文档库 最新最全的文档下载
当前位置:文档库 › 中国金融集成电路(IC)卡规范-与应用无关的非接触式规范

中国金融集成电路(IC)卡规范-与应用无关的非接触式规范

中国金融集成电路(IC)卡规范-与应用无关的非接触式规范
中国金融集成电路(IC)卡规范-与应用无关的非接触式规范

中国金融集成电路(IC)卡与应用无关的非接触式规范

中国金融集成电路(IC)卡标准修订工作组

二零零四年九月

目次

1 范围 (1)

2 参考资料 (2)

3 定义 (3)

3.1 集成电路Integrated circuit(s)(IC) (3)

3.2 无触点的Contactless (3)

3.3 无触点集成电路卡Contactless integrated circuit(s) card (3)

3.4 接近式卡Proximity card(PICC) (3)

3.5 接近式耦合设备Proximity coupling device(PCD) (3)

3.6 位持续时间Bit duration (3)

3.7 二进制移相键控Binary phase shift keying (3)

3.8 调制指数Modulation index (3)

3.9 不归零电平NRZ-L (3)

3.10 副载波Subcarrier (3)

3.11 防冲突环anticollision loop (3)

3.12 比特冲突检测协议bit collision detection protocol (3)

3.13 字节byte (3)

3.14 冲突collision (3)

3.15 基本时间单元(etu)elementary time unit(etu) (3)

3.16 帧frame (3)

3.17 高层higher layer (4)

3.18 时间槽协议time slot protocol (4)

3.19 唯一识别符Unique identifier(UID) (4)

3.20 块block (4)

3.21 无效块invalid block (4)

4 缩略语和符号表示 (5)

5 物理特性 (8)

5.1 一般特性 (8)

5.2 尺寸 (8)

5.3 附加特性 (8)

5.3.1 紫外线 (8)

5.3.2 X-射线 (8)

5.3.3 动态弯曲应力 (8)

5.3.4 动态扭曲应力 (8)

5.3.5 交变磁场 (8)

5.3.6 交变电场 (8)

5.3.7 静电 (8)

5.3.8 静态磁场 (8)

5.3.9 工作温度 (9)

6 射频功率和信号接口 (9)

6.1 PICC的初始对话 (9)

6.2 功率传送 (9)

6.2.1 频率 (9)

6.2.2 工作场 (9)

6.3 信号接口 (9)

6.4 A类通信信号接口 (10)

6.4.1 从PCD到PICC的通信 (10)

6.4.2 从PICC到PCD的通信 (12)

6.5 B类通信信号接口 (13)

6.5.1 PCD到PICC的通信 (13)

6.5.2 PICC到PCD的通信 (13)

6.6 PICC最小耦合区 (14)

7 初始化和防冲突 (15)

7.1 轮询 (15)

7.2 类型A-初始化和防冲突 (15)

7.2.1 字节、帧、命令格式和定时 (15)

7.2.2 PICC状态 (19)

7.2.3 命令集 (20)

7.2.4 选择序列 (21)

7.3 类型B 初始化和防冲突 (26)

7.3.1 比特、字节和帧的定时 (26)

7.3.2 CRC_B (28)

7.3.3 防冲突序列 (28)

7.3.4 PICC状态描述 (29)

7.3.5 命令集合 (31)

7.3.6 ATQB和Slot-MARKER响应概率规则 (31)

7.3.7 REQB命令 (31)

7.3.8 Slot-MARKER命令 (33)

7.3.9 ATQB(请求应答-类型B)响应 (33)

7.3.10 ATTRIB命令 (34)

7.3.11 对A TTRIB命令的应答 (36)

7.3.12 HALT命令及应答 (36)

8 传输协议 (38)

8.1 类型A PICC的协议激活 (38)

8.1.1 选择应答请求 (40)

8.1.2 选择应答 (40)

8.1.3 协议和参数选择请求 (43)

8.1.4 协议和参数选择响应 (45)

8.1.5 激活帧等待时间 (45)

8.1.6 差错检测和恢复 (45)

8.2 类型B PICC的协议激活 (46)

8.3 半双工块传输协议 (46)

8.3.1 块格式 (46)

8.3.2 帧等待时间(FWT) (49)

8.3.3 帧等待时间扩展 (49)

8.3.4 功率水平指示 (50)

8.3.5 协议操作 (50)

8.4 类型A和类型B PICC的协议停活 (52)

8.4.1 停活帧等待时间 (53)

8.4.2 差错检测和恢复 (53)

9 数据元和命令 (54)

9.1 关闭非接触通道命令 (54)

9.1.1 定义和范围 (54)

9.1.2 命令报文 (54)

9.1.3 命令报文数据域 (54)

9.1.4 响应报文数据域 (54)

9.1.5 响应报文状态码 (54)

9.2 激活非接触通道命令 (55)

9.2.1 定义和范围 (55)

9.2.2 命令报文 (55)

9.2.3 命令报文数据域 (55)

9.2.4 响应报文数据域 (55)

9.2.5 响应报文状态码 (55)

附录 A:标准兼容性和表面质量 (56)

A.1. 标准兼容性 (56)

A.2. 印刷的表面质量 (56)

附录 B: ISO/IEC其他卡标准参考目录 (57)

附录 C:类型A的通信举例 (58)

附录 D: CRC_A和CRC_B的编码 (60)

D.1. CRC_A编码 (60)

D.1.1. 通过标准帧发送的比特模式举例 (60)

D.2. CRC_B编码 (60)

D.2.1. 通过标准帧传送的比特模式实例 (60)

D.2.2. 用C语言写的CRC计算的代码例子 (61)

附录 E:类型A_时间槽-初始化和防冲突 (64)

E.1. 术语和缩略语 (64)

E.2. 比特、字节和帧格式 (64)

E.2.1. 定时定义 (64)

E.2.2. 帧格式 (64)

E.3. PICC状态 (64)

E.3.1. POWER-OFF状态 (64)

E.3.2. IDLE状态 (65)

E.3.3. READY状态 (65)

E.3.4. ACTIVE状态 (65)

E.3.5. HALT状态 (65)

E.4. 命令/响应集合 (65)

E.5. 时间槽防冲突序列 (65)

附录 F:详细的类型A PICC状态图 (67)

附录 G:使用多激活的举例 (69)

附录 H:协议说明书 (70)

H.1. 记法 (70)

H.2. 无差错操作 (70)

H.2.1. 块的交换 (70)

H.2.2. 等待时间扩展请求 (70)

H.2.3. DESELECT (70)

H.2.4. 链接 (71)

H.3. 差错处理 (71)

H.3.1. 块的交换 (71)

H.3.2. 等待时间扩展请求 (72)

H.3.3. DESELECT (74)

H.3.4. 链接 (74)

附录 I:块和帧编码概览 (77)

1 范围

本规范包括以下主要内容:

-物理特性:规定了接近式卡(PICC)的物理特性。本部分等同于ISO/IEC 14443-1内容。

-射频功率和信号接口:规定了在接近式耦合设备(PCDs)和接近式卡(PICCs)之间提供功率和双向通信的场的性质与特征。本部分没有规定产生耦合场的方法,也没有规定遵循电磁场辐射和人体辐射安全的规章。本部分等同于ISO/IEC 14443-2内容。

-初始化和防冲突:本规范描述了PICC进入PCD工作场的轮询;在PCD和PICC之间通信的初始阶段期间所使用的字节格式、帧和定时;初始REQ和ATQ命令内容;探测方法和与几个卡(防冲突)中的某一个通信的方法;初始化PICC和PCD之间的通信所需要的其它参数;容易和加速选择在应用准则基础上的几个卡中的一个(即,最需要处理的一个)的任选方法。本部分等同于ISO/IEC 14443-3内容。

-传输协议:规定了以无触点环境中的特殊需要为特色的半双工传输协议,并定义了协议的激活和停活序列。这一部分适用于类型A和类型B的PICC。本部分等同于ISO/IEC 14443-4内容。

