时也易发生PO43-和Ca2+的缺乏症,盐胁迫下造成养分不平衡的另一方面在于Cl-抑制植物对NO3-及H2PO4 -的吸收。 3、光合作用。众多实验证明,盐分胁迫对盐生植物和非盐生植物的光合作用都是抑制的,并且降低程度与盐浓度呈正相关。 (1)盐胁迫使叶绿体中类囊体膜成分与超微结构发生改变 (2)盐胁迫对光能吸收和转换的影响 (3)盐胁迫对电子传递的影响随着盐浓度的提高PSⅡ电子传递速度明显下降能与盐胁迫损害了PSⅡ氧化侧的放氧复合物的功能,使它向PSⅡ反应中心提供的电子数量减少,阻断了PSⅡ还原侧从QA 向QB 的电子传递。 (4)盐胁迫对光合碳同化的影响光合作用碳同化过程中最重要的酶1,5—二磷酸核酮糖羧化酶(RUBPCase),在盐胁迫下会使RUBPCase 的活性和含量降低,结果酶的羧化效率下降,导致植物固定CO2 的能力减弱,与此同时,RUBPCase 还限制RUBP 和无机磷(Pi)的再生,而这两种物质再生能力的大小对C3 循环至关重要。此外,盐胁迫还会降低磷酸甘油酸、磷酸三糖和磷酸甘油醛的含量。这些物质均是C3循环的中间产物,其含量减少不利于碳同化的正常

6生物化学习题(答案)

