文档库 最新最全的文档下载
当前位置:文档库 › 用磨角染色法分析PN结深

用磨角染色法分析PN结深

用磨角染色法分析PN结深
用磨角染色法分析PN结深

用磨角染色法分析P-N 结结深实验报告

摘 要

本文介绍了FMALAB 用磨角染色法分析PN 结结深方法的基本原理,通过实验找出影响测量精度的主要

原因,提出改进措施,从而提高了分析的精度。

引 言

结深是注入及扩散工艺中的关键参数之一。我公司因生产和新品开发的需要,经常送样品至外单位进行扩

散层结深分析,这样不但所需费用可观,而且也耗费产品工程师们大量的时间和精力。FMALAB 为了拓宽分析范围,提高分析技术,更好地支持生产一线的工艺监控及新产品开发,利用现有的设备,开展了结深分析研究工作。

一、实验目的:

1. 研究实验室在现有条件下对2um 以下浅结,采用磨角后化学染色显结,再在光学显微镜下

用传递方法测量结深时的重复性和准确性;找出影响实验结果的主要因素。

2 .通过改进实验方法,提高测量精度,使测量结果准确可靠重复性好,能很好地应用于实际分析。

二、实验原理:

将样品粘在一定角度的磨角器上,在抛光机上研磨,获得一个与原表面成小角度的倾斜截面;通过化学染色显露出薄层的边界;在光学显微镜下,测量斜面的长度,通过三角函数换算计算出扩散层的厚度。

如图所示,设染色后测得扩散层斜面长度 为L ,斜面与样品原表面夹角为α,则斜面 与PN 结界面夹角也为α,

Xj=L*SIN α

三、实验圆片:

SC8303 P+注入陪片。注入条件:60kev 3E15 ,按正常工艺退火,中央研究所用滚槽法

1

测得Xj=1.72-1.74um(据以往同Telcom用扩展电阻法分析结果比较,前者测量值平均大0.38um,见附录一.)。

四、实验步骤:

1.选取合适样品,用蜡固定在加热的磨角器上。

2.在BUEHLER ECOMET抛光机上进行机械抛光。

3.配制PN结染色液,采用配方: HF:HNO3=200:1

其中HNO3为氧化剂,作用是使抛光后暴露的SI表面原子被氧化;HF为络合剂,其作用是溶解已生成的SIO2,反应式如下:

SI + HNO3 →SIO2 + NO

SIO2 + HF →H2SIF6 + H2O

4.将研磨好的样品分别在染色液中染色。

五、实验及分析:

1. 实验一同一样品染色时间与结深的关系

制备三个样品,先进行斜面抛光;将每一个样品在腐蚀液中分别染色40sec.、90sec、120sec、150sec后测量Xj,结果如下:

图2.

从图2.看出,同一样品Xj数值由于染色时间过长出现较大偏差,但如果将时间控制在just time 后一定范围(约1MIN)内,对Xj无明显影响。其中原因主要在于染色时间过长将会导致选择腐蚀反应过度,使PN结边界不清,测量困难从而引起误差。

2.实验二、Xj分析的重复性和准确性

在圆片上同一区域取3个邻近样品,抛光后依次染色,分别测量各样品结深。以上过程重复四次,结果如下:

了分析的精密度,即相同条件下N 次重复测定彼此相符合的程度。

从实验二结果可看出:

⑴. 四次测量的平均值分别为1.52、1.86、1.77、1.63um ,与中央所平均测量结果Xj=1.73um

相比,相对误差在-12.1%至+7.51%之间。

⑵. 数据间相对标准偏差在5.56%

至22.7%范围内,波幅较大,说明目前结深测量重复性不理

想。

3影响Xj 测量的主要原因分析

由公式Xj=L*SIN α,抛光后的斜面角度α和染色后的斜面长度L 是影响测量精度的两个主要因素。

Ⅰ. α角对测量精度的影响

抛光机配有三种标准角度的角度块:1.15°、2.87°、5.73°(见图4)。 由于实验室条件限制, 抛光后实际α角无法测量, 我们通常以默认的标准角度值代入公式计算,由此将产生显著的测量

误差。以我们目前常用角度α=5.47°为例,当α=5.47 °时,SINα=0.1,假如实际α=2.87°,则SINα=0.05,但我们计算时,仍将SINα看作0.1,由此引起的误差将使Xj增加一倍。由计算知道,用5.47°磨角器抛光,角度每改变1°将引起SINα值20%的误差。至此,不难理解造成实验结果重复性差的主要原因在于斜面角度α偏离了标准值。

进一步分析,发现造成实验中α角改变的原因主要有以下几点:

⑴磨角器角度块安装的高度如图4所示,该高度控制了磨角器上AB连线与水平面夹角。如果角度块安装得高,则AB线将因A点高B点低而处于倾斜状态,由于抛光时AB线只能处于同一平面上,因此磨角器实际角度必然会变大,从而使样品抛光后α角变大。由图看出,角度块安装得低,α小,反之,则α变大。解决这个问题,应在抛光前进行水平校准,使得角度块固定在让AB处于水平的位置上。

⑵与样品制备过程有关。粘片前在角度块表面涂蜡用于固定样品,蜡涂得太多、粘片不平整等均会引起α角改变。

Ⅱ. 抛光后斜面长度L对测量精度的影响

显然,L是否能准确测量对Xj的影响是举足轻重的。实验室目前采用间接的传递测量法,其过程如下:首先进行定标,将特制的有系列标准线宽的光刻版在显微镜不同放大倍数下拍照,然后用直尺在照片上测量线宽,由此得到照片的实际放大倍数值。以后测量未知样品时,同样先在Leica 上拍照,测出照片上的线宽,再除相应的放大倍数及角度换算因子,即可算出实际的结深。由于直