-数据元和命令集:定义了金融应用中关闭和激活非接触式通道所使用的一般数据元、命令集和对终端响应的基本要求。

2 参考资料

下列标准中所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

ISO/IEC 3309:1993 信息技术-系统间的远程通信和信息交换-高级数据链接控制

(HDLC)规程-帧结构

ISO/IEC 7810:1995 识别卡物理特性

ISO/IEC 7816-3 识别卡带触点的集成电路卡第3部分:电信号和传输协议

ISO/IEC 7816-4 识别卡带触点的集成电路卡第4部分:行业间交换用命令

ISO/IEC 7816-5 识别卡带触点的集成电路卡第5部分:应用标识符的编号体系

和注册规程

IEC 61000-4-2 电磁兼容性(EMC)第4部分:测试和测量技术第2节:抗静

电放电测试

ISO/IEC 10373-6 识别卡-测试方法

ISO/IEC 14443:1997 识别卡-非接触式集成电路卡-接近式卡

《中国金融集成电路(IC)卡规范V2.0》电子钱包/电子存折部分(简称为《电子钱包/电子存折规范》)

3 定义

3.1 集成电路Integrated circuit(s)(IC)

用于执行处理和/或存储功能的电子器件。

3.2 无触点的Contactless

说明完成与卡交换信号和给卡供应能量,而无需使用通电流元件(即,不存在从外部接口设备到卡内所包含集成电路的直接通路)。

3.3 无触点集成电路卡Contactless integrated circuit(s) card

一种ID-1型卡(如ISO/IEC 7810中所规定),在它上面已装入集成电路,并且与集成电路的通信是用无触点的方式完成的。

3.4 接近式卡Proximity card(PICC)

一种ID-1型卡,在它上面已装入集成电路和耦合电路,并且与集成电路的通信是通过与接近式耦合设备的电感耦合完成的。

3.5 接近式耦合设备Proximity coupling device(PCD)

用电感耦合给PICC提供能量并控制与PICC交换数据的读/写设备。

3.6 位持续时间Bit duration

确定一逻辑状态的时间,在这段时间结束时,一个新的位将开始。

3.7 二进制移相键控Binary phase shift keying

移相为180°的移相键控,从而导致两个可能的相位状态。

3.8 调制指数Modulation index

定义为[a-b]/[a+b],其中a,b分别是信号幅度的峰值和最小值。

3.9 不归零电平NRZ-L

位编码的方式,借此,位持续期间的逻辑状态可以通过通信媒介的两个已定义的物理状态之一来表示。

3.10 副载波Subcarrier

以频率fs调制载波频率fc而产生的RF信号。

3.11 防冲突环anticollision loop

为了在PCD激励场中准备PCD和几个PICC中的一个或多个之间的对话所使用的算法。

3.12 比特冲突检测协议bit collision detection protocol

在帧内比特级使用冲突检测的防冲突方法。冲突出现在至少两个PICC把互补比特模式发送给PCD时。在这种情况下,比特模式被合并,在整个(100%)位持续时间内载波以副载波来调制。

PCD检测出碰撞比特并按串联次序识别所有PICC ID。

3.13 字节byte

由指明的8位数据b1到b8组成,从最高有效位(MSB,b8)到最低有效位(LSB,b1)。

3.14 冲突collision

在同一PCD激励场中并且在同一时间周期内两个PICC的传输,使得PCD不能辨别数据是从哪一个PICC发出的。

3.15 基本时间单元(etu)elementary time unit(etu)

对于本部分,基本时间单元(etu)定义如下:

1etu=128/fc,(即9.4 μs,标称的)。

3.16 帧frame

帧是一序列数据位和任选差错检测位,它在开始和结束处有定界符。

注:类型A PICC使用为类型A定义的标准帧,类型B PICC使用为类型B定义的标准帧。

3.17 高层higher layer

属于应用或高层协议,它不在本部分描述。

3.18 时间槽协议time slot protocol

PCD与一个或多个PICC建立逻辑通道的方法,该方法对于PICC响应使用时间槽定位,类似于slotted-Aloha 方法。

3.19 唯一识别符Unique identifier(UID)

UID是类型A防冲突算法所需的一个编号。

3.20 块block

帧的一种特殊类型,它包含有效协议数据格式。

注:有效协议数据格式包括I-块、R-块或S-块。

3.21 无效块invalid block

帧的一种类型,它包含无效协议格式。

注:没有接收到帧的超时不被解释为一无效块。

4 缩略语和符号表示

ACK 肯定确认(positive ACKnowledgement)

AFI 应用族识别符,应用的卡预选准则。(Application Family Identifier) APf 在REQB中使用的防冲突前缀f(Anticollision Prefix f, , used in

REQB/WUPB, Type B)

APn 在Slot-MARKER命令中使用的防冲突前缀n (Anticollision Prefix n,

used in Slot-MARKER Command, Type B)

ASK 移幅键控(Amplitude Shift Keying)

ATQ 请求应答(Answer To Request)

ATQA 请求应答,类型A(Answer To Request, Type A)

ATQB 请求应答,类型B(Answer To Request, Type B)

ATS 选择应答(Answer To Select)

ATTRIB PICC选择命令(PICC selection command, Type B)

BCC UID CLn校验字节, 4个先前字节的“异或”值(UID CLn check byte,

calculated as exclusive-or over the 4 previous bytes, Type A)

BPSK 二进制移相键控(Binary Phase Shift Keying)

CID 卡标识符(Card Identifier)

CLn 串联级n,3≥n≥1(Cascade Level n, Type A)

CRC 循环冗余校验,如第7章中为每种类型的PICC所定义的(Cyclic

Redundancy Check)

CRC_A 7.2.1.10中定义的循环冗余校验差错检测码(Cyclic Redundancy

Check error detection code A)

CRC_B 7.3.2中定义的循环冗余校验差错检测码(Cyclic Redundancy Check

error detection code B)

CT 串联标记,‘88’(Cascade Tag, Type A)

D 除数(Divisor)

DR 接收的除数(PCD到PICC)(Divisor Receive (PCD to PICC))

DRI 接收的除数整数(PCD到PICC)(Divisor Receive Integer (PCD to PICC))

DS 发送的除数(PICC到PCD)(Divisor Send (PICC to PCD))

DSI 发送的除数整数(PICC到PCD)(Divisor Send Integer (PICC to PCD)

)

E 通信结束,类型A(End of communication , Type A)

EDC 差错检测码(Error Detection Code)

EGT 额外保护时间(Extra Guard Time, Type B)

EOF 帧结束,类型B(End Of Frame, Type B)

etu 基本时间单元,1比特数据传输的持续时间(Elementary time unit) fc 载波频率(作场的频率,13.56MHz)(Frequency of operating field(carrier frequency))

FDT 帧延迟时间,类型A (Frame Delay Time, Type A)

fs 副载波调制频率(Frequency of subcarrier modulation)

FSC 接近式卡帧长度(Frame Size for proximity Card)

FSCI 接近式卡帧长度整数(Frame Size for proximity Card Integer) FSD 接近式耦合设备帧长度(Frame Size for proximity coupling

Device)

FSDI 接近式耦合设备帧长度整数(Frame Size for proximity coupling Device Integer)

FWI 帧等待时间整数(Frame Waiting time Integer)

FWT 帧等待时间(帧等待时间)( Frame Waiting Time)

FWT TEMP临时帧等待时间(temporary Frame Waiting Time)

HALT 类型A PICC暂停命令(Halt Command, Type A)

I-block 信息块(Information-block)

ID 标识号(IDentification number, Type A)

INF 属于高层的信息字段(INFormation field belonging to higher layer, Type B)

LSB 最低有效位(Least Significant Bit)

MAX 最大值(Index to define a maximum value)

MIN 最小值(Index to define a minimum value)

MSB 最高有效位(Most Significant Bit)

N 防冲突槽的数目或每个槽内PICC响应的概率(Number of anticollision slots or PICC response probability in each slot,

Type B)

n 变量整数值,如特定条款中所定义(Variable integer value as defined in the specific clause)

NAD 结点地址(Node ADdress)

NAK 否定确认(Negative AcKnowledgement)

NRZ-L 不归零电平,(L为电平)(Non-Return to Zero, (L for level)) NVB 有效位的数目(Number of Valid Bits, Type A)

OOK 开/关键控(On/Off Keying)

OSI 开放系统互连(Open System Interconnection)

P 奇校验位(Odd Parity Bit, Type A)

PARAM 属性格式中的参数(PARAMeter)

PCB 协议控制字节(Protocol Control Byte)