5 糖类分解代谢 一、名词解释 1、糖酵解途径:是在无氧条件下,葡萄糖进行分解,形成2分子丙酮酸并伴随着ATP生成的一系列反应。 2、柠檬酸循环:是用于乙酰CoA中的乙酰基氧化生成CO2的酶促反应的循环系统,该循环的第一步反应是由乙酰CoA和草酰乙酸缩合形成柠檬酸。 3、糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。是糖氧化的主要方式。 4、磷酸戊糖途径:是指机体某些组织(如肝、脂肪组织等)种一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。 5、发酵:厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为乙醇发酵。如果将氢交给丙酮酸生成乳酸则叫乳酸发酵。 二、填空 1、糖酵解过程中有3个不可逆的酶促反应,这些酶是磷酸果糖激酶、己糖激酶和丙酮酸激酶。 2、3-磷酸甘油醛脱氢酶酶催化的反应是EMP途径中的第一个氧化反应。 3、糖酵解中催化作用物水平磷酸化的两个酶是磷酸甘油酸激酶和丙酮酸激酶。 4、在糖酵解中提供高能磷酸基团,使ADP磷酸化成A TP的高能化合物是1,3-二磷酸甘油酸和PEP。 5、糖酵解在细胞的细胞质中进行,该途径是将葡萄糖转变为丙酮酸,同时生成ATP和NADH的一系列酶促反应。 6、丙酮酸还原为乳酸,反应中的NADH来自于3-磷酸甘油醛的氧化。 7、TCA循环的第一个产物是柠檬酸。由柠檬酸合酶,异柠檬酸脱氢酶,和α-酮戊二酸脱氢酶所催化的反应是该循环的主要限速反应。 8、TCA循环中有二次脱羧反应,分别是由异柠檬酸脱氢酶和α-酮戊二酸脱氢酶催化。脱去的CO2中的C原子分别来自于草酰乙酸中的C1和C4。 9、TCA循环中大多数酶位于线粒体基质,只有琥珀酸脱氢酶位于线粒体内膜。 10、丙酮酸脱氢酶系由丙酮酸脱氢酶、二氢硫辛酰转乙酰基酶和二氢硫辛酸脱氢酶组成。三羧酸循环过程中有4次脱氢和2次脱羧反应。三羧酸循环过程主要的关键酶是柠檬酸合酶;每循环一周可生成1个A TP。 11、磷酸戊糖途径可分为2阶段,分别称为氧化脱羧和非氧化的分子重排,其中两种脱氢酶是6-磷酸葡萄糖脱氢酶和6-磷酸葡萄酸糖脱氢酶,它们的辅酶是NADP+。 12、在磷酸戊糖途径中催化由酮糖向醛糖转移二碳单位的酶为转酮醇酶,其辅酶为TPP(焦磷酸硫胺素);催化由酮糖向醛糖转移三碳单位的酶为转醛醇酶。转酮醇酶(transketolase)就是催化含有一个酮基、一个醇基的二碳基团(羟乙酰基)转移的酶。其接受体是醛,辅酶是TPP。转醛醇酶(transaldolase)是催化含有一个酮基、二个醇基的三碳基团(二羟丙酮基团)转移的酶.其接受体是醛,但不需要TPP. 13、植物中淀粉彻底水解为葡萄糖需要多种酶协同作用,它们是α-淀粉酶,β-淀粉酶,脱支酶,麦芽糖酶。 14、淀粉的磷酸解过程通过淀粉磷酸化酶降解α–1,4糖苷键,靠转移酶和脱支酶降解α–1,6糖苷键。 三、单项选择题 1、丙酮酸脱氢酶系是个复杂的结构,包括多种酶和辅助因子。下列化合物中哪个不是丙酮酸脱氢酶组分? A、TPP B、硫辛酸 C、FMN D、Mg2+ E、NAD+ 2、丙酮酸脱氢酶系受到哪些因素调控? A、产物抑制、能荷调控、磷酸化共价调节 B、产物抑制、能荷调控、酶的诱导 C、产物抑制、能荷调控 D、能荷调控、磷酸化共价调节、酶的诱导 E.能荷调控、酶的诱导 3、下述那种情况可导致丙酮酸脱氢酶系活性升高? A、ATP/ADP比值升高 B、CH3COCoA/CoA比值升高 C、NADH/ NAD+比值升高 D、能荷升高 E、能荷下降 4、三羧酸循环中有底物水平磷酸化的反应是: A、柠檬酸→α-酮戊二酸 B、琥珀酰CoA→琥珀酸(琥珀酸硫激酶) C、琥珀酸→延胡索酸 D、延胡索酸→草酰乙酸 E. 苹果酸→草酰乙酸 5、糖代谢中间产物中含有高能磷酸键的是: A、6-磷酸葡萄糖 B、6-磷酸果糖 C、1,6-二磷酸果糖 D、3-磷酸甘油醛 E、1,3-二磷酸甘油酸 6、1分子葡萄糖酵解时净生成多少个ATP? A、1 B、2 C、3 D、4 E、5 7、磷酸果糖激酶的最强变构激活剂是: A、AMP B、ADP C、ATP D、2,6-二磷酸果糖 E、1,6-二磷酸果糖 8、糖的有氧氧化的最终产物是: A、CO2+H2O+ATP B、乳酸 C、丙酮酸 D、乙酰CoA A、磷酸戊糖途径 B、糖异生 C、糖的有氧氧化 D、糖原合成与分解 E、糖酵解 10、三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是: A、糖异生 B、糖酵解 C、三羧酸循环 D、磷酸戊糖途径 E、糖的有氧氧化 14.生物素是哪个酶的辅酶: A、丙酮酸脱氢酶 B、丙酮酸羧化酶 C、烯醇化酶 D、醛缩酶 E、磷酸烯醇式丙酮酸羧激酶 15、三羧酸循环中催化琥珀酸形成延胡索酸的酶是琥珀酸脱氢酶,此酶的辅因子是 A、NAD+ B、CoASH C、FAD D、TPP E、NADP+ 16、丙二酸能阻断糖的有氧氧化,因为它: A、抑制柠檬酸合成酶 B、抑制琥珀酸脱氢酶 C、阻断电子传递 D、抑制丙酮酸脱氢酶 17、在厌氧条件下,下列哪一种化合物会在哺乳动物肌肉组织中积累?

生化课后习题答案

一绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等 6 种是解答蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的 4 个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成 4 个共价键的性质,使得碳骨架可形成线性、分支以及环状的多 O 种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH)、羰基(C)、羧基(—COOH)、

巯基(—SH)、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20 种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 二蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1)N-末端测定法:常采用2, 4 ―二硝基氟苯法、Edman 降解法、丹磺酰氯法。①2, 4 ―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与2, 4 ―二硝基氟苯2, 4 ―DNFB)(反应(Sanger 反应)生成DNP―

盐胁迫对植物的影响教学文案

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这 种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐 性。根据许多研究报道,土壤含盐量超过0.2%?0.25%时就会造成危害。钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4X107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2?7X107ha,而且 这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。盐分过多 会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。盐分过 多还会使PEP羧化酶与RuBP羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤 收集于网络,如有侵权请联系管理员删除

