文档库 最新最全的文档下载
当前位置:文档库 › Orbitally Degenerate Spin-1 Model for Insulating V2O3

Orbitally Degenerate Spin-1 Model for Insulating V2O3

Orbitally Degenerate Spin-1 Model for Insulating V2O3
Orbitally Degenerate Spin-1 Model for Insulating V2O3

a r X i v :c o n d -m a t /0005506v 1 [c o n d -m a t .s t r -e l ] 29 M a y 2000

Orbitally Degenerate Spin-1Model for Insulating V 2O 3

https://www.wendangku.net/doc/f410642586.html,a (a ),R.Shiina (b )?,F.-C.Zhang (c ),A.Joshi (c ),M.Ma (c ),V.Anisimov (d ),and T.M.Rice (b )

(a )

Laboratoire de Physique Quantique,Universit′e Paul Sabatier,31062Toulouse,France

(b )

Theoretische Physik,ETH-H¨o nggerberg,CH-8093Z¨u rich,Switzerland (c )

Department of Physics,University of Cincinnati,Cincinnati,Ohio 45221

(d )

Institute of Metal Physics,Russian Academy of Sciences,620219,Ekaterinburg,GSP-170,Russia

Motivated by recent neutron,X-ray absorption and resonant scattering experiments,we revisit the electronic structure of V 2O 3.We propose a model in which S=1V 3+ions are coupled in the vertical V-V pairs forming two-fold orbitally degenerate con?gurations with S=2.Ferro-orbital ordering of the V-V pairs gives a description which is consistent with all experiments in the antiferromagnetic insulating phase.

PACS Nos :71.30.+h,75.10.-b,75.50.Ee

Although the metal-insulator transition in V 2O 3has long been studied as a classic Mott-transition [1–3],the detailed electronic structure remains open.Recently new experimental techniques have been applied but these have not resolved the issue.Rather they have reopened the long standing controversy between an S =1model without an orbital degeneracy and the S =1/2orbitally degenerate model of Castellani et al.[4].In this Letter we propose a new model for the AF-ordered insulating (AFI)phase based on the molecular orbitals of the c -axis V-V pairs,which combines features of both existing models and which reconciles the apparently con?icting experiments supporting

each.

FIG. 1.Corundum structure of V 2O 3.The V-ions (solid circles)are arranged in V-V pairs along the c-axis (face-sharing octahedra)and a honeycomb lattice in the other directions (edge-sharing octahedra).

The V-ions in the corundum structure of V 2O 3sit in a O-octahedron with a small trigonal distortion causing a small splitting in the non-bonding t 2g -shell between the a 1g -orbital oriented along the c -axis and doublet planar e g -orbitals (see Fig.1).In their early work,Castellani et al.proposed that one electron of the 3d 2V 3+-ion entered a spin singlet covalent a 1g -bond in the V-V pair while the remaining electron was in the e g -doublet.Orbital ordering of these e g -doublets allowed them to explain

the unusual magnetic structure of the AFI-phase with inequivalent n.n.exchange constants in the a ?b plane (2antiferromagnetic,1ferromagnetic)[5–7].Paolasini et al.[8]interpreted their recent resonant x-ray experiments as a con?rmation of this orbital ordering.On the other hand the polarized soft x-ray experiments by Park et al.[9]showed a coexistence of both (e g e g )and (e g a 1g )con-?gurations in roughly equal amounts and these led Ezhov et al.[10]to argue for a S =1model with a (e g e g )con-?guration and no orbital degeneracy.This is favored by the atomic Hund’s Rule whose strength,as they point out,is not screened in the crystal.The di?ering planar exchange constants they attribute to the monoclinic dis-tortion in the AFI-phase.Yet general considerations of the phase diagram [11]and NMR investigations [12]all point towards to the presence of an orbital degeneracy.Here we take a di?erent approach to the AFI-phase and start from an atomic limit but consider ?rst the V-V pairs,since the intersite a 1g -hopping matrix elements are the largest [4].Keeping a strong Hund’s Rule coupling,as proposed by Ezhov et al.,leads us to molecular orbitals for a V-V pair consisting of a superposition of (e g e g )on one V-site and of (e g a 1g )on the second site with a total spin S =2.This delocalized molecular orbital has also a two-fold degeneracy due to a choice in (e g a 1g )among the e g -doublet.Next we consider planar hopping processes and show that in a reasonable parameter range the real spin (RS)structure is the most stable.This state has a ferro-arrangement of the molecular orbitals which agrees with the monoclinic structure and,as we shall see,also with the x-ray experiments of Paolasini et al.

Let us start with a description of a vertical pair.Fol-lowing Ref.[4],the two e g orbitals [13]are speci?ed by a further index as |e g 1 =1/

√6(2|d xy ?|d yz ?|d zx ),while the a 1g orbital

is given by |a 1g =1/

the di?erent V ions in the unit cell.Consequently,the e g1 and e g2orbitals on the two V ions of a vertical pair are not identical.This will be important when we compare our results to that of resonant scattering experiments. The intra-atomic interaction is described by three param-eters:U,the Coulomb interaction in the same orbital,U′, the Coulomb interaction in di?erent orbitals,and J,the Hund’s Rule coupling,which we assume satisfy the usual relation for t2g orbitals:U=U′+2J.The trigonal crys-tal?eld induces an energy splitting?between the low-lying e g orbitals and the excited a1g.Finally,the hopping integrals are denoted by tδij whereδ=a,b,c,d stands for the direction of the bond(a,b,c:bonds inside the hexag-onal planes,d:vertical bond)while(i,j)=1,2,3denote the orbitals(e g1,e g2and a1g respectively).