尺的测量精度低,且最小刻度为1mm。忽略直尺本身的测量误差,由计算可得出该方法理论上可分辨的最小线宽如下:

实际操作中由于照片上PN结边界不易确定以及读取测量值存在人为误差将使测量准确性进一步下降。由于我们目前的结深大都在2um以下,因此由于直尺所引入的测量误差不可忽视。

4.改进措施:

针对实验二Xj分析重复性差的问题,我们尝试了以下改进措施:

⑴改进样品制备时的操作,固定样品时尽量用少量的蜡,并使样品平行于角度块斜面。

⑵抛光前先进行水平校准。当带有角度块的样品夹具固定到磨角器底座上后,将磨角器置于一水平面上,旋松角度块固定螺钉,上下调节其高度,使得角度块固定在A、B线处于同一水平的位置上。

5.实验三改进后的重复性实验

同实验二,仍在圆片上同一区域取3个邻近样品,采用以上改进措施,对样品进行抛光后依次染色,分别测量各样品结深。以上过程重复四次,结果如下:

回溯法论文-回溯法的分析与应用

沈阳理工大学算法实践与创新论文

摘要 对于计算机科学来说,算法的概念是至关重要的,算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。为了更加的了解算法,本篇论文中,我们先研究一个算法---回溯法。 回溯法是一种常用的重要的基本设计方法。它的基本做法是在可能的范围之内搜索,适于解一些组合数相当大的问题。圆排列描述的是在给定n个大小不等的圆 C1,C2,…,Cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。图着色问题用数学定义就是给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的 K值。符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。 在本篇论文中,我们将运用回溯法来解决着图的着色问题,符号三角形问题,图排列问题,将此三个问题进行深入的探讨。 关键词: 回溯法图的着色问题符号三角形问题图排列问 题

目录 第1章引言 (1) 第2章回溯法的背景 (2) 第3章图的着色问题 (4) 3.1 问题描述 (4) 3.2 四色猜想 (4) 3.3 算法设计 (5) 3.4 源代码 (6) 3.5 运行结果图 (10) 第4章符号三角形问题 (11) 4.1 问题描述 (11) 4.2 算法设计 (11) 4.3 源代码 (12) 4.4 运行结果图 (16) 第5章圆的排列问题 (17) 5.1 问题描述 (17) 5.2 问题分析 (17) 5.3 源代码 (18) 5.4 运行结果图 (22) 结论 (23) 参考文献 (24)

实验二+细菌的简单染色和革兰氏染色及其形态观察

实验二细菌的简单染色和革兰氏染色及其形态观察 1. 目的要求 (1)学习细菌涂片、染色的基本技术及无菌操作技术。 (2)掌握细菌的简单染色法,初步认识细菌的形态特征。 (3)了解革兰氏染色的原理,学习并掌握革兰氏染色的方法。 2. 基本原理 (1)简单染色法 用单一染料进行细菌染色,操作简便,适于菌体一般形状和细菌排列的观 察。 常用碱性染料进行简单染色,这是因为:在中性、碱性或弱碱性溶液中,细 菌细胞通常带负电荷,而碱性染料在电离时,其分子的染色部分带正电荷(酸性染料电离时,其分子的染色部分带正电荷),因此碱性染料的染色部分很容易与细菌结合使细菌着色,经染色后的细菌细胞与背景形成鲜明的对比,在显微镜下易于识别。常用作简单染色的染料有:美蓝、结晶紫、碱性复红等。 (2)革兰氏染色法 革兰氏染色反应是细菌分类和鉴定的重要性状。它是1884年由丹麦医师Gram创立的。革兰氏染色法不仅能观察到细菌的形态而且还可将所有细菌区分为 两大类:染色反应呈蓝紫色的称为革兰氏阳性细菌,用G+表示;染色反应呈红色(复染颜色)的称为革兰氏阴性细菌,用G-表示。细菌对于革兰氏染色的不同反应,是由于它们细胞壁的成分和结构不同而造成的。革兰氏阳性细菌的细胞壁主要是由肽聚糖形成的网状结构组成的,在染色过程中,当用乙醇处理时,由于脱水而引起网状结构中的孔径变小,通透性降低,使结晶紫-碘复合物被保留在细胞内而不易脱色,因此,呈现蓝紫色;革兰氏阴性细菌的细胞壁中肽聚糖含量低,而脂类

物质含量高,当用乙醇处理时,脂类物质溶解,细胞壁的通透性增加,使结晶紫-碘复合物易被乙醇抽出而脱色,然后又被染上了复染液(番红)的颜色,因此呈现 红色。 革兰氏染色需用四种不同的溶液:碱性染料初染液;媒染剂;脱色剂和复染液。碱性染料初染液的作用象在细菌的单染色法基本原理中所述的那样,而用于革 兰氏染色的初染液一般是结晶紫。媒染剂的作用是增加染料和细胞之间的亲和性或 附着力,即以某种方式帮助染料固定在细胞上,使不易脱落,碘是常用的媒染剂。 脱色剂是将被染色的细胞进行脱色,不同类型的细胞脱色反应不同,有的能被脱 色,有的则不能,脱色剂常用95%的酒精。复染液也是一种碱性染料,其颜色不 同于初染液,复染的目的是使被脱色的细胞染上不同于初染液的颜色,而未被脱色 的细胞仍然保持初染的颜色,从而将细胞区分成G+和G-两大类群,常用的复染液是番红。 3. 材料及器材 (1) 大肠杆菌,枯草芽孢杆菌 (2) 革兰氏染色液,载玻片,显微镜等 4. 方法与步骤 Ⅰ涂片取两块载玻片,各滴一小滴蒸馏水于玻片中央,用接种环以无菌 操作分别从培养14~16h的枯草芽孢杆菌和培养24h的大肠杆菌的斜面上挑取少量菌苔于水滴中,混匀并涂成薄膜。 载玻片要洁净无油迹;滴蒸馏水和取菌不宜过多;涂片要均匀,不宜过厚。 Ⅱ干燥室温自然干燥。 Ⅲ固定固定时通过火焰2~3次即可。此过程称热固定,其目的是使细胞质凝固,以固定细胞形态,并使之牢固附着在载玻片上。