不同浓度盐胁迫对小麦幼苗生理特性的影响

不同浓度盐胁迫对小麦幼苗生理特性的影响 学院:生命科学学院 作者:马宗英马丽娜 王琳木娜瓦尔 刘榕

摘要小麦的生长在不同盐浓度土壤中呈现不同的生理特性。当分别用清水、60mmol?L盐溶液、120mmol?L盐溶液处理小麦幼苗后,小麦植株的株高、叶长、叶宽、生物量、气孔形态数目和叶片脯氨酸、可溶性糖含量等生理指标都受到了正面或者负面的影响。 关键词小麦;盐胁迫;生理特性 Abstract The growth of the wheat in different salt concentration is different in different soil physical properties. When separately with clear water, 60 tendency/salt solution, the tendency for 120 mmol/L after salt solution processing wheat seedling, plant height, leaf length, leaf width of wheat plant, biomass, number of stomatal morphology and physiological indexes such as leaf proline, soluble sugar content was positive or negative influence. Keywords wheat ;salt stress ;physiological characteristic 盐胁迫对植物的影响是多方面的,会改变植物的生理特性,破坏组织和细胞的结构功能,抑制植物的生长发育、光合作用、叶绿素合成等等,而且在盐胁迫时,植物本身为了减少水分的损失,会相应的减少气孔的大小和数目。 但是盐胁迫条件下,植物体中游离脯氨酸合成受到促进,含量会发生明显增加,与之变化趋势相同的生理指标还有植物体内的可溶性糖含量,植物为了适应逆境条件,会主动积累一些可溶性糖,降低渗透势和冰点,以增加抗逆性。 1.实验材料 室内栽培的小麦幼苗 2.试验方法及步骤 2.1小麦的种植方法: 1.在花盆底铺一层纱网,装满土,由同一人用大小适中的力气把土压 实,并用自来水浇透。 2.把种子放于浅盆内萌发。 3.将萌发的麦种种在花盆中,每盆10棵,共六盆,各盆做好标记。 种子埋于土表下1㎝左右,每盆选两株做好标记。 4.植株长叶后每天于同一时间测量每盆中标记株的株高和叶长,做好 记录。

生物化学b2课后题答案汇总

蛋白质降解及氨基酸代: 1.氨基酸脱氨基后C链如何进入TCA循环.(30分) P315 图30-13 2.说明尿素形成机制和意义(40分) P311-314 概括精要回答 3.提高Asp和Glu的合成会对TCA循环产生何种影响?细胞会怎样应付这种状况?(30分) 参考答案: 核苷酸代及蛋白质合成题目及解答精要: 1.生物体嘌呤环和嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成? 嘌呤环(Gln+Gly+Asp)嘧啶环(Gln+Asp) 2.简要说明糖、脂肪、氨基酸和核苷酸代之间的相互联系? 直接做图,并标注连接点 生物氧化及电子传递题目及解答精要: 名词解释:(60分,10分一题) 甘油-3-磷酸穿梭:P139 需概括 苹果酸-天冬氨酸穿梭:P139 需概括 电子传递链:P119 解偶联剂:P137 化学渗透假说:P131 生物氧化:P114 两个出处,总结概括 问答题:(10分) 1.比较底物水平磷酸化和氧化磷酸化两者的异同? 参考答案: 也可自己概括 2.以前有人曾经考虑过使用解偶联剂如2,4-二硝基苯酚(DNP)作为减肥药,但不久即放弃使用,为什么?(10

分) 参考答案: 3.已知有两种新的代抑制剂A和B:将离体的肝线粒体制剂与丙酮酸、氧气、ADP和无机磷酸一起保温,发现加入抑制剂A,电子传递和氧化磷酸化就被抑制;当既加入A又加入抑制剂B的时候,电子传递恢复了,但氧化磷酸化仍不能进行,请问:①.抑制剂A和B属于电子传递抑制剂,氧化磷酸化抑制剂,还是解偶联剂?②.给出作用方式和A、B类似的抑制剂?(20分) 参考答案: 糖代及其他途径: 题目及解答精要: 1.为什么糖原讲解选用磷酸解,而不是水解?(50分) P178 2.糖酵解、TCA循环、糖异生、戊糖磷酸途径和乙醛酸循环之间如何联系?(50分) 糖酵解(无氧),产生丙酮酸进入TCA循环(有氧)(10分) 糖异生糖酵解逆反应(1,3,10步反应单独代流程)(10分) TCA循环中草酰乙酸可进入唐异生(10分) 戊糖磷酸途径是糖酵解中G-6-P出延伸出来并又回去的一条戊糖支路(10分) 乙醛酸循环是TCA循环在延胡羧酸和L-苹果酸间的一条捷径(10分) 糖酵解题目及解答精要: 1.名词解释(每个10分) 糖酵解:P63 激酶:P68 底物水平磷酸化:笔记 2.问答题 ①为什么砷酸是糖酵解作用的毒物?(15分) P75 ②糖酵解中两个耗能阶段是什么?两个产能阶段是什么?三个调控位点在哪里?(15分) P80 表22-1 ③糖酵解中磷酸基团参与了哪些反应?(20分)

相关文档