PCD 接近式耦合设备(读写器)(Proximity Coupling Device)

PICC 接近式卡(Proximity Card)

PPS 协议和参数选择(Protocol and Parameter Selection)

PPS0 协议和参数选择参数0(Protocol and Parameter Selection parameter 0)

PPS1 协议和参数选择参数1(Protocol and Parameter Selection parameter 1)

PPSS 协议和参数选择开始(Protocol and Parameter Selection Start) PUPI 伪唯一PICC标识符(Pseudo-Unique PICC Identifier, Type B)

R 防冲突序列期间PICC所选定的槽号(Slot number chosen by the PICCduring the anticollision sequence, Type B)

R(ACK) 包含肯定确认的R-块(R-block containing a positive acknowledge)

R(NAK) 包含否定确认的R-块(R-block containing a negative acknowledge)

RATS 选择应答请求(Request for Answer To Select)

R-block 接收准备块(Receive ready block)

REQA 请求命令,类型A(Request Command, Type A)

REQB 请求命令,类型B(Request Command, Type B)

RF 射频(Radio Frequency)

RFU 保留供将来使用(Reserved for Future ISO/IEC Use)

S 通信开始,类型A(Start of communication, Type A)

SAK 选择确认(Select AcKnowledge, Type A)

S-block 管理块(Supervisory block)

SEL 选择命令(SELect code, Type A)

SFGI 启动帧保护时间整数(Start-up Frame Guard time Integer)

SFGT 启动帧保护时间(Start-up Frame Guard Time)

SOF 帧的开始,类型B(Start Of Frame, Type B)

TR0 PCD off和PICC on之间静默的最小延迟。(仅类型B)(Guard Time, Type B)

TR1 PICC数据传输之前最小副载波的持续期。(仅类型B)

(Synchronization Time, Type B)

UID 唯一标识符(Unique Identifier, Type A)

UIDn 唯一标识符的字节数目n,n≥0(Byte number n of Unique IDentifier)

WTX 等待时间延迟(Waiting Time sXtension)

WTXM 等待时间延迟乘数(Waiting Time sXtension Multiplier)

WUPA 类型A PICC唤醒命令(Wake-UP Command, Type A)

本部分使用下列记法:

(xxxxx)b 数据位表示

?XY‘十六进制记法,等同于基数16的XY

5 物理特性

5.1 一般特性

PICC应具有与ISO/IEC 7810中为ID-1型卡规定的要求相应的物理特性。

5.2 尺寸

PICC的额定尺寸应是ISO/IEC 7810中规定的ID-1型卡的尺寸。

注:根据国内生产情况,PICC的厚度可以为0.76±0.08mm(双界面卡除外)。

5.3 附加特性

5.3.1 紫外线

本标准不包括保护PICC不受到超出正常水平剂量紫外线的影响。需要加强防护的部分应是卡制造商的责任并应注明可以承受紫外线的程度。

5.3.2 X-射线

卡的任何一面暴露于100KeV的中等能量X-射线(每年0.1Gy的累积剂量)后,应不引起该卡的失效。

注:这相当于人暴露其中能接受的最大值的年累积剂量的近似两倍。

5.3.3 动态弯曲应力

按照ISO/IEC 10373-6中描述的测试方法(其中短边和长边的最大偏移为hwA=20mm,hwB=10mm)测试后,PICC应能继续正常工作。

5.3.4 动态扭曲应力

按照ISO/IEC 10373-6中描述的测试方法(其中旋转角度α等于15°)测试后,PICC应能继续正常工作。

5.3.5 交变磁场

a)在下表给出的平均磁场强度的磁场内暴露后,PICC应能继续正常工作。

表格5-1:磁场强度与频率

b)在12A/m、13.56MHz频率的磁场中暴露后,PICC应能继续正常工作。

5.3.6 交变电场

在下表给出的平均电场强度的电场内暴露后,PICC应能继续正常工作。

表格5-2:电场强度与频率

电场的峰值强度被限制在电场平均强度的30倍。

5.3.7 静电

按照ISO/IEC 10373-6中描述的测试方法(其中测试电压为6kV)测试后,PICC应能继续正常工作。

5.3.8 静态磁场

在640kA/m的静态磁场内暴露后,PICC应能继续正常工作。

警告:磁条上的数据内容可能被这样的磁场擦去。

5.3.9 工作温度

在0℃到50℃的环境温度范围内,PICC应能正常工作。

6 射频功率和信号接口

6.1 PICC的初始对话

PCD和PICC之间的初始对话通过下列连续操作进行:

——PCD的RF工作场激活PICC

——PICC静待来自PCD的命令

——PCD传输命令

——PICC传输响应

这些操作使用下列条款中规定的射频功率和信号接口。

6.2 功率传送

PCD应产生给予能量的RF场,为传送功率,该RF场与PICC进行耦合,为了通信,该RF场应被调制。

6.2.1 频率

RF工作场频率(fc)应为13.56MHz±7kHz。

6.2.2 工作场

最小未调制工作场为Hmin,其值为1.5A/m(rms)。

最大未调制工作场为Hmax,其值为7.5A/m(rms)。

PICC应按预期在Hmin和Hmax之间持续工作。

PCD应在制造商规定的位置(工作空间)处产生一个最小为Hmin,但不超过Hmax的场。

另外,在制造商规定的位置(工作空间),PCD应能将功率提供给任意的PICC。

在PICC的任何可能位置内,PCD应不产生高于在5.3.5中规定的交变磁场。

PCD工作场的测试方法在国际标准ISO/IEC 10373-6中规定。

6.3 信号接口

两种通信信号接口A类和B类在下列各条中予以描述。

在检测到A类或B类的PICC存在之前,PCD应选择两种调制方法之一。

在通信期间,直到PCD停止通信或PICC移走,只有一个通信信号接口可以是有效的。然后,后续序列可以使用任一调制方法。

下图是下面几个部分描述概念的示意图。

*也可能数据反相

图表6-1:A类、B类接口的通信信号举例

6.4 A类通信信号接口

6.4.1 从PCD到PICC的通信

6.4.1.1数据速率

在初始化和防冲突期间,传输的数据波特率应为fc/128(~106kbps)。

6.4.1.2调制

使用RF工作场的ASK100%调制原理来产生一个如图6-2所示的―暂停(pause)‖状态来进行PCD和PICC间的通信。

PCD场的包络线应单调递减到小于其初始值H INITIAL的5%,并至少在t2时间内保持小于5%。该包络线应符合图表6-2。

如果PCD场的包络线不单调递减,则当前最大值和在当前最大值前通过相同值的时间之间的时间应不超过0.5μs。如果当前最大值大于H INITIAL的5%,这种情况才适用。

上冲应保持在H INITIAL的90%和110%之内。

在场超出H INITIAL的5%之后和超出H INITIAL的60%之前,PICC应检测到―暂停(pause)结束‖。

注:在设计成一个时间内仅处理一张卡的系统中,t4不必加以考虑。

图表6-2:暂停注:该定义适用于所有调制包络定时。

图表6-3:暂停结束的定义

6.4.1.3位的表示和编码

定义了下面的序列:

6.4.2 从PICC到PCD的通信

6.4.2.1数据速率

在初始化和防冲突期间,传输的数据波特率应为fc/128(~106kbps)。

6.4.2.2负载调制

PICC应能经由电感耦合区域与PCD通信,在该区域中,所加载的载波频率能产生频率为fs的副载波。该副载波应能通过切换PICC中的负载来产生。

在以测试方法描述的方法测试时,负载调制幅度应至少为30/H1.2mV(峰值),其中H 是以A/m为单位的磁场强度的(rms)值。

PICC负载调制的测试方法在国际标准ISO/IEC 10373-6中定义。

6.4.2.3副载波

副载波负载调制的频率fc应为fc/16(~847kHz),因此,在初始化和防冲突期间,一个位持续时间等于8个副载波周期。

6.4.2.4副载波调制

每一个位持续时间均以已定义的与副载波相关的相位开始。位周期以已加载的副载波状态开始。

副载波由―接通‖/―断开‖键控按6.4.2.5定义的序列来调制。

6.4.2.5位的表示和编码

位编码应是带有下列定义的曼彻斯特编码:

6.5 B类通信信号接口

6.5.1 PCD到PICC的通信

6.5.1.1数据速率

在初始化和防冲突期间,传输的数据波特率应为fc/128(~106kbps)。容差和位边界在第7章中定义。

6.5.1.2调制

借助RF工作场的ASK10%调幅来进行PCD和PICC间的通信。

调制指数最小应为8%,最大应为14%。

调制波形应符合图表6-4,调制的上升、下降沿应该是单调的。

图表6-4:类调制波形

6.5.1.3位的表示和编码

位编码格式是带有如下定义的逻辑电平的NRZ-L:

逻辑―1‖:载波场高幅度(没有使用调制)。

逻辑―0‖:载波场低幅度。

6.5.2 PICC到PCD的通信

6.5.2.1数据速率

在初始化和防冲突期间,传输的数据波特率应为fc/128(~106kbps)。

6.5.2.2负载调制

PICC应能经由电感耦合区域与PCD通信,在该区域中,所加载的载波频率能产生频率为fs的副载波。该副载波应能通过切换PICC中的负载来产生。

在以测试方法描述的方法测试时,负载调制幅度应至少为30/H1.2mV(峰值),其中H 是以A/m为单位的磁场强度的rms值。

PICC负载调制的测试方法在国际标准ISO/IEC 10373-6中定义。

6.5.2.3副载波

副载波负载调制的频率fc应为fc/16(~847KHz),因此,在初始化和防冲突期间,一个位持续时间等于8个副载波周期。

PICC仅当数据被发送时才产生一副载波。

6.5.2.4副载波调制

副载波应按图表6-5中所描述的进行BPSK调制。移相应仅在副载波的上升或下降沿的标称位置发生。

图表6-5:允许的移相(PICC内部副载波负载切换)

6.5.2.5位的表示和编码

位编码应是NRZ-L,其中,逻辑状态的改变应通过副载波的移相(180°)来表示。

在PICC帧的开始处,NRZ-L的初始逻辑电平是通过下面的序列建立的:

在来自PCD的任何命令之后,在保护时间TR0内,PICC应不生成副载波。TR0应大于64/fs。

然后,在延迟TR1之前,PICC应生成没有相位跃变的副载波,建立了副载波相位基准Φ0。TR1应大于80/fs。

副载波的初始相位状态Φ0应定义为逻辑―1‖,从而第一个相位跃变表示从逻辑―1‖到逻辑―0‖的跃变。

6.6 PICC最小耦合区

PICC耦合天线可以有任何形状和位置,但应如图表6-6所示围绕区域。

图表6-6:PICC最小耦合区

7 初始化和防冲突

7.1 轮询

当PICC暴露于未调制的工作场内(见第6 章),它能在5ms内接受一个请求。

例如:

当类型A PICC接收到任何类型B命令时,它能在5ms内接受一个REQA。

当类型B PICC接收到任何类型A命令时,它能在5ms内接受一个REQB。

为了检测进入其激励场的PICC,PCD发送重复的请求命令并寻找ATQ。请求命令应按任何顺序使用这里描述的REQA和REQB,此外,也可能使用10.5中描述的其他编码。这个过程被称为轮询。

7.2 类型A-初始化和防冲突

本章描述了适用于类型A PICC的比特冲突检测协议。

7.2.1 字节、帧、命令格式和定时

本章定义了通信初始化和防冲突期间使用的字节、帧与命令的格式和定时。关于比特表示和编码,参考第6 章。

7.2.1.1帧延迟时间

帧延迟时间(FDT)定义为在相反方向上所发送的两个帧之间的时间。

7.2.1.2帧保护时间

帧保护时间(FGT)定义为最小帧延迟时间。

7.2.1.3PCD到PICC的帧延迟时间

PCD所发送的最后一个暂停的结束与PICC所发送的起始位范围内的第一个调制边沿之间的时间,它应遵守图表7-1中定义的定时,此处n为一整数值。

图表7-1:PICC到PCD的帧延迟时间

表格7-1定义了n和依赖于命令类型的FDT的值以及这一命令中最后发送的数据位的逻辑状态。

中国金融集成电路(IC)卡借记贷记规范v20-应用无关部分

中国金融集成电路(IC)卡 借记/贷记规X 第五部分:与应用无关的IC卡与终端 接口需求 中国金融集成电路(IC)卡标准修订工作组 二零零四年九月 目次

1.X围4 2.参考资料5 3.定义5 4.缩略语和符号表示7 第I部分10 机电特性、逻辑接口与传输协议10 1.机电接口10 1.1IC卡的机械特性11 1.1.1物理特性11 1.1.2触点的尺寸和位置11 1.1.3触点的分配12 1.2IC卡电气特性12 1.2.1测量约定12 1.2.2输入/输出(I/O)12 1.2.3编程电压(VPP)13 1.2.4时钟(CLK)13 1.2.5复位(RST)14 1.2.6电源电压(VCC)14 1.2.7触点电阻14 1.3终端的机械特性14 1.3.1接口设备15 1.3.2触点压力15 1.3.3触点分配15 1.4终端的电气特性16 1.4.1测量约定16 1.4.2输入/输出(I/O)16 1.4.3编程电压(VPP)17 1.4.4时钟(CLK)17 1.4.5复位(RST)18 1.4.6电源电压(VCC)18 1.4.7触点电阻18 1.4.8短路保护19 1.4.9插入IC卡后,终端的加电和断电19 2.卡片操作过程19 2.1正常卡片操作过程19 1 / 77

2.1.1操作步骤19 2.1.2IC卡插入与触点激活时序19 2.1.3IC卡复位20 2.1.4交易执行22 2.1.5触点释放时序22 2.2交易过程的异常结束23 3.字符的物理传输23 3.1位持续时间23 3.2字符帧24 4.复位应答25 4.1复位应答期间回送字符的物理传输25 4.2复位应答期间IC卡回送的字符25 4.3字符定义26 4.3.1TS-初始字符27 4.3.2T0-格式字符27 4.3.3TA1到TC3-接口字符28 4.3.4TCK -校验字符32 4.4复位应答过程中终端的行为32 4.5复位应答-终端流程33 5.传输协议35 5.1物理层35 5.2数据链路层35 5.2.1字符帧35 5.2.2字符协议T=035 5.2.3T=0的错误检测及纠错37 5.2.4块传输协议T=138 5.2.5T=1协议的错误检测和纠正43 5.3终端传输层(TTL)45 5.3.1T=0协议下APDU的传送45 5.3.2T=1协议下APDU的传送49 5.4应用层50 5.4.1C-APDU50 5.4.2R-APDU51 第II部分51 文件、命令和应用选择51 6.文件52

基于RC522的非接触式IC卡读卡器设计(含程序)

1 绪论 1.1 课题的研究背景 工业3.0将世界带入信息化的时代,信息技术的发展日新月异,一个以电子商务为主要特征的经济时代成为主要潮流,智能射频卡是一种将用户数据最快捷地送入到环球信息互联网并获得信息的最有用的工具,智能IC卡成为了人们身份识别和实现电子支付的手段,影响了我们生活工作的方式。智能IC卡与普通磁卡对比具有更高的安全性,所以,对智能IC卡的功能进行研究是非常有意义的。 智能IC卡,又是CPU卡。顾名思义, 这种卡片上集成了存储器、通信接口及CPU,具有存储数据、对外交流和数据处理的能力,因此,又是一片卡上的单片机系统。为了使这一系统中的硬件和软件资源充分得到利用, 卡上存放了进行数据读写和安全通信的协议,以及管理这些程序的Chip Operating system卡上操作系统。这操作系统是按照IC卡性能特征而专门设计的操作系统,它极大地不同于计算机上常见的DOS和WINDOWS 等操作系统,IC 卡存储器的容量大小和CPU的性能的限制着Chip Operating system卡上操作系统。主要功能是:控制IC卡与读卡器的数据交流;管理IC卡上各种存储器;在IC卡内执行读写器发来的各种操作命令。有了CPU与COS系统,成就了智能IC卡。所以,智能射频卡具有超强的管理性能,提供很高的数据安全性和可靠性[1]。 1.2 非接触式IC卡 1.2.1 非接触式IC卡的简介 非接触式IC卡又称射频卡,由IC芯片、感应天线组成,封装在一个标准的PVC卡片内,芯片及天线无外露部分[2]。它是全球上最近发展成熟的一项技术,射频识别技术和IC卡技术被成功地结合起来,解决了无源和非接触这一难题,无源即卡中没有电源,这是电子科学领域的一大突破[2]。卡片接近读写器天线产生电磁场的一定空间范围 (通常为50—100mm),通过电磁波的发送来完成数据的读写操作。 1.2.2 非接触式IC卡的特点 (1)操作快捷 卡与读卡器之间的通讯是非接触的。不用定向使用和插拔卡。操作时,卡也可