玻璃体切割手术护理常规

玻璃体切割手术护理常规 玻璃体手术是20世纪70年代初发展起来的高水准现代显微眼科手术,它的出现被认为是眼科治疗史的一大革命,打破很多以前不能治疗的手术禁区,给无数眼疾患者带去了光明。在发达国家的眼科治疗中心,玻璃体手术仅次于白内障摘除人工晶体植入术,成为第二位主要的眼科手术。 一、手术前护理 1、术前检查 (1)详细询问病史,了解心肝肺等重要脏器的功能; (2)检查角膜及晶体的透明度; (3)观察虹膜及瞳孔情况; (4)散瞳三面镜及直接的间接检眼镜详细检查; (5)检查视力、光定辨色力、ERG(视网膜电流图)、VEP(视觉诱发电位)检查; (6)眼部超声检查; (7)评估患者能否耐受手术,是否要全身麻醉等。 2、体位训练:为了适应术后卧位的要求,术前1天护士给患者示范术后常用的各种卧位。如俯卧位、头低位等。术后体位控制是成功的关键

3、心理护理许多玻璃体切割术的患者思想负担很重,担心预后,故在术前做好患者的心理护理是保证手术顺利进行的一个重要环节。首选要建立良好的护患关系,根据患者的心理变化,有目的地同患者进行交谈,认真介绍相关疾病知识,使患者对自己的病情有全面的了解;其次要掌握患者的心理特点,给予说服解释,想方设法解除患者的紧张、恐惧及忧虑心理,同时做好患者家属工作,使医、护、患及家属密切配合,共同战胜疾病。 二、术后护理 1、注入硅油或C3F8的患者需俯卧位,观察IOP变化,IOP升高必须对症治疗;注入硅油的患者俯卧位3个月,第1个月全天俯卧,第2个月每天保持8h,第3个月每天保持6h;C3F8填充的患者,气体量少于25%则停止俯卧位;填充无菌空气的患者,俯卧位1天。 2、常规抗生素眼药水点眼,庆大霉素、地塞米松结膜下注射7天,充分散瞳1个月,IOP(眼内压)高者可不散瞳,每日查IOP眼底,每周查1次B超,每个月查1次UBM超声生物显微镜检查)及眼底彩像情况。 3、加强生活护理玻璃体切割手术时间长,术后返回病房后,应加强生活护理,加强巡视,避免患者离床时碰撞术眼。术后取坐位的患者应注意保暖,同时调节室内光线强度,避免噪音。为患者创造一个良好舒适安静的环境。

算法设计与分析复习题目及答案(1)

分治法1、二分搜索算法是利用(分治策略)实现的算法。 9. 实现循环赛日程表利用的算法是(分治策略) 27、Strassen矩阵乘法是利用(分治策略)实现的算法。 34.实现合并排序利用的算法是(分治策略)。 实现大整数的乘法是利用的算法(分治策略)。 17.实现棋盘覆盖算法利用的算法是(分治法)。 29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。 不可以使用分治法求解的是(0/1背包问题)。 动态规划 下列不是动态规划算法基本步骤的是(构造最优解) 下列是动态规划算法基本要素的是(子问题重叠性质)。 下列算法中通常以自底向上的方式求解最优解的是(动态规划法) 备忘录方法是那种算法的变形。(动态规划法) 最长公共子序列算法利用的算法是(动态规划法)。 矩阵连乘问题的算法可由(动态规划算法B)设计实现。 实现最大子段和利用的算法是(动态规划法)。 贪心算法 能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题, 不能解决的问题:N皇后问题,0/1背包问题 是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。 回溯法 回溯法解旅行售货员问题时的解空间树是(排列树)。 剪枝函数是回溯法中为避免无效搜索采取的策略 回溯法的效率不依赖于下列哪些因素(确定解空间的时间) 分支限界法 最大效益优先是(分支界限法)的一搜索方式。 分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。 分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆) 优先队列式分支限界法选取扩展结点的原则是(结点的优先级) 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).