The main di?erence with Ref.[4]comes from the val-ues of the interaction parameters.The values used in Ref.[4](U?2eV,J=0.2eV)are now believed to be much too small:Recent estimates based on LDA+U cal-culations[10]are in the range U?5eV and J?1eV. It turns out that this makes a dramatic di?erence for the ground state of a V-V pair.To be speci?c,if we con-sider the same hopping and crystal?eld parameters as in Ref.[4],and if we?x the ratio J/U=0.1to the value they used,there is a level crossing as a function of U between two very di?erent situations.At small U,the ground state is3-fold degenerate,with3levels nearby. This corresponds to the limit of Ref.[4]where two elec-trons go into the bonding molecular orbital built out of a1g orbitals,the other two electrons being described by a spin1/2-pseudo spin1/2Kugel-Khomskii model[14]. At large U however,the ground state is10-fold degen-erate.It corresponds to a total spin2with a two-fold degenerate orbital state.Since by symmetry t d ij=0if i=j,this orbital wavefunction can actually be written down explicitly:

|± =|e g,a1g ?|e g1,e g2 +|e g1,e g2 ?|e g,a1g

2

(1)

where e g stands for e g1(e g2)in|? (|+ ).This situation is generic for a large range of J/U including J/U=0.2, and with the parameters proposed in Ref.[10],we found that the ground state is clearly of this second type.

It is interesting to compare this state with the spin1 picture of Ezhov et al..When the Hund’s Rule coupling is large,all low-lying states can indeed be described by considering only the states with total spin1at each site. However,the resulting e?ective Hamiltonian for a pair of sites is not simply a Heisenberg Hamiltonian,since this would correspond to only9low-lying states.In fact there are81low-lying states,suggesting that it one wants to describe this system with a spin1operator, S,at each site,one should also include a pseudo-spin1operator, T, to describe the quasi-degeneracy of the t2g orbitals.This orbital degree of freedom is crucial since it is responsible for a factor2in the10-fold groundstate degeneracy. These results suggest that,instead of starting from a spin-orbital model with a spin1/2and a pseudo-spin1/2 at each V site,one should start from a spin-orbital model in which each vertical V-V pair is decribed by a spin2 for the total spin,say σ,and a pseudo-spin1/2for the orbital degeneracy,say τ,τz=1/2(τz=?1/2)corre-sponding to|+ (|? )in Eq.1.The low energy properties are then determined by the way the degeneracy is lifted when these pairs are coupled by the in-plane hopping in-tegrals.Since these hopping parameters are small,we can treat them within second-order perturbation theory. For simplicity,we include only the largest hopping inte-gral t a23≡t,and the corresponding hopping integrals for directions b and c,in the present discussion.We have checked that the conclusions are una?ected by this sim-pli?cation.The second order e?ective spin-orbital Hamil-tonian for n.n.along the a-axis then reads[15]:

?H

e?

(a)=G σl· σm+1

3

G1+

1

4

G3,G1=

t2

4(U′+2J)

,G3=

t2

3/2τx.While there is a strong anisotropy in orbital space,the interaction preserves SU(2)symmetry for the spin operator σ. Remarkably enough,the symmetry properties of this model are quite similar to the Kugel-Khomskii model for the cubic perovskite[14].In fact one can regard the corundum lattice as a distorted simple cubic(sc)lattice of the V-V pairs.This analogy is useful to give a sys-tematic analysis for such a complicated https://www.wendangku.net/doc/f410642586.html,ly, it is promising that the stable magnetic phases of Kugel-Khomskii-type models are collinear two-sublattice order-ings with associated orbital orderings.Within this cri-terion the possibility is naturally restricted into G,F, C,and A-type magnetic patterns[16].In this language, the realistic magnetic structure of V2O3corresponds to the C-type arrangement in the pair sc lattice:One of3 in-plane bonds is ferromagnetic and other two bonds are antiferromagnetic.

Keeping in mind these relations,we have examined the stable phase in the molecular model by comparing the energies of all magnetic phases.This has been done,as for the Kugel-Khomskii model,within a mean-?eld de-coupling based on the order parameters τα , σα ,and τασβ .Details will be given in a forthcoming paper [17].The results are plotted in Fig.2as a function of Hund’s Rule coupling J.It turns out that the stable phase changes successively from G to F phase as J in-creases.In order to gain energy by the orbital-dependent G3term,the symmetry-broken C and A phases are sta-bilized in the intermediate-J region.In particular the realistic C-type phase is found to be the lowest for J/U around0.2,which agrees with the estimates of Ezhov et

al.,and which is consistent also with the stability region for the S =2degenerate molecular orbitals of a V-pair.For this phase,the orbital order parameter is ferromag-netic with τz <0,i.e.the e g 1orbital is favoured (state |? of Eq.1).Such a ferro molecular orbital order will cause an e?ective uniaxial stress on the lattice degrees of freedom,leading to a uniform rotation of V-V pairs.This is consistent with the monoclinic distortion proposed by Dernier and Marezio [20].

-11.0

-10.0-9.0-8.0-7.0

-6.0-5.0J/U

E

FIG.2.Energy comparison of various magnetic patterns.The letters refer to the notations of Ref.[16]for the sc lattice.The pictures give the corresponding magnetic pattern for the corundum lattice.The symbols |± ,|+ ,and |? indicate which of the molecular orbitals of Eq.1is consistent with the magnetic pattern.The orbital degeneracy is lifted for states C and A,but not for states G and F.

