文档库 最新最全的文档下载
当前位置:文档库 › 功率MOSFET的结构与特点

功率MOSFET的结构与特点

致尊敬的顾客

关于产品目录等资料中的旧公司名称

NEC电子公司与株式会社瑞萨科技于2010年4月1日进行业务整合(合并),整合后的新公司暨“瑞萨电子公司”继承两家公司的所有业务。因此,本资料中虽还保留有旧公司名称等标识,但是并不妨碍本资料的有效性,敬请谅解。

瑞萨电子公司网址:https://www.wendangku.net/doc/f010729274.html,

2010年4月1日

瑞萨电子公司

【发行】瑞萨电子公司(https://www.wendangku.net/doc/f010729274.html,)

【业务咨询】https://www.wendangku.net/doc/f010729274.html,/inquiry

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights

of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control

laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas

Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics

does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and

“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular

application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise

expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare

intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have

specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental

compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas

Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

功率MOS FET

结构与特点

瑞萨科技功率MOS FET具有D系列(垂直结构)和S系列(水平结构)。其结构分别如图1和图2所示。两者在特性上稍有差别,但都拥有功率MOS FET在本质上的优良特性,具体内容如下:·无载流子的积累现象,具有优良的频率特性和开关特性。

·无电流集中,破坏耐量大。

·为电压控制器件,驱动功率小。

为了解功率MOS FET的结构及特性,下面介绍一下基本的N沟道MOS FET结构和工作。

N沟道MOS FET的基本结构如图3所示。因为控制电流的栅电极被氧化膜包围,所以该结构称为MOS结构。源极指的是带电粒子(这里为电子)源,漏极指的是电子的排出口。

如果对栅电极施加正电压,栅极正下方的P层就会反转形成沟道,并且漏极电流由漏极流向源极,这就是MOS FET的工作方式(P沟道与之相反)。

如果在漏极/源极之间施加电压,沟道内的电子就向漏极移动,并产生漏极电流。

在栅极电压为0V时,产生漏极电流的FET称为耗尽型(常开型),不产生漏极电流的FET称为增强型(常关型)。瑞萨科技功率MOS FET全部为增强型(常开型)。

将漏极电流产生时的栅极电压称为栅极截止电压V GS(off)(图4)。

通常I DS?V GS为2次相关关系。该曲线的斜度为相互电导gm(=ΔI DS/ΔV GS),表示放大的尺寸。

漏极耐压由图3所示的漏极N+区域和栅电极之间的结构决定。由于漏极N+区域与栅电极的距离很近,中间只隔着很薄的栅极氧化膜,这样会在两者之间产生强电场的集中,因此不能形成较强的漏极电压。普通MOS FET的耐压值为20~30V。

通过扩大该漏极N+区域和栅电极的距离以缓和电场集中,可提高漏极耐压。此时,在漏极N+区域和沟道之间形成电流通路N层。

因此,高耐压MOS FET可理解为在普通MOS FET的漏极端附加了电阻。

功率MOS FET为多个元件在内部并联的结构。

功率MOS FET的结构大致分为两种,一种称为D系列(垂直结构),另一种称为S系列(水平结构)其

结构如图1和图2所示。下面对各系列的结构及特点进行更详细的说明。

·D系列(垂直结构)

在D系列中漏极N+区域位于硅电路板的下方。栅电极覆盖在沟道之间的整个N層上,以缓和栅极下方的电场集中。电子由源极水平穿过沟道到达N层。此时,栅电极的正电压在N层表面形成了N+积累层,电子在通过N+积累层后,垂直穿过整个N层到达漏极。因此,将D系列称为垂直结构,并且外壳为漏极。

由于保持漏极电压的部分(N层)位于硅中,所以,D系列的单个体积比S系列要小,并且,与相同电压、相同芯片尺寸的S系列相比,D系列的通态电阻更小。

静电电容具有如图5所示的结电容和MOS电容。

因为栅极/漏极之间的电容C GD比较大,因此不能忽视C GD对源极接地的输入电容Ciss、输出电容Coss 及反馈电容Crss的影响。

Ciss=C GS+CGD

Coss=C DS+C GD

Crss=C GD

栅电极采用了在CMOS LSI 中具有实际功效的多晶硅。多晶硅的电阻比铝或钼等金属材料高100倍左右,但通过改进多晶硅栅与金属电极的连接后,降低了栅极电阻。在垂直结构中,因为反馈电容Cgd 较大,并且漏极电压的依存性较强,所以不能单纯由栅极电阻的时间常数来决定输入电容。这样,关于开关时间的工作分析变得更为复杂。详细内容记载于《功率MOS FET 使用时的注意事项》。

·S 系列(水平结构)

在S 系列中漏极N +区域位于硅表面。在漏极N +区域与沟道之间设置了N 层,可使电场强度平均。而且,使源电极扩展到了N 层上面,可作为场板来防止栅极附近的电场集中。电子由源极水平穿过沟道及N 层到达漏极。因此,将S 系列称为水平结构。为了使衬底保持一定的电位,将衬底连接到了源电极,外壳为源极。

反馈电容Crss 对应图6

中的Cgd 。由于源极场板扩展到了N 层上,因此可通过场板与N 层的电容Cds 来屏蔽Cgd ,使得反馈电容Crss 的值非常小。

从芯片及封装两方面来看,S 系列的结构适用于输入端与输出端分离的高频产品。

修订记录

修订内容Rev.发行日

页修订处

1.002008.0

2.07—初版发行

? 2008. Renesas Technology Corp., All rights reserved.

? 2008. Renesas Technology Corp., All rights reserved.

相关文档