玻璃体切割术治疗眼外伤的效果观察

玻璃体切割术治疗眼外伤的效果观察 发表时间:2018-07-30T14:11:31.207Z 来源:《航空军医》2018年9期作者:首盛发 [导读] 对眼外伤患者采用玻璃体切割术治疗,效果确切,值得临床上推广应用。 (炎陵县人民医院湖南株洲 412500) 摘要:目的观察探讨对眼外伤进行玻璃体切割术治疗的效果。方法选取我科室2017年5月—2017年10月期间所收治的118例眼外伤患者为临床研究对象,采用随机的方法分成观察组和对照组,观察组和对照组各59例,观察组采用玻璃体切割术治疗,常规组采用常规治疗,对比分析两组治疗后的临床效果。结果对照组采用常规治疗后的临床有效率明显低于观察组,两组数据对比差异明显,差异具有统计学意义,P﹤0.05。结论对眼外伤患者采用玻璃体切割术治疗,效果确切,值得临床上推广应用。 关键词:玻璃体切割术;眼外伤;治疗效果 眼外伤是由于化学性、机械性、物理性等因素对人眼部直接作用,人眼的功能和结构受到损害导致各种病理性变化发生。作为致盲的主要原因眼外伤近年来的发病率逐渐增加,患者的视功能和眼解剖受到很大影响,通过实施玻璃体切割手术对眼外伤治疗的效果显著,患者的视功能恢复和预后良好,现在选取我科室收治的眼外伤患者,对其眼外伤采用玻璃体切割术治疗后的临床有效率进行分析观察,并将结果报告如下。 1资料和方法 1.1一般资料 取我院2017年5月—2017年10月期间所收治的118例眼外伤患者为临床研究对象,所有患者均符合眼外伤的诊断标准,按照随机的方式分为观察组和对照组,观察组与对照组各59例。118例患者中接受玻璃体切割术治疗的59例为观察组;年龄范围为23—53岁,平均年龄(38.5±1.3)岁;接受常规治疗的59例为对照组;年龄范围为21—54岁,平均年龄(39.7±1.2)岁;两组患者的一般资料可以进行比较,P>0.05,无显著差异,无统计学意义,可作下一步研究。另外,本次研究的所有研究对象都签署了知情同意书,皆为主动参与。 1.2方法 对照组患者采用常规治疗方法,观察组患者采用玻璃体切割术进行治疗,具体措施有:手术前对患者的散瞳、结膜囊进行常规清洁,对结膜囊冲洗,铺无菌巾、消毒,将0.75%布比卡因和2%利多卡因取相同剂量混合行球周麻醉,开眼睑,缝合外伤伤口,缝合角巩膜、巩膜、角膜伤口[1]。按标准经睫状体扁平部三通道玻璃体切割术入路,对混浊晶体先行切除,将中央玻璃体积脓积血切除,制作玻璃体后脱离,切除后局部玻璃体,顶压下基底部玻璃体切除;对于眼球内有异物者,先确定异物位置,如果异物在玻璃体腔中没有损伤视网膜,可以将异物用镊子夹取出来,如果是感磁性异物可用医用电磁铁吸出[2]。如果视网膜上有异物嵌顿或视网膜受到损伤,再反弹到玻璃体腔中,可先将视网膜裂孔使用眼内激光光凝封闭,再将异物用眼内异物镊子取出或是用电磁铁将磁性异物吸出,根据实际情况对异物开口进行适当扩大。取出异物后将扩大的取异物开口缝合,之后行标准的玻璃体切割术[3]。 1.3观察指标 对两组患者的临床治疗效果进行统计比较。治愈:患者手术后视力恢复≥0.3,玻璃体透明,三个月没有视网膜脱落现象;好转:患者玻璃体透明,视网膜的解剖复位,眼球得到了成功的重建,但是视力方面没有达到标准;无效:患者手术手术后的视力没有得到改善并且进一步变差,视网膜再次脱离,玻璃体再次出血。 1.4统计学处理 文章数据用SPSS22.0软件处理,以χ2检验,若P<0.05,则有统计学意义。 2结果 见表1。结果显示,观察组经过玻璃体切割术治疗的临床效果明显高于对照组,P﹤0.05。 3讨论 玻璃体是一种眼睛内半固体胶状的物质,在玻璃体腔内填充。玻璃体在正常情况下透光性良好,脉络膜和视网膜相贴[4]。如果玻璃体发生病变,病情轻的患者看东西时会觉得有蚊虫在眼前飞舞,病情严重的患者光线可完全遮挡而失明,还有可能使周围组织发生病变,例如视网膜脱落等,导致整个眼球损毁。玻璃体切割术源于对玻璃体视网膜牵拉进行切除或将混浊的玻璃体进行切除为基础,使视网膜复位得以促进,屈光间质恢复透明,通过对玻璃体视网膜疾病进行治疗使患者视功能恢复。玻璃体切割术能够将玻璃体增生、浑浊屈光间质以及机化条索一次性切除,使患者因为受伤后并发症引发新的眼组织理化损伤得以避免或减少,同时将眼内炎等疾病的发生风险大大降低,使眼外伤患者视功能的恢复得到有力促进。目前临床上上对严重复杂的眼外伤治疗的重要术式就是玻璃体切割术[5]。 眼内炎大多是由于眼球穿孔导致引发感染,眼组织受到损害,一旦没有得到及时的治疗或是治疗不当,短时间内就可导致全眼球炎发生,患者的视功能降低以至于眼球萎缩。因此眼内炎一旦确诊后,必须立刻采用玻璃体注射抗生素联合玻璃体切割术对患者进行治疗,细菌毒性产物和眼内炎症组织能够有效摘除,屈光间质的清晰度能够得以确保,眼内致病菌的含量大大降低,药物可以大范围扩散同时炎症的蔓延得以抑制,治疗效果显著;眼内有异物的患者,采用传统摘除术即利用巩膜手术摘除,引发的并发症比较多且手术成功率不高,眼外伤患者需要接受分次手术,对视功能很容易造成进一步的损害。而玻璃体切割术可以将异物在直视状态下摘除,不会对眼组织造成很大

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

回溯法实验(最大团问题)

算法分析与设计实验报告第七次附加实验

} } 测试结果 当输入图如下时: 当输入图如下时: 1 2 3 4 5 1 2 3 4 5

当输入图如下时: 1 2 3 4 5

附录: 完整代码(回溯法) //最大团问题回溯法求解 #include using namespace std; class Clique { friend void MaxClique(int **,int *,int ); private: void Backtrack(int i); int **a; //图的邻接矩阵 int n; //图的顶点数 int *x; //当前解 int *bestx; //当前最优解 int cn; //当前顶点数 int bestn; //当前最大顶点数 }; void Clique::Backtrack(int i) { //计算最大团 if(i>n) //到达叶子节点 { for(int j=1;j<=n;j++) bestx[j]=x[j]; bestn=cn;

cout<<"最大团:("; for(int i=1;i=bestn) { //修改一下上界函数的条件,可以得到 x[i]=0; //相同点数时的解 Backtrack(i+1); } } void MaxClique(int **a,int *v,int n) { //初始化Y Clique Y; Y.x=new int[n+1]; Y.a=a; Y.n=n; https://www.wendangku.net/doc/f710853580.html,=0; Y.bestn=0; Y.bestx=v; Y.Backtrack(1); delete [] Y.x; cout<<"最大团的顶点数:"<