The physical picture that emerges from this model is very encouraging.First of all,the observed magnetic arrangement [5–7]is consistent with this model for rea-sonable values of the parameters.Second,the atomic con?guration is a mixture of (e g e g )and (a 1g e g ),in agree-ment with X-ray absorption [9].Third,there is an orbital degree of freedom whose ordering is consistent with the monoclinic distortion of the low-temperature phase [20].It corresponds to choosing between e g 1and e g 2for the V-V pairs.

The results of our model are also consistent with the resonant x-ray scattering experiment of Paolasini et al.[8].In that experiment,resonant scattering was observed in the low temperature phase at wavevector q =(111)and at energies corresponding to the transition from 1s to unoccupied 3d states on V-ions.Since this is forbidden by symmetry if all the orbital con?gurations on V-atoms are equal,this led Paolasini et al.[8]to conclude to the existence of orbital ordering.They further suggested that their experiment can be taken to con?rm one of the or-bital ordered phases previously proposed by Castellani et al [4].We now show that the orbital ordering proposed in this paper for our model,while di?erent from that in-terpreted by Paolasini et al.,is also consistent with the experimental results.

The resonant scattering amplitude as a function of the

energy ωand q of x-rays for a crystal V 2O 3is given by F = 8

i =1e i

q · ρi

f i (ω),where f i (ω)is the amplitude con-tributed from the V atom at position ρi in the monoclinic unit cell of V 2O 3.The low-temperature monoclinic lat-tice of V 2O 3has eight atoms in a unit cell (Fig.3).Atoms 1-4have spin-up magnetic moments and atoms 5-8have spin-down magnetic moments.F at q =(111)is given by F 111=(f 1?f 5+f 8?f 4)e iα+(f 2?f 6+f 7?f 3)e ?iαwhere αis a phase factor which depends on ρ1? ρ2.f i (ω)depends in general on the magnetic moment and orbital occupation [18].The nonvanishin

g intensity of (111)re?ection for this energy implies that the combi-nations (f 1?f 5+f 8?f 4)and (f 2?f 6+f 7?f 3)are nonzero.The ferro-orbital phase in our model exhibits this feature for the following reasons.As discussed be-fore,the e g orbitals are de?ned wit

h respect to a local co-ordinate system on each V ion.In particular,for the two V ions on a vertical bond,they are related by a ro-tation around the y -axis:C 2(x,y,z )=(?x,y,?z )(the trigonal coordinate system is used here with z -axis di-rected perpendicular to the hexagonal plane)while for the V ions in the same hexagonal plane local coordinate systems are identical.Thus,the ferro-orbital phase actu-ally corresponds to having di?erent orbitals on alternate hexagonal planes.Denoting these as 1and 2and denot-ing u and d for the spin up and down magnetic state,we then have e.g.

f 1?f 5+f 8?f 4=f (1,u )?f (1,d )+f (2,d )?f (2,u )Since f depends on both the orbital occupation and the magnetic moment of the V-atom,f (u )=f (d ).Thus,our model gives nonzero F 111,and is qualitatively consistent with the experimental observation of Paolasini et al.[8].More work is needed to compare our theory with the observed polarization and the azimuthal dependences of the resonance intensity.

According to this explanation,the intensity of the (111)re?ection is not simply a direct consequence of the orbital order,but comes both from magnetic and orbital order.This should be contrasted to Paolasini et al.’s explanation based on Ref.[4],where the form factor of Eq.(5)is non zero because the orbitals occupied on the two V of a vertical pair are di?erent linear combi-nations of eg 1and eg 2.While Castellani et al.’s picture is very speci?c to their S=1/2model,there is room a priori within the S=1model for a similar orbital order-ing.Energetic considerations then show that the only serious candidate is an orbital ordering in which one V of a vertical pair would be in the (eg a 1g )con?guration,while the other one would be in the (eg eg )con?gura-tion.To be more precise,the model considered thus far corresponds to having all interplane hopping amplitudes much larger than intraplane ones.If we maintain the

limit of t d 33large,but allows t d 11and t d

22to be compa-rable to intraplane hoppings,it can be shown that the problem can then be mapped into a transverse ?eld Ising model.Details will be given in a forthcoming publica-tion [19].Here we brie?y summarize the main results.

In this mapping,there is an Ising spin associated with each V-V pair which corresponds to the orbital occupa-tion of (e g e g )and (e g a 1g )on the two site.The transverse ?eld strength h is given by the energy di?erence of the bonding and antibonding states of a V-V pair,a measure of the orbital quantum ?uctuation in a V-V pair.The molecular orbital model corresponds to the large h limit.In the opposite limit h →0,the spin and orbital order-ing depends on the relative strengths of the intraplane hoppings.In a reasonable parameter range,we found a ground state with RS spin and an orbital ordering corre-sponding to the pattern reported by Paolasini et al [8].However,since in this state the V ions of a vertical pair are in (e g e g )and (e g a 1g )con?gurations,the electronic densities are very di?erent.This should lead to di?erent local distortions of the O octahedra,which is inconsis-tent with the monoclinic structure reported by Dernier and Marezio [20],where all V are equivalent [21].So we do not think that this kind of orbital ordering is realized in V 2O 3.

8

6

7

FIG.3.The structure of the low temperature monoclinic phase of V 2O 3.The gray and ?lled circles correspond to spin-up and spin-down orientations of the local magnetic mo-ments on V ions.

To summarize,we have proposed a model for the AF insulating phase of V 2O 3.This model seems to be the only way to combine basic facts about the electronic structure (S=1,orbital degeneracy,strong coupling along vertical pairs)into a coherent picture that agrees with all experiments.Further investigation of the resulting two-fold degenerate,S=2model for the vertical pair is in progress.