集成电路IC设计完整流程详解及各个阶段工具简介

IC设计完整流程及工具 IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。 前端设计的主要流程: 1、规格制定 芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。 2、详细设计 Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。 3、HDL编码 使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。 4、仿真验证 仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。看设计是否精确地满足了规格中的所有要求。规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。仿真验证工具Mentor公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。 5、逻辑综合――Design Compiler 仿真验证通过,进行逻辑综合。逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。逻辑综合需要基于特定的综合库,不同的库中,门电路基

非接触式IC卡读卡器原理和优点

非接触式IC卡读卡器原理和优点 原理:非接触式IC卡又称射频卡,由IC芯片、感应天线组成,封装在一个标准的PVC卡片内,芯片及天线无任何外露部分。是世界上最近几年发展起来的一项新技术,它成功的将射频识别技术和IC卡技术结合起来,结束了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破。卡片在一定距离范围(通常为5—10mm)靠近读写器表面,通过无线电波的传递来完成数据的读写操作。射频读写器向IC卡发一组固定频率的电磁波,卡片内有一个IC串联谐振电路,其频率与读写器发射的频率相同,这样在电磁波激励下,LC谐振电路产生共振,从而使电容内有了电荷;在这个电荷的另一端,接有一个单向导通的电子泵,将电容内的电荷送到另一个电容内存储,当所积累的电荷达到2V时,此电容可作为电源为其它电路提供工作电压,将卡内数据发射出去或接受读写器的数据。 优点: 1.可靠性高,可防止因插卡、灰尘油污导致的各种故障;卡外表无裸露的芯片,无芯片脱落、静电击穿、弯曲损坏等问题;操作方便快捷,有效范围内即可对卡片操作;无方向性;提高了识读速度,卡与读写器之间无机械接触。 2.防冲突(自动分辨能力)射频卡有快速防冲突机制,能防止卡片之间出现数据干扰,读写器可同时处置多张感应卡。 3.操作方便,由于非接触通讯,读写器在10CM范围内就可以对卡片操作,一般读卡距离是根据机具不同而定。所以不必插拨卡,非常方便用户使用。非接触式卡使用时没有方向性,卡片可以在任意方向掠过读写器表面,既可完成操作,这大大提高了每次使用的速度。 4.应用范围广,射频卡的存储器结构特点使其可一卡应用于不同的系统,用户根据不同的应用可设定不同的密码和访问条件 5.加密性能好,双向验证机制,各扇区均有操作密码和访问条件。

中国金融集成电路IC卡与应用无关的非接触式规范

中国金融集成电路(IC)卡与应用无关的非接触式规范 中国金融集成电路(IC)卡标准修订工作组 二零零四年九月

目次 1 范围 (1) 2 参考资料 (2) 3 定义 (3) 3.1 集成电路Integrated circuit(s)(IC) (3) 3.2 无触点的Contactless (3) 3.3 无触点集成电路卡Contactless integrated circuit(s) card (3) 3.4 接近式卡Proximity card(PICC) (3) 3.5 接近式耦合设备Proximity coupling device(PCD) (3) 3.6 位持续时间Bit duration (3) 3.7 二进制移相键控Binary phase shift keying (3) 3.8 调制指数Modulation index (3) 3.9 不归零电平NRZ-L (3) 3.10 副载波Subcarrier (3) 3.11 防冲突环anticollision loop (3) 3.12 比特冲突检测协议bit collision detection protocol (3) 3.13 字节byte (3) 3.14 冲突collision (3) 3.15 基本时间单元(etu)elementary time unit(etu) (3) 3.16 帧frame (3) 3.17 高层higher layer (4) 3.18 时间槽协议time slot protocol (4) 3.19 唯一识别符Unique identifier(UID) (4) 3.20 块block (4) 3.21 无效块invalid block (4) 4 缩略语和符号表示 (5) 5 物理特性 (8) 5.1 一般特性 (8) 5.2 尺寸 (8) 5.3 附加特性 (8) 5.3.1 紫外线 (8) 5.3.2 X-射线 (8) 5.3.3 动态弯曲应力 (8) 5.3.4 动态扭曲应力 (8) 5.3.5 交变磁场 (8) 5.3.6 交变电场 (8) 5.3.7 静电 (8) 5.3.8 静态磁场 (8) 5.3.9 工作温度 (9) 6 射频功率和信号接口 (9) 6.1 PICC的初始对话 (9) 6.2 功率传送 (9) 6.2.1 频率 (9)

(整理)集成电路IC知识

集成电路IC常识 中国半导体器件型号命名方法 第一部分:用数字表示半导体器件有效电极数目。 第二部分:用汉语拼音字母表示半导体器件的材料和极性 第三部分:用汉语拼音字母表示半导体器件的内型。 第四部分:用数字表示序号 第五部分:用汉语拼音字母表示规格号 日本半导体分立器件型号命名方法 第一部分:用数字表示器件有效电极数目或类型。 第二部分:日本电子工业协会JEIA注册标志。 第三部分:用字母表示器件使用材料极性和类型。 第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。 第五部分:用字母表示同一型号的改进型产品标志。 集成电路(IC)型号命名方法/规则/标准 原部标规定的命名方法X XXXXX 电路类型电路系列和电路规格符号电路封装T:TTL;品种序号码(拼音字母)A:陶瓷扁平; H:HTTL;(三位数字) B :塑料扁平; E:ECL; C:陶瓷双列直插; I:I-L; D:塑料双列直插; P:PMOS; Y:金属圆壳; N:NMOS; F:金属菱形; F:线性放大器; W:集成稳压器; J:接口电路。 原国标规定的命名方法CXXXXX中国制造器件类型器件系列和工作温度范围器件封装符号 T:TTL;品种代号C:(0-70)℃;W:陶瓷扁平; H:HTTL;(器件序号)E :(-40~85)℃;B:塑料扁平; E:ECL; R:(-55~85)℃;F:全密封扁平; C:CMOS; M:(-55~125)℃;D:陶瓷双列直插; F:线性放大器; P:塑料双列直插; D:音响、电视电路; J:黑瓷双理直插; W:稳压器; K:金属菱形; J:接口电路; T:金属圆壳; B:非线性电路; M:存储器; U:微机电路;其中,TTL中标准系列为CT1000系列;H 系列为CT2000系列;S系列为CT3000系列;LS系列为CT4000系列; 原部标规定的命名方法CX XXXX中国国标产品器件类型用阿拉伯数字和工作温度范围封装 T:TTL电路;字母表示器件系C:(0~70)℃F:多层陶瓷扁平; H:HTTL电路;列品种G:(-25~70)℃B:塑料扁平; E:ECL电路;其中TTL分为:L:(-25~85)℃H:黑瓷扁平; C:CMOS电路;54/74XXX;E:(-40~85)℃D:多层陶瓷双列直插; M:存储器;54/74HXXX;R:(-55~85)℃J:黑瓷双列直插; U:微型机电路;54/74LXXX;M:(-55~125)℃P:塑料双列直插; F:线性放大器;54/74SXXX; S:塑料单列直插; W:稳压器;54/74LSXXX; T:金属圆壳; D:音响、电视电路;54/74ASXXX; K:金属菱形; B:非线性电路;54/74ALSXXX; C:陶瓷芯片载体; J:接口电路;54/FXXX。 E:塑料芯