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目回溯算法 实验评分表

实验报告 一、实验目的与要求 1、理解回溯算法的基本思想; 2、掌握回溯算法求解问题的基本步骤; 3、了解回溯算法效率的分析方法。 二、实验内容 【实验内容】 最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。 【回溯法解题步骤】 1、确定该问题的解向量及解空间树; 2、对解空间树进行深度优先搜索; 3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。 4、达到叶结点时记录下当前最优解。 5、实验数据n,m, ] ][ [j i w,] ][ [j i c的值由自己假设。 三、算法思想和实现【实现代码】

【实验数据】 假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。总价不超过7(c<=7)。 部件重量表: 部件价格表: 【运行结果】

实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。 四、问题与讨论 影响回溯法效率的因素有哪些? 答:影响回溯法效率的因素主要有以下这五点: 1、产生x[k]的时间; 2、满足显约束得x[k]值的个数; 3、计算约束函数constraint的时间; 4、计算上界函数bound的时间; 5、满足约束函数和上界函数约束的所有x[k]的个数。 五、总结 这次实验的内容都很有代表性,通过上机操作实践与对问题的思考,让我更深层地领悟到了回溯算法的思想。 回溯算法的基本思路并不难理解,简单来说就是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。回溯法的基本做法是深度优先搜索,是一种组织得井井

微生物的革兰氏染色实验报告

微生物的革兰氏染色 一、实验目的: 1、学习并初步掌握革兰氏染色法; 2、了解革兰氏染色的原理; 3、巩固显微镜的使用。 二、实验原理: 革兰氏染色是细菌学中最重要的鉴别染色法。染色步骤分为四个部分: 1、初染:加入碱性染料结晶紫固定细菌图片; 2、媒染:加入碘液,碘与结晶紫形成一种不溶于水的复合物; 3、脱色:利用有机溶剂乙醇或丙酮进行脱色; 4、复染:复红配成碳酸复红作为复染剂。 成分占细胞壁干重的% 革兰氏阳性细菌革兰氏阴性细菌肽聚糖含量很高(50~90)含量很低(~10) 磷壁酸含量较高(<50)无 类脂质一般无(<2)含量较高(~20) 蛋白质无含量较高G-和G+细胞壁的比较: 1、阳性(G+)菌细胞壁特点:细胞壁厚,只有一层,主要由肽聚糖构成,肽聚糖含量高,结构紧密,脂类含量低。当乙醇脱色时,细胞壁肽聚糖层孔径变小,通透性降低,结晶紫和碘的复合物被保留在细胞壁内,复染后仍显紫色(如芽孢杆菌)。 2、阴性(G-)菌细胞壁特点:细胞壁薄,由两层构成,内壁层和外壁层,细胞壁中脂类中脂类物质含量较高,肽聚糖含量较低,网状结构交联程度低,乙醇脱色时溶解了脂类物质,通透性增强,结晶紫与碘的复合物易被乙醇抽提出来,因此,革兰氏阴性菌细胞被脱色,当复染时,脱掉紫色的细胞的细胞壁又着上红色(例如大肠杆菌)。 三、实验步骤: 1、取一个载玻片,将其洗净并沿一个方向擦拭干净,直至液体不再其上收缩为止;将接种环整平,用灼烧过的接种环在混匀的菌种中取菌,按常规方法图片,应涂大,不宜过厚。 2、将涂片用火焰固定,不宜烤得太狠,否则菌种呈假阳性。 3、滴加1滴结晶紫染液,染色1min,水洗。 4、滴加革兰氏碘液,作用1min,水洗 5、滴加脱色乙醇,脱色30~40s,不宜脱色太狠,否则菌种呈假阴性。 6、水洗,滴加番红复染液,复染1min,水洗,晾干 7、镜检并拍照。 四、注意事项: 1、选用活跃生长期菌种染色,老龄的革兰氏阳性细菌会被染成红色而造成假阴性。 2、涂片不宜过厚,以免脱色不完全造成假阳性。 3、脱色是革兰氏染色是否成功的关键,脱色不够造成假阳性,脱色过度造成假阴性。实验结果与讨论: 1、结果: 高倍镜下观察的菌体图像:

细菌放线菌的观察与革兰氏染色实验报告

实验一:细菌、放线菌的形态 观察与革兰氏染色 姓名:陈虹邑 学号:200911233012 系别:生物科学与生物技术 班级:周二第一组 试验日期:2011年9月13日 同组成员:邢悦婷呼波

一、实验目的及意义 1、巩固油镜的使用; 2、掌握细菌形态观察的基本方法; 3、了解细菌的基本形态和结构。 4、了解革兰氏染色的原理; 5、初步掌握细菌涂片的方法; 6、掌握革兰氏染色的方法; 7、掌握放线菌的涂片方法; 8、观察基内菌丝、气生菌丝和孢子丝。 二、实验材料与方法 【实验材料】 菌种:溶血链球菌(Strptococcus haemolyticus),螺菌(Spirillum sp.) ,巨大芽孢杆菌(Bacillus megaterium), 苏云金芽孢杆菌(Bacillus thuringiensis), 普通变形菌(Proteus vulgaris), 丙酮丁酸梭菌(Clostridium acetotylicum), 褐球固氮菌(Azotobacter chroococcum)等细菌永久装片,放线菌5406,金黄色葡萄球菌 (staphulococcus aureus),大肠杆菌(E. coli) 试剂:香柏油、无菌水、结晶紫、番红或沙黄、95%酒精、碘液 仪器及用具:显微镜、擦镜纸、吸水纸、小滴管,接种环、载玻片、盖玻片、酒精灯 【实验方法】 细菌的观察 1、在载玻片上滴一小滴水,用接种环,采用无菌操作,将细菌挑起,涂到载玻片 上,盖上盖玻片。 2、用显微镜对细菌进行活体观察。观察时先用低倍镜,再用高倍镜,有必要的话, 再用油镜观察。 3、观察细菌的永久装片,观察时先用低倍镜,再用高倍镜,有必要的话,再用油 镜观察,找到细菌的各种结构。