We acknowledge useful discussions with W.Bao,B.Normand,P.M.Platzmann,G.Sawatzky,L.H.Tjeng and C.Vettier,and the hospitality of the Center for Theoretical Studies of ETH Z¨u rich.This work was in part supported by the DOE grant DE/FG03-98ER45687,Russian Foundation for Basis Reasearch grants RFFI-98-02-17275and RFFI-00-15-96575.

等效电路模型参数在线辨识

第四章 等效电路模型参数在线辨识 通过第三章函数拟合的方法可以确定钒电池等效电路模型中的参数,但是在实际运行过程中模型参数随着工作环境温度、充放电循环次数、SOC 等因素发生变化,根据离线试验数据计算得到的参数值估算电池SOC 可能会造成较大的估计误差。因此,在实际运行时,应对钒电池等效电路模型参数进行在线辨识,做出实时修正,提高基于模型估算SOC 的精度。 4.1 基于遗忘因子的最小二乘算法 参数辨识是根据被测系统的输入输出来,通过一定的算法,获得让模型输出值尽量接近系统实际输出值的模型参数估计值。根据能否实时辨识系统的模型参数,可以将常用的参数辨识方法分为离线和在线两类,离线辨识只能在数据采集完成后进行,不能对系统模型实时地在线调整参数,对于具有非线性特性的电池系统往往不能得到满意的辨识结果;在线辨识方法一般能够根据实时采集到的数据对系统模型进行辨识,在线调整系统模型参数。常用的辨识方法有最小二乘法、极大似然估计法和Kalman 滤波法等。因最小二乘法原理简明、收敛较快、容易理解和掌握、方便编程实现等特点,在进行电池模型参数辨识时采用了效果较好的含遗忘因子的递推最小二乘法。 4.1.1 批处理最小二乘法简介 假设被辨识的系统模型: 12121212()()()1n n n n b z b z b z y z G z u z a z a z a z ------+++==++++L L (4-1) 其相应的差分方程为: 1 1 ()()()n n i i i i y k a y k i b u k i ===--+-∑∑(4-2) 若考虑被辨识系统或观测信息中含有噪声,则被辨识模型式(4-2)可改写为: 1 1 ()()()()n n i i i i z k a y k i b u k i v k ===--+-+∑∑(4-3) 式中, ()z k 为系统输出量的第k 次观测值;()y k 为系统输出量的第k 次真值,()y k i -为系统输出量的第k i -次真值;()u k 为系统的第k 个输入值,()u k i -为 系统的第k i -个输入值;()v k 为均值为0的随机噪声。

浅析电力系统模型参数辨识

浅析电力系统模型参数辨识 (贵哥提供) 一、现状分析 随着我国电力事业的迅猛发展, 超高压输电线路和大容量机组的相继投入, 对电力系统稳定计算、以及其安全性、经济性和电能质量提出了更高的要求。现代控制理论、计算机技术、现代应用数学等新理论、新方法在电力系统的应用,正在促使电力工业这一传统产业迅速走向高科技化。 我国大区域电网的互联使网络结构更复杂,对电力系统安全稳定分析提出了更高的要求,在线、实时、精确的辨识电力系统模型参数变得更加紧迫。由于电力系统模型的基础性、重要性,国外早在上世纪三十年代就开始了这方面的分析研究,[1,2]国内外的电力工作者在模型参数辨识方面做了大量的研究工作。[3]随后IEEE相继公布了有关四大参数的数学模型。1990年全国电网会议上的调查确定了模型参数的地位,促进了模型参数辨识的进一步发展,并提出了研究发电机、励磁、调速系统、负荷等元件的动态特性和理论模型,以及元件在极端运行环境下的动态特性和参数辨识的要求。但传统的测量手段,限制了在线实时辨识方法的实现。 同步相量测量技术的出现和WAMS系统的研究与应用,使实现在线实时的电力系统模型参数辨识成为可能。同步相量是以标准时间信号GPS作为同步的基准,通过对采样数据计算而得的相量。相量测量装置是进行同步相量测量和输出以及动态记录的装置。PMU的核心特征包括基于标准时钟信号的同步相量测量、失去标准时钟信号的授时能力、PMU与主站之间能够实时通信并遵循有关通信协议。 自1988年Virginia Tech研制出首个PMU装置以来,[4]PMU技术取得了长足发展,并在国内外得到了广泛应用。截至2006年底,在我国范围内,已有300多台P MU装置投入运行,并且可预计,在不久的将来PMU装置会遍布电力系统的各个主要电厂和变电站。这为基于PMU的各种应用提供了良好的条件。 二、系统辨识的概念 系统模型是实际系统本质的简化描述。[5]模型可分为物理模型和数学模型两大类。物理模型是根据相似原理构成的一种物理模拟,通过模型试验来研究系统的