非接触式IC卡读卡器的设计

_ 非接触式IC卡读卡器的设计 摘要:介绍了非接触式ic卡和非接触式ic卡的特点,对采用国际标准:ISO/IEC 14443 TYPE A的读卡器系统的特征做了介绍,详细分析了TypeA型常用的卡片MF1 IC S50和射频读卡集成芯片RC500,并介绍了针对射频读卡集成芯片RC5000的读卡芯片接口电路的设计, 包括读卡芯片部分电路,微处理器电路。简单介绍了读卡器的软件设计。 关键词:非接触式ic卡;TYPE A型读卡器;射频读卡集成芯片RC500 第一章非接触式IC卡概论 1.1 非接触式IC卡 非接触式IC卡(CICC一ContaetlessIntegatedCireuitCard)也称为无触点集成电路卡、射频卡或非接触式智能卡。该类卡与IC卡设备无电路接触,而是通过非接触式的读写技术进行读写(如光或无线技术)。其内嵌芯片除了CPU、逻辑单元、存储单元外,增加了射频收发电路。国际标准ISO/IEC10536、ISO/IEC14443等标准,系列阐述了对非接触式IC卡的规定。该类卡一般用在使用频繁、信息量相对较少、可靠性要求较高的场合[1]。 1.2 非接触式IC卡的主要特点 由于非接触式IC卡与读写器间的通信是借助“空间媒介”电磁波进行,不存在机动机构和电触点。因此,在保留接触式IC卡原有的优点的同时,又具备如下诸多特点[2]。 (1)操作便利快捷;(2)可靠性高,寿命长;(3)防伪性好;(4)安全性好;(5)抗干扰能力强;(6)一卡多用;(7)隐蔽性。 第二章 TYPE A型读卡器的射频电路设计当今世界上非接触式IC智能射频卡(内建MCU,ASIC等)中的主流主要为PHILIPS 公司的MIFARE技术,已经被制定为国际标准:ISO/IEC 14443 TYPE A标准。 采用该标准设计的读卡器系统具有以下特性: 1.非接触式IC卡与读写器之间非机械接触。 2、表面没有裸露器件,不会因为污损、弯曲而损坏IC卡。卡本身是无源件,体积小,耐用可靠。 3、读写器不需要卡座,可以完全放置在盒子内。 4、使用时没有方向性,卡可以从任意方向掠过读写器表面,完成读写工作。 5、读写器与IC卡的无线通讯联系。 6、读写器与IC卡实施双向密码鉴别制,采用三级DES算法验证。读写器识别IC卡的合法性,IC卡能识别读写器,还可规定读写器的读写权限。 7、非接触式IC卡的发行有严格的规则。采用国际公认的mifare标准,其卡号的唯一性,在世界上是唯一的。其次,将密码一部分保存在读写器里,一部分放在卡上,保证系统的高度保密性[3]。 由于以上特点,因此该系统在非接触式IC卡应用领域得到了广泛的应用,在这些系统中,大多是采用了philips公司的射频模块MCM200(较早期应用,现已停产)或射频芯片

中国金融集成电路卡规范与应用无关的非接触式规范

中国金融集成电路卡规范与应用无关的非接触式规 范 中国金融集成电路(IC)卡 与应用无关的非接触式规范 中国金融集成电路(IC)卡标准修订工作组

二零零四年九月

目次 1 范畴 (1) 2 参考资料 (2) 3 定义 (3) 3.1 集成电路Integrated circuit(s)(IC) (3) 3.2 无触点的Contactless (3) 3.3 无触点集成电路卡Contactless integrated circuit(s) card (3) 3.4 接近式卡Proximity card(PICC) (3) 3.5 接近式耦合设备Proximity coupling device(PCD) (3) 3.6 位连续时刻Bit duration (3) 3.7 二进制移相键控Binary phase shift keying (3) 3.8 调制指数Modulation index (3) 3.9 不归零电平NRZ-L (3) 3.10 副载波Subcarrier (3) 3.11 防冲突环anticollision loop (3) 3.12 比特冲突检测协议bit collision detection protocol (3) 3.13 字节byte (3) 3.14 冲突collision (3) 3.15 差不多时刻单元(etu)elementary time unit(etu) (3) 3.16 帧frame (3) 3.17 高层higher layer (4) 3.18 时刻槽协议time slot protocol (4) 3.19 唯独识别符Unique identifier(UID) (4) 3.20 块block (4) 3.21 无效块invalid block (4) 4 缩略语和符号表示 (5) 5 物理特性 (8) 5.1 一样特性 (8) 5.2 尺寸 (8) 5.3 附加特性 (8) 5.3.1 紫外线 (8) 5.3.2 X-射线 (8) 5.3.3 动态弯曲应力 (8) 5.3.4 动态扭曲应力 (8) 5.3.5 交变磁场 (8) 5.3.6 交变电场 (8) 5.3.7 静电 (8) 5.3.8 静态磁场 (8) 5.3.9 工作温度 (9) 6 射频功率和信号接口 (9) 6.1 PICC的初始对话 (9) 6.2 功率传送 (9) 6.2.1 频率 (9)

基于单片机与RFID的非接触式 读卡器设计

基于单片机与RFID的非接触式读卡器软件设计

目 录 一、背景…………………………………………………………………………………… 2 二、方案及元器件选择 (3) 三、系统硬件设计 (3) 3.1 系统工作概述 (3) 3.2 MF RC500的特 点 (4) 3.3 MF RCS00的功能 (5) 3.4 MF RC500管脚描述 (6) 3.5系统天线设计 (8) 四、系统软件设计 (10) 4.1系统的工作方式 (10) 4.2 单片机软件设计 (12) 4.3 MF RC500编程方法 (15) 五、结束语 (17)

单片机与RFID的非接触式读卡器软件设计 关键词: 物联网 51单片机射频读卡器 MF RC500 89c51 导读: 物联网最广泛的一大应用就是射频读卡器,51单片机也因其应用广泛,成本低廉等特点广泛应用于各种终端.本文介绍了基于Philips公司MF RC500型读卡器和atmel公司AT89C51型单片机的RFID阅读器的低成本软硬件设计。 一、背景 随着中国物联网热的兴起,人们对物联网的兴趣也极大的增加,各种对物联网应用的研究也逐步展开. 所谓“物联网”(Internet of Things),指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网结合起来而形成的一个巨大网络。其目的,是让任何物品都与网络连接在一起,方便识别和管理。物联网是利用无所不在的网络技术建立起来的. 其中非常重要且应用得最为广泛的的是RFID技术。RFlD是射频识别技术(Radio Frequency denti-fieation)的英文缩写,又称电子标签,是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID具备自动识别的能力,而且能够应用到任何物体上. RFlD又可分为接触式与非接触式两种. 非接触式刷卡方便,安全性能高.故其应用越来越广泛. 射频识别技术具有很多突出的优点:第一,安全性高.适合于高安全性的终端。数据安全方面除电子标签的密码保护外,数据部分可用一些算法实现安全管理。读写器与标签之间存在相互认证的过程.可实现安全通信和存储,读写器具有不直接对最终用户开放的物理接口,可保证其自身的安全性:第二.可同时识别多个电子标签;第三,无机械磨

我国集成电路产业发展的金融支持研究

我国集成电路产业发展的金融支持研究 经过半个多世纪的发展,我国已经成为全球最大的半导体消费市场,但是随着集成电路产业的第三次产业转移,现阶段在我国集成电路产业的发展中机遇和挑战并存。当前,我国集成电路产业的发展依然存在不足,关键技术的缺失,严峻的国际形势以及巨大的人才缺口等,都是我国集成电路产业在发展过程中需要克服的困难。本文运用文献研究法、案例研究法和对比研究法,从金融支持中的政府与市场的作用角度出发,研究我国集成电路产业发展中的金融支持存在的问题,尝试提出改善我国集成电路产业融资困难的建议。本文首先梳理政府经济职能理论的演变和金融支持的概念,并分析政府和金融市场对于集成电路产业金融支持的作用机制。通过分析我国集成电路产业发展中金融支持的方式变化,将其发展过程分为三个阶段:起步探索阶段、重点建设阶段、快速发展阶段。并通过分析我国集成电路产业的资金需求,说明我国现阶段集成电路产业存在较高的技术和资金壁垒,为使国内企业克服壁垒占据市场份额,扩大生产形成规模效应,增强国内企业国际竞争力等都需要资金的支持。在上述分析的基础上,本文总结了我国集成电路产业的金融支持现状,并指出我国集成电路产业金融支持存在的主要问题:金融市场失灵导致证券市场利用不充分;商业银行信贷支持不足;风险投资资金进入量少以及政府的金融支持资金与国外有较大差距以及产业内不平衡等。通过对国家集成电路产业投资基金的案例分析,进一步明确了政府和市场的金融支持作用路径。根据美国和日本在集成电路产业发展中的金融支持经验,提