算法设计与分析复习题目及答案doc

分治法 1、二分搜索算法是利用(分治策略)实现的算法。 9. 实现循环赛日程表利用的算法是(分治策略) 27、Strassen矩阵乘法是利用(分治策略)实现的算法。 34.实现合并排序利用的算法是(分治策略)。 实现大整数的乘法是利用的算法(分治策略)。 17.实现棋盘覆盖算法利用的算法是(分治法)。 29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。 不可以使用分治法求解的是(0/1背包问题)。 动态规划 下列不是动态规划算法基本步骤的是(构造最优解) 下列是动态规划算法基本要素的是(子问题重叠性质)。 下列算法中通常以自底向上的方式求解最优解的是(动态规划法) 备忘录方法是那种算法的变形。(动态规划法) 最长公共子序列算法利用的算法是(动态规划法)。 矩阵连乘问题的算法可由(动态规划算法B)设计实现。 实现最大子段和利用的算法是(动态规划法)。 贪心算法 能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题, 不能解决的问题:N皇后问题,0/1背包问题 是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。 回溯法 回溯法解旅行售货员问题时的解空间树是(排列树)。 剪枝函数是回溯法中为避免无效搜索采取的策略 回溯法的效率不依赖于下列哪些因素(确定解空间的时间)

分支限界法 最大效益优先是(分支界限法)的一搜索方式。 分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。 分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆) 优先队列式分支限界法选取扩展结点的原则是(结点的优先级) 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法 ). 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法 )之外都是最常见的方式. (1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。 (2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。 (最优子结构性质)是贪心算法与动态规划算法的共同点。 贪心算法与动态规划算法的主要区别是(贪心选择性质)。 回溯算法和分支限界法的问题的解空间树不会是( 无序树 ). 14.哈弗曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 21、下面关于NP问题说法正确的是(B ) A NP问题都是不可能解决的问题 B P类问题包含在NP类问题中 C NP完全问题是P类问题的子集 D NP类问题包含在P类问题中 40、背包问题的贪心算法所需的计算时间为( B )

微生实验报告 2012.10.10 实验一 细菌的简单染色和革兰氏染色

微生实验报告 姓名: xx 专业年级:2011级生物技术 学号:1032 实验二细菌的简单染色和革兰氏染色 一、实验目的 学习细菌的简单染色法和革兰氏染色法的实验原理和实验操作。 二、实验原理 用于生物染色的染料主要有碱性染料、酸性染料和中性染料三大类。碱性染料的离子带正电荷,能和带负电荷的物质结合。因细菌蛋白质等电点较低,当它生长于中性、碱性或弱酸性的溶液中时常带负电荷,所以通常采用碱性染料(如美蓝、结晶紫、碱性复红或孔雀绿等)使其着色。酸性染料的离子带负电何,能与带正电荷的物质结合。当细菌分解糖类产酸使培养基pH值下降时,细菌所带正电荷增加,因此易被伊红、酸性复红、或刚果红等酸性染料着色。中性染料是前两者的结合物,又称复合染料,如伊红美蓝、伊红天青等。 简单染色法是只用一种染料使细菌着色以显示其形态的方法,简单染色一般难于辨别细菌细胞的构造。 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)两大类,是细菌学上最常用的鉴别染色法。该染色法之所以能将细菌分为G+菌和G—菌,是由这两类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多的易被乙醇溶解的类脂质,增加了细胞壁的通透性,使处染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经番红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔

径缩小,通透性降低,草酸铵结晶紫与碘的复合物不易被脱掉,因此细菌仍保留处染时的紫色。 三、实验器材 1、菌种: 金色葡萄球菌、枯草芽孢杆菌、大肠杆菌。 2、染色剂和试剂: 草酸铵结晶紫染液,卢哥氏碘液,95%酒精,番红复染液,复红染液,吕氏美蓝染液,显微镜擦拭液(乙醚: 乙醇=7:3),xx柏油。 3、器材: 废液缸,洗瓶,载玻片,接种环,酒精灯,擦镜纸,双层瓶,显微镜。 四、实验方法 (一)简单染色 1.涂片: 取干净载玻片一片,在载玻片的左右各加一滴生理盐水,按无菌操作法取菌涂片,左边涂金黄色葡萄球菌,右边涂大肠杆菌,做成浓菌悬液。再取干净载玻片一块将刚制成的金黄色葡萄球菌浓菌悬液挑1~2环涂在左边制成薄的涂片,将大肠杆菌的浓菌悬液取1~2环涂在右边制成薄涂片。亦可直接在载玻片上制薄的涂片,注意取菌不要太多。 2.晾干: 让涂片自然晾干。 3.固定:

最新《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末复习题 一、选择题 1.算法必须具备输入、输出和( D )等4个特性。 A.可行性和安全性 B.确定性和易读性 C.有穷性和安全性 D.有穷性和确定性 2.算法分析中,记号O表示( B ),记号Ω表示( A ) A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。在某台计算机上实现并 完成概算法的时间为t秒。现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^x A.n+8 B.n+6 C.n+7 D.n+5 4.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1, T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。 A.O(logN) B.O(N) C.O(NlogN) D.O(N2logN) 5.直接或间接调用自身的算法称为( B )。 A.贪心算法 B.递归算法 C.迭代算法 D.回溯法 6.Fibonacci数列中,第4个和第11个数分别是( D )。 A.5,89 B.3,89 C.5,144 D.3,144 7.在有8个顶点的凸多边形的三角剖分中,恰有( B )。 A.6条弦和7个三角形 B.5条弦和6个三角形 C.6条弦和6个三角形 D.5条弦和5个三角形 8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。 A.重叠子问题 B.最优子结构性质 C.贪心选择性质 D.定义最优解 9.下列哪个问题不用贪心法求解( C )。 A.哈夫曼编码问题 B.单源最短路径问题 C.最大团问题 D.最小生成树问题 10.下列算法中通常以自底向上的方式求解最优解的是( B )。 A.备忘录法 B.动态规划法 C.贪心法 D.回溯法 11.下列算法中不能解决0/1背包问题的是( A )。 A.贪心法 B.动态规划 C.回溯法 D.分支限界法 12.下列哪个问题可以用贪心算法求解( D )。

用回溯法求解图的m着色问题

实验二用回溯法求解图的m着色问题 一、实验目的 1 2、使用回溯法编程求解图的m着色问题。 二、实验原理 回溯法是一个既带有系统性又带有跳跃性的的搜索算法。回溯法在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任何一个结点时,总是先判断该结点是否肯定不包含问题的解,如果肯定不包含,则跳过对以该结点为根的子树搜索。否则,进入该子树,继续按深度优先的策略进行搜索。 回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可结束。 回溯法从开始结点(根结点)出发,以深度优先搜索的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。 三、问题描述 给定一个无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。若一个图最少需要m种颜色才能使图中任何一条边连接的2个顶点着有不同的颜色,则称这个数m为该图的色数。求一个图的色数m的问题称为图的m可着色优化问题。设计一个算法,找出用m种颜色对一个图进行着色的不同方案。 四、算法设计与分析 用邻接矩阵a来表示一个无向连通图G=(V,E)。用整数1,2,…,m来表示m种不同的颜色。x[i]表示顶点i所着的颜色来,则问题的解向量可以表示为n元组x[1:n]。问题的解空间可表示一棵高度为n+1的完全m叉树。解空间树的第i层中每一结点都有m个儿子,每个儿子相应于x[i]的m个可能的着色之一,第n+1层结点均为叶结点。 在回溯算法Backtrack中,当i>n时,表示算法已搜索至一个叶结点,得到一个新的m着色方案,因此当前已找到的可m着色方案数sum增1。当i≤n时,当前扩展结点Z是解空间树中的一个内部结点。该结点有x[i]=1,2,…,m。对当前扩展结点Z的每一个儿子结点,由函数Ok检查其可行性,并以深度优先的方式递归地对可行子树进行搜索,或剪去不可行子树。 五、实验结果 源程序: #include using namespace std;

试验二普通光学显微镜的使用及细菌的简单染色和革兰氏染色

实验二普通光学显微镜的使用及细菌的简单染色和革兰氏染色普通光学显微镜的使用 一、实验目的 以染色玻片及活菌为例,熟练掌握显微镜油镜的使用方法。 二、显微镜油镜使用的原理 1 普通光学显微镜的基本构造 (1)光学部分: 接目镜、接物镜、照明装置(聚光镜、虹彩光圈、反光镜等)。它使检视物放大, 造成物象。(2)机械部分: 镜座、镜臂、镜筒、物镜转换器、载物台、载物台转移器、粗调节器、细调节器等部件。它起着支持、调节、固定等作用。2 显微镜的放大倍数和分辨率(1)放大倍数=接物镜放大倍数×接目镜放大倍数 (2)显微镜的分辨率:表示显微镜辨析物体(两端)两点之间距离的能力,可用公式表示为: D=λ/2n·sin(α/2 ) 式中D:物镜分辨出物体两点间的最短距离。 λ:可见光的波长(平均0.55μm) n: 物镜和被检标本间介质的折射率。 a:镜口角(即入射角)。3 油镜使用的原理 油镜,即油浸接物镜。当光线由反光镜通过玻片与镜头之间的空气时,由于空气与玻片的密度不同,使光线受到曲折,发生散射,降低了视野的照明度。若中间的介质是一层油(其折射率与玻片的相近),则几乎不发生折射,增加了视野的进光量,从而使物象更加清晰。 三、实验材料 1 显微镜、香柏油、二甲苯、擦镜纸、吸水纸、盖玻片、接种环、酒精灯等。 2 细菌三种形态的玻片染色标本。 3 培养12-18h的枯草芽孢杆菌。四、实验方法与步骤 1 染色细菌玻片的油镜观查 (1)用前检查:零件是否齐全,镜头是否清洁。 (2)调节光亮度。 (3)低倍镜观察:先粗调再微调至物象清晰。