基于最小二乘模型的Bayes参数辨识方法

基于最小二乘模型的Bayes 参数辨识方法 王晓侃1,冯冬青2 1 郑州大学电气工程学院,郑州(450001) 2 郑州大学信息控制研究所,郑州(450001) E-mail :wxkbbg@https://www.wendangku.net/doc/f410642586.html, 摘 要:从辨识定义出发,首先介绍了Bayes 基本原理及其两种常用的方法,接着重点介绍了基于最小二乘模型的Bayes 参数辨识,最后以实例用MATLAB 进行仿真,得出理想的辨识结果。 关键词:辨识定义;Bayes 基本原理;Bayes 参数辨识 中国图书分类号:TP273+.1 文献标识码:A 0 概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。L. A. Zadehll 于1962年曾对”辨识”给出定义[1]:系统辨识是在对输入和输出观测的基础上,在指定的一类系统中,确定一个与被识别的系统等价的系统。一般系统输出y(n)通常用系统过去输出y(n-m)和现在输入u(n)及过去输入u(n-m)的函数描述 y(n)=f(y(n-1),y(n-2),...,y(n-m y ), u(n),u(n-1),... ,u(n-m u ))=f(x(n),n) x(n)=[y(n-1),y(n-2),...y(n-m y ), u(n),u(n-1),...,u(n-m u )]’ 这里f(,)为未知函数关系,一般情况为泛函数,可以是线性函数或非线性函数,分别对应于线性或非线性系统,通常这个函数未知,但是局部输入输出数据可以测出,系统辨识的任务就是根据这部分信息寻找确定函数或确定系统来逼近这个未知函数。但实际上我们不可能找到一个与实际系统完全等价的模型。从实用的角度来看,系统辨识就是从一组模型中选择一个模型,按照某种准则,使之能最好地拟合由系统的输入输出观测数据体现出的实际系统的动态或静态特性。接下来本文就以最小二乘法为基础的Bayes 辨识方法为例进行分析介绍并加以仿真[4]。 1 Bayes 基本原理 Bayes 辨识方法的基本思想是把所要估计的参数看做随机变量,然后设法通过观测与该参数有关联的其他变量,以此来推断这个参数。 设μ是描述某一动态系统的模型,θ是模型μ的参数,它会反映在该动态系统的输入输出观测值中。如果系统的输出变量z(k)在参数θ及其历史纪录(1) k D ?条件下的概率密度函 数是已知的,记作p(z(k)|θ,(1) k D ?),其中(1) k D ?表示(k-1)时刻以前的输入输出数据集 合,那么根据Bayes 的观点参数θ的估计问题可以看成是把参数θ当作具有某种先验概率密 度p (θ,(1) k D ?)的随机变量,如果输入u(k)是确定的变量,则利用Bayes 公式,把参数θ 的后验概率密度函数表示成[2] p (θ,k D )= p (θ|z (k ),u(k ), (1) k D ?)=p (θ|z (k ),(1) k D ?) = (k-1) (k-1) p(z(k)/,D )p(/D ) (k-1)(k-1)p(z(k)/,D )p(/D )d θθθθθ∞∫?∞ (1) 在式(1)中,参数θ的先验概率密度函数p(θ|(1) k D ?)及数据的条件概率密度函数p(z(k)|θ,

负荷建模和参数辨识的遗传进化算法

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T singh ua Un iv (Sci &Tech ),1999年第39卷第3期 1999,V o l.39,N o.311/34 37~40   负荷建模和参数辨识的遗传进化算法* 朱守真, 沈善德, 郑宇辉, 李 力, 艾 芊, 曲祖义 清华大学电机工程与应用电子技术系,北京100084; 东北电力集团公司,沈阳110006 收稿日期:1998-06-23 第一作者:女,1950年生,副教授 *基金项目:国家攀登计划B(85-35) 文 摘 提出了一种用于电力系统负荷建模和参数辨识的遗传进化算法,该方法与传统的最小二乘法相比具有全局搜索优化特点,适用于非线性、不连续或微分不连续的各种负荷模型。该方法已成功用于工业负荷实测数据辨识及动态和静态负荷建模。在静态负荷建模上,辨识结果略优于传统的最小二乘法,且通用性更好,只需做极小的修改就可以用于各种形式的静态负荷模型。在动态负荷建模上算法不仅给出了更优秀的结果,而且表现出很好的稳健性。结果表明此方法在负荷建模中的优势。 关键词 遗传进化算法;负荷建模;参数辨识分类号 T M 761 电力负荷模型是电力系统分析、规划、运行和计算的基础,尤其在计算中对电力系统动态行为的模拟结果影响很大。不同的计算需要采用不同的负荷模型,常规采用以不同比例的恒定阻抗、恒定电流、恒定功率或考虑不同动静比例负荷模型的方式使计算结果相差很大,甚至会导致完全错误的结论[1,2]。研究表明建立符合实际的负荷模型是十分必要的。负荷特性具有时变、非线形、不确定等多种特点,且实际负荷的用电设备构成差别很大,尤其是当电压或电流变化时,负荷产生突变,这也增加了建模的难度和复杂性。参数辨识是负荷建模的核心,目前常用的有最小二乘法、辅助变量法、分段线性多项式等方法,其中传统的方法不能有效地克服负荷建模中的非线性和不连续性等问题,会产生多值性等误差。近年来ANN 方法在建模方面已取得成功,但该方法更侧重于模拟模型的动态过程,且形成的结果是非参数模型。 遗传进化算法是模拟自然界进化中优胜劣汰的 优化过程,原则上能以较大的概率找到全局的最优解,具有并行、通用、鲁棒性强,全局收敛性好等优 点。研究人员已在发电规划[3],发电调度[4],无功优化[5]中用算例证明了EP 方法比传统的梯度寻优技术更优越。 本文采用遗传进化算法对静态、动态负荷进行了实测建模。 1 电力负荷的数学模型 本文主要描述以负荷特性来分类的静态和动态模型的建模方法。1.1 静态负荷模型 静态负荷模型表示某一时刻负荷所吸收的有功功率和无功功率与同一时刻负荷母线电压和频率之间的函数关系。静态负荷模型一般以幂函数和多项式模型表示。 本文以幂函数模型为例进行计算,幂函数表示的静态负荷特性如下: P =P 0U a 1f a 2, Q =Q 0 U b 1 f b 2 . (1) 定义误差函数 E w = N i =1 [W m (i )-W c (i )] 2 N (2)式中:N 为测量点数,W m (i )分别表示第i 次有功或无功功率测量值,W c (i )表示利用第i 次采样U i ,f i 的值由式(1)得到的有功或无功计算值,X p 、X q 是待辨识参数的向量: X p =[P 0,a 1,a 2], X q =[Q 0,b 1,b 2]. (3) 辨识问题表述为极小值寻优问题,即搜索一组参数使误差E w 达到最小值。1.2 动态负荷的模型 动态负荷模型表示某一时刻负荷所吸收的有功