出如何更好地发挥政府和市场在集成电路金融支持中的作用。最后,本文提出了金融支持我国集成电路产业发展的建议:一是要促进我国资本市场完善,健全企业信用评级体系,引导更多风险投资进入集成电路产业;二是加快转变我国政府金融扶持的职能角色,加强资金的市场化运用,加强对设计和设备材料研发类企业支持,支持相关技术自主研发;三是建立全国性的集成电路产业融资平台,解决信贷担保以及信息不对称等问题,帮助我国集成电路企业融资。

非接触式IC卡读卡器单芯片解决方案

非接触式 IC 卡读卡器单芯片解决方案 目录: 1.1 非接触式 IC 卡读卡器读写模块介绍 1.2 非接触式 IC 卡读卡器读写模块解决方案的组成 1.3 福骅联盟非接触式 IC 卡读卡器读写模块硬件设计思路 1.4福骅联盟非接触式 IC 卡读卡器读写模块解决方案优势 1.5 软件设计思路 1.6其他及联系方式 1.1 非接触式 IC 卡读卡器读写模块介绍 NFC技术由非接触式射频识别(RFID演变而来,其基础是 RFID 及互连技术。近场通信(Near Field Communication ,NFC是一种短距高频的无线电技术,在 13.56MHz 频率运行于 10厘米距离内。其传输速度有 106 Kbit/秒、212 Kbit/秒或者424 Kbit/秒三种。目前近场通信已通过成为 ISO/IEC IS 18092国际标准、ECMA-340标准与 ETSI TS 102 190标准。 1.2 非接触式 IC 卡读卡器读写模块解决方案的组成 NFC 以及 MCU 控制器,30个快速 I/O端口,2个 I2C、3个 UART、2个 SPI, CAN 接口,USB2.0全速通讯接口组成非接触式 IC 卡读卡器读写模块,同时可以做二次开发。 1.3福骅联盟非接触式 IC 卡读卡器读写模块硬件设计思路 1/通过FU32F103CBNFC来实现数据的打包处理,控制NFC的读写部分;

2/ MCU部分:ARM授权, M3内核, 与STM32F103软件完全兼容, 主频96MHZ, 128K Flash, 20KRAM; 3/NFC部分:支持Type A,Type B,Felica协议,性能稳定; 1.4福骅联盟非接触式 IC 卡读卡器读写模块解决方案优势 性能优势:射频性能完美,数据加密功能独特,完全优于各竞争对手的集成度, 使得整体成本优势明显。 ?具备 4000V 的 ESD 抗干扰指标,可省去外置电路板的 TVS 管节省成本。 ?具备完整的参考程序,可以开源给到客户。 ?具备完整的硬件 DEMO 板,可以给到客户演示评估。 ?供货优势:国内晶圆厂,国内封装,供货有保障。 ?单芯片包含NFC及MCU,产品集成度高,提高生产制造的一致性,稳定性; 降低返修率,最终降低生产制造的综合成本。 1.5软件设计思路 您可以通过联系我们的销售, AE, FAE 获得软件设计指导及方案的完整软件代码; ?完整的参考程序,软件的整体设计思路等; ?整体的硬件设计原理图及 PCB Layout等; ?同时也可取得非接触式 IC 卡读卡器读写模块进行测试; 1.6 其他 除了适用于 IC 卡读写器外,也可适用于政府及企事业单位,校园一卡通设备,手持终端,巡更机,等场景。

中国金融集成电路IC卡借记贷记应用个人化指.(DOC)

中国金融集成电路(IC)卡借记/贷记应用个人化指南 中国金融集成电路(IC)卡标准修订工作组 二零零四年九月

目次 1 文档概览 (2) 1.1 目的 (2) 1.2 面向对象 (2) 1.3 参考信息 (2) 1.3.1 参考资料 (2) 1.3.2 符号约定 (3) 1.4 缩略语和符号表示 (3) 2 个人化过程概述 (6) 3 初始化 (8) 4 数据准备 (11) 4.1 创建个人化数据 (11) 4.1.1 发卡行主密钥及其相关数据 (11) 4.1.2 应用密钥和证书 (11) 4.1.3 应用数据 (11) 4.2 记录格式 (12) 4.2.1 结束个人化处理 (12) 4.3 中国金融集成电路(IC)卡的数据分组 (12) 5 中国金融集成电路(IC)卡借记贷记应用需求 (18) 5.1 中国金融集成电路(IC)卡借记/贷记应用必须满足在通用个人化中规定的所有要求 18 5.2 中国金融集成电路(IC)卡借记/贷记应用必须满足在中国金融集成电路(IC)卡借记贷记卡片规范中规定的所有要求 (18) 5.3 中国金融集成电路(IC)卡借记/贷记应用必须将中国金融集成电路(IC)卡借记贷记卡片规范中强制规定的所有数据个人化 (18) 6 安全规范 (19) 6.1 安全综述 (19) 6.2 初始化安全 (19) 6.3 密钥定义 (20) 6.3.1 个人化密钥描述 (20) 6.3.2 中国金融集成电路(IC)卡借记/贷记应用密钥描述 (21) 6.4 管理要求 (22) 6.4.1 环境 (22) 6.4.2 操作 (25) 6.4.3 管理规范 (28) 6.5 安全模块 (29) 6.5.1 物理安全属性 (30) 6.5.2 逻辑安全属性 (30) 6.5.3 功能需求 (30) 6.5.4 安全模块等级 (30) 6.6 风险审计 (30)

集成电路ic封装种类、代号、含义

【引用】集成电路IC封装的种类、代号和含义 2011-03-24 15:10:32| 分类:维修电工| 标签:|字号大中小订阅 本文引用自厚德载道我心飞翔《集成电路IC封装的种类、代号和含义》 IC封装的种类,代号和含 1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat PACkage with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等 多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded Chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。 此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(Chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。9、DFP(dual flat PACkage) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本 上不用。 10、DIC(dual in-line ceramic PACkage) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line PACkage) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为Cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。

【集成电路(IC)】电子专业术语英汉对照加注解

【集成电路(IC)】电子专业术语英汉对照加注解 电子专业英语术语 ★rchitecture(结构):可编程集成电路系列的通用逻辑结构。 ★ASIC(Application Specific Integrated Circuit-专用集成电路):适合于某一单一用途的集成电路产品。 ★ATE(Automatic Test EQUIPment-自动测试设备):能够自动测试组装电路板和用于莱迪思ISP 器件编程的设备。 ★BGA(Ball Grid Array-球栅阵列):以球型引脚焊接工艺为特征的一类集成电路封装。可以提高可加工性,减小尺寸和厚度,改善了噪声特性,提高了功耗管理特性。 ★Boolean Equation(逻辑方程):基于逻辑代数的文本设计输入方法。 ★Boundary Scan Test(边界扫描测试):板级测试的趋势。为实现先进的技术所需要的多管脚器件提供了较低的测试和制造成本。 ★Cell-Based PLD(基于单元的可编程逻辑器件):混合型可编程逻辑器件结构,将标准的复杂的可编程逻辑器件(CPLD)和特殊功能的模块组合到一块芯片上。 ★CMOS(Complementary Metal Oxide Semiconductor-互补金属氧化物半导体):先进的集成电路★加工工艺技术,具有高集成、低成本、低能耗和高性能等特征。CMOS 是现在高密度可编程逻辑器件(PLD)的理想工艺技术。 ★CPLD(Complex Programmable Logic Device-复杂可编程逻辑器件):高密度的可编程逻辑器件,包含通过一个中央全局布线区连接的宏单元。这种结构提供高速度和可预测的性能。是实现高速逻辑的理想结构。理想的可编程技术是E2CMOS?。 ★Density (密度):表示集成在一个芯片上的逻辑数量,单位是门(gate)。密度越高,门越多,也意味着越复杂。 ★Design Simulation(设计仿真):明确一个设计是否与要求的功能和时序相一致的过程。★E2CMOS?(Electrically Erasable CMOS-电子可擦除互补金属氧化物半导体):莱迪思专用工艺。基于其具有继承性、可重复编程和可测试性等特点,因此是一种可编程逻辑器件(PLD)的理想工艺技术。 ★EBR(Embedded BLOCk RAM-嵌入模块RAM):在ORCA 现场可编程门阵列(FPGA)中的RAM 单元,可配置成RAM、只读存储器(ROM)、先入先出(FIFO)、内容地址存储器(CAM)等。 ★EDA(Electronic Design Automation-电子设计自动化):即通常所谓的电子线路辅助设计软件。 ★EPIC (Editor for Programmable Integrated Circuit-可编程集成电路编辑器):一种包含在★ORCA Foundry 中的低级别的图型编辑器,可用于ORCA 设计中比特级的编辑。★Explore Tool(探索工具):莱迪思的新创造,包括ispDS+HDL 综合优化逻辑适配器。探索工具为用户提供了一个简单的图形化界面进行编译器的综合控制。设计者只需要简单地点击鼠标,就可以管理编译器的设置,执行一个设计中的类似于多批处理的编译。 ★Fmax:信号的最高频率。芯片在每秒内产生逻辑功能的最多次数。 ★FAE(Field Application Engineer-现场应用工程师):在现场为客户提供技术支持的工程师。 ★Fabless:能够设计,销售,通过与硅片制造商联合以转包的方式实现硅片加工的一类半导体公司。