(4)转入中倍、高倍观察,每一不只需调微调旋纽即可看到清晰的物象。 (5)油镜观察:高倍镜下找到清晰的物象后,旋转转换器,在标本中央滴一滴香柏油,使油镜镜头浸入香柏油中,细调至看清物象为止。 (6)绘出所观察到的细菌形态图像。 (7)、换片:另换新片观察,必须从(3)步开始操作。 (8)、用后复原:观察完毕,上悬镜筒,先用擦镜纸擦去油镜头上的香柏油,然后再用擦镜纸沾取少量二甲苯擦去残留的油,最后用擦镜纸擦去残留的二甲苯,后将镜体全部复原。 2 活菌制片观察 取一张干净的载玻片,在其中央滴上一滴干净的蒸馏水,取培养12-18h的枯草芽孢杆菌一小环,在水滴上反复涂抹至菌体充分分散,盖上盖玻片,用吸水纸吸去多余的水分,按照油镜的使用步骤,观察草芽孢杆菌形态,边观察边绘图。 五、实验报告 油镜使用的原理 六、思考题 1 油镜与普通物镜在使用方法上有何不同?应特别注意些什么? 2 使用油镜时,为什么必须用镜头油? 3 镜检标本时,为什么先用低倍镜观察,而不是直接用高倍镜或油镜观察? 七、实验注意事项 1 不准擅自拆卸显微镜的任何部件,以免损坏。 2 镜面只能用擦镜纸擦,不能用手指或粗布,以保证光洁度。 3 观察标本时,必须依次用低、中、高倍镜,最后用油镜。当目视接目镜时,特别在使用油镜时,切不可使用粗调节器,以免压碎玻片或损伤镜面。 4 观察时,两眼睁开,养成两眼能够轮换观察的习惯,以免眼睛疲劳,并且能够在左眼观察时,右眼注视绘图。 5 拿显微镜时,一定要右手拿镜臂,左手托镜座,不可单手拿,更不可倾斜拿。 6 显微镜应存放在阴凉干燥处,以免镜片滋生霉菌而腐蚀镜片。 细菌的简单染色和革兰氏染色 一、实验目的 1 学习微生物涂片、染色的基本技术,掌握细菌的简单染色方法及革兰氏染色。 2 了解革兰氏染色法的原理及其在细菌分类鉴定中的重要性。 二、实验原理 1 简单染色的原理

实验二 革兰氏染色法

实验二革兰氏染色法 【实验目的】 1.学习并初步掌握革兰氏染色法。 2.了解革兰氏染色法的原理及其在细菌分类鉴定中的重要性。 3.巩固显微镜油镜的使用方法。 【实验仪器、材料】 1.菌种:大肠杆菌,金黄色葡萄球菌菌液。 2.染色剂:革兰氏染色试剂盒(结晶紫染色液、碘液、脱色液(95%乙醇)、复红染液)。 3.仪器及其他物品: 显微镜、香柏油、无水乙醇、载玻片、擦镜纸、滤纸、酒精灯、试管架、废液缸、记号笔、接种环、镊子、打火机等。 【实验内容】 革兰氏染色法 一、染色标本制备 1.涂片取一张洁净的载玻片,滴加少许生理盐水,用无菌操作方法从试管中沾取菌液一环,与生理盐水研磨均匀,做一薄而均匀、直径约1cm的菌膜。涂菌后将接种环火焰灭菌。(事先在载玻片的反面滴加菌液的相应位置做好标记) 2.干燥于空气中自然干燥。亦可把玻片置于火焰上部略加温加速干燥。(温度不宜过高) 3.固定目的是杀死细菌并使细菌粘附在玻片上,便于染料着色,常

用加热法,即将细菌涂片膜向上,通过火焰3次,以热而不烫为宜,防止菌体烧焦、变形。此制片可用于染色。 二、染色 l.初染滴加结晶紫覆盖菌膜,染lmin,自来水缓缓冲洗,甩去积水。 2.媒染滴加卢氏碘液,染lmin,水洗,甩去积水。 3.脱色滴加95%乙醇数滴,20s~30s,见紫色脱下立即用水冲洗,甩去积水。 4.复染滴加石炭酸复红液,染lmin,水洗,甩去积水,标本片用滤纸吸干。 三、镜检 待染色片充分干燥后,用油镜观察。 【实验结果】 葡萄球菌呈葡萄状排列,呈紫色,为革兰氏阳性菌; 大肠杆菌为散在的短小杆菌,呈红色,为革兰氏阴性菌。 注:绘图展示染色结果 【结果分析、讨论(结论与评价)】 注:分析你的染色结果是否正确?如果不正确,请分析原因。

算法分析复习题目及答案

内部资料,转载请注明出处,谢谢合作。 一。选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是( B )。 A、蒙特卡罗算法 B、拉斯维加斯算法 C、舍伍德算法 D、数值概率算法 5. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 8、以下不可以使用分治法求解的是(D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 9. 实现循环赛日程表利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C ) A 数值概率算法 B 舍伍德算法 C 拉斯维加斯算法 D 蒙特卡罗算法 11.下面不是分支界限法搜索方式的是( D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。

用回溯法分析着色问题

算法设计与分析课程设计 题目:用回溯法分析着色问题 学院:理学院 专业:信息与计算科学 班级:09信科二班 姓名:蔡秀玉 学号: 200910010207

用回溯法分析着色问题 目录 1 回溯法 (3) 1.1回溯法的概述 (3) 1.2 回溯法的基本思想 (3) 1.3 回溯法的一般步骤 (3) 2 图的m着色问题 (3) 2.1图的着色问题的来源 (3) 2.2通常所说的着色问题 (3) 2.3图的着色问题描述 (3) 2.4回溯法求解图着色问题 (5) 2.5图的m可着色问题的回溯算法描述 (6) 2.5.1回溯算法 (6) 2.5.2 m着色回溯法递归 (8) 2.5.3 m着色回溯法迭代 (9) 2.5.4例题利用回溯法给图着色 (11) 2.6复杂度分析着色回溯法迭代 (12)

§1 回溯法 1.1回溯法的概述 回溯法是一种系统地搜索问题解的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。 1.2回溯法的基本思想 回溯法的基本思想是,在确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。 1.3回溯法的一般步骤 用回溯法解题的一般步骤: (1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构; (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。 §2 图的m着色问题 2.1图的着色问题的来源 图的着色问题是由地图的着色问题引申而来的:用m种颜色为地图着色,使得

相关文档
相关文档 最新文档