机器人动力学汇总

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

Bouc-Wen 滞回模型的参数辨识

上海交通大学 硕士学位论文 Bouc-Wen滞回模型的参数辨识及其在电梯振动建模中的应用 姓名:周传勇 申请学位级别:硕士 专业:机械设计及理论 指导教师:李鸿光 20080201

Bouc-Wen滞回模型的参数辨识 及其在电梯振动建模中的应用 摘 要 电梯导靴是连接轿箱系统与导轨的装置,它能起到导向和隔振减振的作用。同时,在电梯的运行过程中它又将导轨由于制造或安装所造成的表面不平顺度传递给轿箱系统,从而引起轿箱系统的水平振动。国内外学者在电梯水平振动的建模和分析中,往往把导靴视为线性弹簧-阻尼元件来建模而忽略了非线性因素。事实上导靴与导轨之间存在非线性的迟滞摩擦力,本文通过实验的方法,采用Bouc-Wen 滞回模型来建立导靴-导轨非线性摩擦力模型。 Bouc-Wen滞回模型因其微分形式的非线性表达式而使得其参数辨识存在较大的困难,本文利用模型中部分参数的不敏感性,通过数学变换将非线性参数辨识问题转化为线性参数辨识问题,从而使得问题大大简化,参数辨识的效果也能满足要求。 基于以上导靴-导轨间摩擦力模型,本文进而建立了轿箱-导轨耦合水平振动动力学模型,该模型将轿箱系统等效为2自由度的平面运动刚体,将导靴等效为质量-弹簧-阻尼单元,同时考虑了导靴-导轨间的非线性摩擦力,以及导靴靴衬与导轨间接触的不连续性等。 在建立了轿箱-导轨耦合水平振动动力学模型后,利用Matlab/Simulink,建立了相应的仿真模型,开展了几种典型导轨不

平顺度激励(弯曲、失调和台阶)下的仿真分析。研究结果表明,这些分析对于电梯结构优化设计和动力学建模与分析有理论指导意义。 关键词:迟滞,参数辨识,非线性,动力学建模,系统仿真

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211 )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=--- 假设1+=m n 外部描述 ←—实现问题:有了部结构—→模拟系统 部描述 SISO ? ??+=+=du cx y bu Ax x 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()()()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++ ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m 对上式取拉氏反变换,则 ? ??++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m 1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x ,于是有

?????? ?+----===-u x a x a x a x x x x x n n n n 12113 221 写成矩阵形式 式中,1-n I 为1-n 阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。只要系统状态方程的系数阵A 和输入阵b 具有上式的形式,c 阵的形式可以任意,则称之为能控标准型。 则输出方程 121110x b x b x b x b y m m n n ++++=-- 写成矩阵形式 ??????? ? ????????=--n n m m x x x x b b b b y 12101 1][ 分析c b A ,,阵的构成与传递函数系数的关系。 在需要对实际系统进行数学模型转换时,不必进行计算就可以方便地写出状态空间模型的A 、b 、c 矩阵的所有元素。 例:已知SISO 系统的传递函数如下,试求系统的能控标准型状态空间模型。 4 2383)()(2 3++++=s s s s s U s Y 解:直接得到系统进行能控标准型的转换,即

实验四用MATLAB求解状态空间模型

实验四 用MATLAB 求解状态空间模型 1、实验设备 MATLAB 软件 2、实验目的 ① 学习线性定常连续系统的状态空间模型求解、掌握MATLAB 中关于求解该模型的主要函数; ② 通过编程、上机调试,进行求解。 3、实验原理说明 Matlab 提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有: 初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。 数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。 4、实验步骤 ① 根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB 编程。 ② 在MATLAB 界面下调试程序,并检查是否运行正确。 习题1:试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。 Matlab 程序如下: A=[0 1; -2 -3]; B=[]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [y,t,x]=initial(sys,x0,0:5); plot(t,x) 0011232????==????--???? x x x

习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。并计算该系统的单位阶跃状态响应表达式。 Matlab 程序如下: A=[0 1; -2 -3]; B=[0; 1]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [u t]=gensig('square',3,10,0.1) 0011232????==????--???? x x x