125k非接触id卡读卡器设计完整版.doc

125K非接触IC卡读卡头 125K读卡头的工作电压为12V/5v,电流为30——40MA 读卡距离最远15CM 。 如要低功耗最有效是读卡头工作时供电,不工作时断电。读卡距离与卡和天线有关, 可以读各种125K曼彻斯特编码的只读ID卡(4001,EM4100等等)和含E2PROM的RF卡。如E5550。 读卡头(OUT)输出信号为原卡的曼彻斯特码,(用示波器接读卡头输出可以观测ID卡的输出波形)它和其它公司的125K读卡头(输出信号为原卡的曼彻斯特码)是兼容的,可以相互替换,不用修改程序。读卡头也可以读可擦写的125k非接触IC卡,如当读E5550时,卡的用来控制是否启动AOR位应置0,(当置1时IC卡不主动发射数据,需读卡头先发送口令。我的读卡头是只读,不能发数据,当AOR位置1时不能读IC卡的数据)。 天线的设计:天线电感值=345Uh 线径φ0.29mm 圆形(内径):直径6CM 58圈 直径8CM 40圈 直径3CM 83圈 直径2CM 115圈 长方形:9.5*7 CM 38圈 4.7*6.3 CM 50圈 非接触式IC卡简介: 非接触式智能卡以其高度安全保密性,通信高速性,使用方便性,成本日渐低廉等而受到广泛使用,给我们的生活质量带来了很大的提高。 非接触式IC卡简介又称射频卡,成功地解决了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破。主要用于智能门禁控制器,智能门锁,考勤机, 自动收费系统等. 射频卡与接触式IC卡,TM卡相比有以下优点: 1 可靠性高,无机械接触,从而避免了各种故障;

2 操作方便,快捷,使用时没有方向性,个方向操作; 3 安全和保密性能好,采用双向验证机制。读写器验证IC卡的合法性,同时IC卡验证读写器的合法性。每张卡均有唯一的序列号。制造厂家在产品出长前已将此序列号固化,不可再更改,因此可以说世界上没有两张相同的非接触IC卡; 只读ID卡的资料 非接触ID卡主要有台湾4001卡和瑞士H4001卡,EM4100。它们都采用125kHz的典型工作频率,有64位激光可编程ROM,调制方式为曼彻斯特码(Manchester)调制,位数据传送周期为512μs,其64位数据结构如图1所示。 连续9位“1”作为头数据,是读取数据时的同步标识;D00~D93位是用户定义数据位;P0~P9是行奇校验位,PC0~PC3是列奇校验位,最后位“0”是结束标志。非接触ID卡的这种数据结构非常有利于判断读出数

非接触式IC卡读卡器使用说明

文档编号: ZH-22WI-999012 版 本 号: 3.0 非接触式IC 卡计时宝 (SMTMJMF-V22) 用 户 手 册 广东智慧电子信息产业股份有限公司 “智慧牌”非接触式IC 卡产品系列 SMART CARD & IT SERISE ?

文档摘要 项目名称:“智慧牌”非接触式IC卡计时宝 文档编号:ZH-22WI-999012 文档编写者: 出版日期: 参考文献:《智慧“一卡通”信息管理系统需求分析说明书》、《智慧“一卡通”信息管理系统概要设计说明书》、《GB/T18239-2000 集成电路(IC)卡读写机通用规范》和《GB 4208 外壳防 护等级的分类》《GB 6587.7 电子测量仪器基本安全试验》, 《GB 191 包装储运图示标志》《GB 6833.5 电子测量仪器 电磁兼容性试验规范辐射敏感度试验》《GB 6833.3 电 子测量仪器电磁兼容性试验规范静电放电敏感度试验》 等 文档更新记录表

内容简介 “智慧牌”非接触式智能卡计时宝融合了美国、日本、西欧、香港、台湾以及中国大陆各类型企事业单位的时间管理模式特点,将通用性与智能化有机结合,可视不同的使用需求而设定相应时间管理参数。计时宝广泛适用于考勤、门禁、巡更、会议签到、钟点记录等计时、监控功能管理,可同时控制多组外控设备,接受多组输入信号,共有四种不同的工作模式供客户选择使用,适用卡片型号为Mifare One卡、CPU卡和ID卡,是企事业单位最好的时间“管家婆”。 套装形式的“计时宝”,出厂时已配齐了安装使用的必备配件,您仅需按照本说明书传授的方法,就能十分方便地掌握,并自行完成系统的安装、设置和查询。与之配套的软件有考勤、门禁、人事、工资等管理软件,为您解决一般性的事务管理工作,如有特殊需求可与当地经销商联系,委托开发制作。 计时宝具有操作简便,安全可靠,功能实用,快速精确等特点。 在本说明书中,详细的对计时宝做了介绍,包括外观注释、产品特性、键盘介绍、配件介绍、连接器参数、连线转换盒参数和技术参数;还详尽的介绍了计时宝的安装与检测、使用方法、网络连接;最后还列出了报警代码和纠错措施以及技术支持联络方法。 “科技以人为本、用户为上帝、质量为生命”,感谢您阅读本说明书,使用本计时宝,衷心期待您的意见和建议。

集成电路产业基金投资项目

集成电路产业投资基金

国家集成电路产业基金投资项目: 2014/12 联合长电科技收购新加坡星科金朋有限公司(全球第四大封测企业)3亿美元 2014/12中微半导体设备(上海)有限公司 4.8亿人民币装备主要产品等离子刻蚀机 2015/02 联合国家开发银行投资紫光集团 300亿人民币,其中国家集成电路产业基金投资100亿,国家开发银行投资200亿 2015/02 中芯国际 31亿港元持股11.54% 2015/05珠海艾派克微电子有限公司5亿人民币持股4.29% 基于国家核高基32位CPU平台的打印机耗材/控制SoC芯片项目 2015/06 湖南国科微电子股份有限公司 4亿人民币持股11.76% 2015/06 受让三安光电9.07%股权,并拟合资48.4亿人民币,设立25亿美元基金,坤化镓/氮化镓功率放大器项目 2015/07杭州长川科技股份有限公司 571.52万元持股10% 2015/08与京东方、北京亦庄等组建显示相关的 15亿人民币生态建设集成电路产业基金(总规模40.165亿) 2015/09 北斗星通 15亿人民币 2015/09 与中芯国际、高通一起,增资中芯长电 2.8亿美元 2015/10 联合通富微电收购AMD位于苏州和马来西亚槟城两座封测工厂85%的股权 3.7亿美元 2015/10与中芯国际及其他7方组建芯鑫融资租赁 20亿人民币持股35.21% 2015/11 中兴微电子 24亿人民币持股24% 2015/11 与上海国盛、武岳峰等组建上海硅产业投资注册资本20亿 2015/12与中微半导体和苏州聚源东方,投资沈阳拓荆科技 2.7亿人民币 2016/03 华天科技(西安)有限公司 4.2亿持股27.23%

相关文档
相关文档 最新文档