参数辨识示例 报告

参数辨识 参数辨识的步骤 飞行器气动参数辨识是一个系统工程,包括四部分:①试验设计,使试验能为辨识提供含有足够信息量且信息分布均匀的试验数据;②气动模型结果确定,即从候选模型集中,根据一定的准则和经验,选出最优的气动模型构式;③气动参数辨识,根据辨识准则和数据求取模型中待定参数,这是气动辨识定量研究的核心阶段;④模型检验,确认所得气动模型是否确实反映了飞行器动力学系统中气动力的本质属性。这四个部分环环相扣,缺一不可,要反复进行,直到对所得气动模型满意为止。 参数辨识的方法 参数辨识方法主要有最小二乘算法、极大似然法、集员辨识法、贝叶斯法、岭估计法、超椭球法和鲁棒辨识法等多种辨识方法。虽然目前参数辨识的领域己经发展了多种算法,但是用于气动参数估计的算法主要有:极大似然法(ML),广义Kalman滤波(EKF)法,模型估计法(EBM )、分割及多分割算法(PIA及MPIA)、最小二乘法,微分动态规划法等。 因为最小二乘法和极大似然法是两种经典的算法,目前己经发展得相当成熟。最小二乘法适于线性模型的参数辨识,可以用于飞行器系统辨识中很多的线性模型,如惯性仪表误差系数的辨识,线性时变离散系统初始状态的辨识及多项式曲线拟合等。目前最小二乘法已经广泛应用于工程实际中。而极大似然算法因其具有渐进一致性、估计的无偏性、良好的收敛特性等特点而被广泛应用于飞行器参数辨识领域。 最小二乘法大约是1975年高斯在其著名的星体运动轨道预报研究工作中提出来的。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法原理简单,编程容易,所以它颇受人们重视,应用相当广泛。 极大似然估计算法在实践中不断地被加以改进,这种改进主要表现在三个方

基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识 研究生二队李英杰 082068 摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过热敏电阻阻值温度关系模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab中的实现方法。结果表明基于最小二乘法具有算法简单、精度较高等优点。 1. 引言 所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。最小二乘法是系统参数辨识中最基本最常用的方法。最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。本文基于热敏电阻阻值与温度关系数据,介绍了最小二乘法的参数辨识在Matlab中的实现。 2. 系统辨识 一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。后者则是从实际系统运行和实验数据处理获得模型。如图1 所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。更进一步的定义是L.A.Zadeh 曾经与1962 年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。另外,系统辨识还应该具有3 个基本要素,即模型类、数据和准则[5]。被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。 图1 被研究的动态系统 3. 最小二乘法(LS)参数估计方法 对于参数模型辨识结构,系统辨识的任务是参数估计,即利用输入输出数据估计这些参数,建立系统的数学模型。在参数估计中最常用的是最小二乘法(LS)、

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

模态参数辨识方法——综述

模态参数辨识方法综述 摘要:本文对模态分析和模态参数识别进行了综述,对当前识别方法的原理、识别精度及适用条件进行阐述和比较,提出环境激励下模态参数识别方法需解决的关键问题及模态分析在缺陷检测和结构优化中作用。 关键词:模态分析模态参数识别模态分析与缺陷检测结构工作模态 0引言 模态分析是将线性时不变系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,坐标变换的变换矩阵为振型矩阵,其每列即为各阶振型。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。振动模态是弹性结构固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以把这些参数用于(重)设计过程,优化系统动态特性,或者研究把该结构连接到其他结构上时所产生的影响。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动分析、振动故障诊断和预报、结构动力特性的优化设计提供依据。 解析模态分析可用有限元计算实现,而实验模态分析则是对结构进行可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。有限元法是当前分析机械结构模态的主要方法,很多学者研究了单裂缝和多裂缝缺陷对不同结构动态特性的影响,但这些研究仅局限于出现缺陷结构的当前状态,考虑到缺陷在机械结构使用过程中的扩展,提出了模态分析与缺陷扩展理论相结合的方法分析缺陷的发展趋势,便于机械结构剩余寿命的评估,使已达到设计寿命的结构在失效前仍然发挥其功能,节约了经济成本。 一般模态识别方法是基于实验室条件下的频率响应函数进行的参数识别方法,它要求同时测得结构上的激励和响应信号。但是,在许多工程实际应用中,工作条件和实验室条件相差很大,对一些大型结构无法施加激励或施加激励费用很昂贵,因此要求识别结构在工作条件下的模态参数。工作模态参数识别方法与传统模态参数识别方法相比有如下特点:一、仅

遗传算法工具箱识别(GA)Bouc-Wen模型参数辨识_识别

Bouc-Wen模型因数字处理方便简单而得到较为广泛的应用,力可以表示为: 利用遗传算法工具箱(GA)对Bouc-Wen模型进行参数识别。 实验数据来源于对磁流变阻尼器(MR damper)进行性能测试,试验获得的数据包括力F,位移x,采用频率已知,速度和加速度可以由位移求导得出。 参数识别出现程序如下:(文件名:Copy_0_of_BoucWen) function j=myfung(x) y0=[0]; yy=y0; tspan=[]'; s=[]'; v=[]'; Ft=[]'; rr=max(size(s));%计算数据个数 i=1; while (i1e5))%%判断是否出现奇异点,具体忘了。。 [t y]=ode45(@uubird,[tspan(i),tspan(i+1)],y0,[],v(i),x);%参考论坛的 y0=y(end,:); yy=[yy;y0]; i=i+1; kk=max(size(y)); if kk>150 %微分方程计算,停止是有条件的(具体没去研究),这边设置150次,不管有没有收敛,都停止,不然整个程序运行的实际太久,你也可以改成其他的,慢慢研究 break; end end if (i==rr)&(~isnan(yy(1,1)))==1%判断是否出现奇异点(就是NAN),如果没有出现,就是正常的 F=x(:,4)*yy(:,1)+x(:,5)*(s-ones(size(s)) *x(:,6))+x(:,7)*v;%x(:,4)代表alpha 5代表k0,6代表s0 7代表c0 位移s就是公式中的x j=sum((F-Ft).*(F-Ft)); i=i+1; else i<(rr-1)%出现奇异点(NAN)

状态空间模型

状态空间模型概述 状态空间模型是动态时域模型,以隐含着的时间为自变量。状态空间模型在经济时间序列分析中的应用正在迅速增加。其中应用较为普遍的状态空间模型是由Akaike提出并由Mehra进一步发展而成的典型相关(canonical correlation)方法。由Aoki等人提出的估计向量值状态空间模型的新方法能得到所谓内部平衡的状态空间模型,只要去掉系统矩阵中的相应元素就可以得到任何低阶近似模型而不必重新估计,而且只要原来的模型是稳定的,则得到的低阶近似模型也是稳定的。 状态空间模型起源于平稳时间序列分析。当用于非平稳时间序列分析时需要将非平稳时间序列分解为随机游走成分(趋势)和弱平稳成分两个部分分别建模。含有随机游走成分的时间序列又称积分时间序列,因为随机游走成分是弱平稳成分的和或积分。当一个向量值积分序列中的某些序列的线性组合变成弱平稳时就称这些序列构成了协调积分(cointegrated)过程。非平稳时间序列的线性组合可能产生平稳时间序列这一思想可以追溯到回归分析,Granger提出的协调积分概念使这一思想得到了科学的论证。Aoki和Cochrane等人的研究表明:很多非平稳多变量时间序列中的随机游走成分比以前人们认为的要小得多,有时甚至完全消失。 协调积分概念的提出具有两方面的意义:

①如果一组非平稳时间序列是协调积分过程,就有可能同时考察他们之间的长期稳定关系和短期关系的变化; ②如果一组非平稳时间序列是协调积分过程,则只要将协调回归误差代入系统状态方程即可纠正系统下一时刻状态的估计值,形成所谓误差纠正模型。 Aoki的向量值状态空间模型在处理积分时间序列时,引入了协调积分概念和与之相关的误差纠正方法,因此向量值状态空间模型也是误差纠正模型。一个向量值时间序列是否为积分序列需判断其是否含有单位根,即状态空间模型的动态矩阵是否含有量值为1的特征值。根据动态矩阵的特征值即可将时间序列分解成两个部分,其中特征值为1的部分(包括接近1的“近积分”部分)表示随机游走趋势,其余为弱平稳部分,两部分分别建模就得到了两步建模法中的趋势模型和周期模型。 状态空间模型的假设条件是动态系统符号马尔科夫特性,即给定系统的现在状态,则系统的将来与其过去独立。 [编辑] 状态空间模型的分类 状态空间模型包括两个模型:一是状态方程模型,反映动态系统在输入变量作用下在某时刻所转移到的状态;二是输出或量

状态空间模型

引言 状态空间模型是应用状态空间分析法对动态系统所建立的一种数学模型,它是应用现代控制理论对系统进行分析和综合的基础。状态空间模型由描述系统的动态特性行为的状态方程和描述系统输出变量与状态变量间变换关系的输出方程组成。 在经典控制理论中,采用n阶微分方程作为对控制系统输入量u(t)和输出量y(t)之间的时域描述,或者在零初始条件下,对n阶微分方程进行Laplace 变换,得到传递函数作为对控制系统的频域描述,“传递函数”建立了系统输入量U(s)=L[u(t)]和输出量Y(s)=L[y(t)]之间的关系。传递函数只能描述系统的外部特性,不能完全反映系统内部的动态特征,并且由于只考虑零初始条件,难以反映系统非零初始条件对系统的影响。 现代控制理论是建立在“状态空间”基础上的控制系统分析和设计理论,它用“状态变量”来刻画系统的内部特征,用“一阶微分方程组”来描述系统的动态特性。系统的状态空间模型描述了系统输入、输出与内部状态之间的关系,揭示了系统内部状态的运动规律,反映了控制系统动态特性的全部信息。 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。 标准四阶龙格——库塔法的基本思想 龙格和库塔提出了一种间接地运用Taylor公式的方法,即利用y(x)在若干个待定点上的函数值和导数值做出线性组合式,选取适当系数使这个组合式进Taylor展开后与y(xi+1)的Taylor展开式有较多的项达到一致,从而得出较高阶的数值公式,这就是龙格—库塔法的基本思想。 一、实验原理 龙格——库塔法 龙格—库塔法是仿真中应用最广泛的方法。它以泰勒展开公式为基础,用函数f的线性组合代替f的高阶导数项,避免了高阶导数的运算,又提高了精度。泰勒公式的阶次取得越高,龙格—库塔法所得的误差等级越低,精度越高。最常用的是四阶龙格—库塔法,它虽然有一定的时间损耗,但比梯形法要快,而且与

实验四 用MATLAB求解状态空间模型

实验四用MATLAB求解状态空间模型 1、实验设备 MATLAB软件 2、实验目的 ①学习线性定常连续系统的状态空间模型求解、掌握MATLAB中关于求解该模型的主要函数; ②通过编程、上机调试,进行求解。 3、实验原理说明 Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有: 初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。 数值计算问题可由基本的Matlab函数完成,符号计算问题则需要用到Matlab 的符号工具箱。 4、实验步骤 ①根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB编程。 ②在MATLAB界面下调试程序,并检查是否运行正确。 习题1:试在Matlab中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。 Matlab程序如下:A=[0 1; -2 -3]; B=[]; C=[]; D=[]; 011 232???? == ???? -- ????x x x

x0=[1; 2]; sys=ss(A,B,C,D); [y,t,x]=initial(sys,x0,0:5); plot(t,x) 习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。并计算该系统的单位阶跃状态响应表达式。 0011232????==????--???? x x x

Matlab程序如下: A=[0 1; -2 -3]; B=[0; 1]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [u t]=gensig('square',3,10, [y,t,x] = lsim(sys,u,t,x0) plot(t,u,t,x);

相关文档