文档库 最新最全的文档下载
当前位置:文档库 › 多元函数的极值和最值

多元函数的极值和最值

多元函数的极值和最值
多元函数的极值和最值

8.6多元函数的极值和最值

学习一元函数的导数应用时,借助于导数解决了某些极值和最值问题.本节介绍如何利用偏导数解决有关多元函数的极值和最值问题.本节的内容和方法和一元函数相对应,是一元函数极值和最值的推广.

8.6.1 二元函数极值的概念

1. 二元函数极值定义

定义.设),(000y x P 是函数),(y x f z =的定义域D 内一点,若存在0P 的一个包含在D 内的邻域,对于该邻域内所有异于点0P 的点),(y x P ,都有

),(),(00y x f y x f <或),(),(00y x f y x f >,

则称),(00y x f 是函数),(y x f z =的极大值(或极小值),称0P 为),(y x f z =的极大值点(或极小值点).极大值和极小值统称为极值;极大值点和极小值点统称为极值点.

例如:4),(2

2++=y x y x f 在点)0,0(处取得极小值4. xy z =在)0,0(的任意邻域内,既能取正值,也能取负值,所以)0,0(不是xy z =的极值点.

如果函数),(y x f z =在),(000y x P 处取得极值,从极值的定义可以得到一元函数),(01y x f z =在0x x =处取得极值.根据函数极值存在的必要条件,如果函数的导数存在,则导数在0x x =处的值一定等于零,既001

==x x dx

dz . 同理,如果函数),(y x f z =在),(000y x P 处取得极值,从极值的定义可以得到一元函

数),(02y x f z =在0y y =处取得极值。根据函数极值存在的必要条件,如果函数的导数存在,则导数在0y y =处的值一定等于零,即

002

==y y dy dz . 因为0001

y y x x x x x z dx dz ===??=,0002y y x x y y y z dy dz ===??=,从而有如下定理.

2. 极值存在的必要条件

定理8.6.1(极值必要条件)如果函数),(y x f z =在点),(000y x P 处两个偏导数都存在,且函数在P 0处取得极值,则必有

00(,)0x f x y =,

00(,)0y f x y =. 使(,)0,(,)0x y f x y f x y ==同时成立的点),(000y x P ,称为函数),(y x f z =的驻点. 注意:驻点仅是取得极值的必要条件,即函数在驻点不一定取得极值.例如)0,0(是函数xy z =的驻点,但并不是极值点.

3. 极值的充分条件

定理8.6.2(极值存在的充分条件)设),(000y x P 为函数),(y x f z =的驻点,且函数在点0P 的某邻域内有二阶连续偏导数.记

),(00y x f A xx =, ),(00y x f B xy =,),(00y x f C yy =,AC B -=?2,则

(1) 当0A ,0P 为极小值点,若0

(2) 当0>?时,0P 不是函数),(y x f 的极值点;

(3) 当0=?时,不能判定0P 是否是函数),(y x f 的极值点.

例8.6.1求函数y x y xy x z +-+-=22

2的极值. 解:解方程组???????=++-=?=--=??012022y x zy

z y x x z ,得驻点)0,1(, ,2),(,1),(,2),(=-==y x f y x f y x f yy xy xx 所以在驻点)0,1(处,有2,1,2=-==C B A ,则032

<-=-=?AC B ,又0>A ,由取得极值的充分条件,可知点)0,1(为极小值点,极小值为1)0,1(-=f .

例8.6.2求函数xy y x z 333-+=极值. 解:解方程组???????=-=?=-=??03303322x y zy

z y x x z ,得驻点)1,1(),0,0(, ,6),(,3),(,6),(y y x f y x f x y x f yy xy xx =-==

对于驻点)0,0(,有0,3,0=-==C B A ,则092>=-=?AC B ,可知驻点)0,0(不是极值点.

对于驻点)1,1(,有6,3,6=-==C B A ,则0272

<-=-=?AC B ,且06>=A 顾由取得极值的充分条件,可知点)1,1(为极小值点,极小值为1)1,1(-=f .

8.6.2 多元函数的最值

对于一元函数而言,在闭区间上连续的函数必有最值.对于二元函数也有类似的结论:在有界闭区域上连续的函数必定存在最大值和最小值.对于二元可微函数,如果该函数的最值在区域内部取得,这个最值点必在函数的驻点之中;如果函数最值在区域的边界上取得,则它一定也是函数在边界上的最值.因此,求函数的最值的方法是:将函数在所讨论的区域内的所有驻点求出来,将函数在驻点处的函数值与函数在边界上的最大值和最小值进行比较,其中最大者就是函数在闭区域上的最大值,其中最小者就是函数在闭区域上的最小值. 例8.6.3求函数22),(y x y x f z -==在闭区域4:22≤+y x D 上的最大值和最小值. 解:函数在闭区域D 上是连续的,最大值和最小值一定存在. x x

z 2=??,y y z 2-=??

令0=??x

z ,0=??y z ,得驻点)0,0(,且0)0,0(=f . 考虑函数在区域D 边界上的情况.区域D 边界422=+y x 是一个圆,在边界上,函数

22),(y x y x f z -==成为x 的一元函数42)(2-==x x z ?,22≤≤-x .

对此函数求导,有x x 4)(='?,令0)(='x ?,得到函数422

-=x z 在]2,2[-上的驻点为0=x ,此时相应的函数值为4)0(-==?z ,又4)2(,4)2(==-??,所以函数在闭区域D 上的最大值为4=z ,它在点)0,2(-和)0,2(处取得;最小值为4-=z ,它在点)2,0(处取得.

在实际问题中,常常从问题的本身能断定它的最值肯定存在且在问题考虑范围的内部达到,这是如果函数在定义区域内仅有唯一一个驻点,那么该驻点的函数值就是函数的最大值或最小值.

例8.6.4欲做一个容量一定的长方体容器,问应选择怎样的尺寸,才能使此容器的材料最省?

解:设箱子的长,宽,高分别为z y x ,,,容量为V ,则xyz V =,箱子的表面积为)(2xz yz xy S ++=

要使使用的材料最少,则应求S 的最小值. 由于xy V z =,所以2()V V S xy x y

=++,)0,0(>>y x . 令 0)(2,0)(222=-==-

=y V x S x V y S y x , 求得唯一的驻点),(33V V P .

根据问题的实际意义可知S 一定存在最小值,所以可以断定P 即为S 的最小值点,即当3V y x ==时,函数S 取得最小值. 此时3V xy

V z ==,所以长方体实际上是正方体.这表明在体积固定为V 长方体中,以正方体的表面积最小,最小值32min 6V S =.

*8.6.3条件极值

以上讨论的极值问题,自变量在定义域内可以任意取值,没有受到任何限制,通常称这样的极值问题为无条件极值问题.但是,在实际问题中,求极值或最值时,对自变量的取值往往要附加一定的约束条件,这类附有约束条件的极值问题,称为条件极值.

条件极值问题的一般提法是:求目标函数),(y x f z =在约束条件0),(=y x ?下的极值.求解这一条件极值问题的常用方法是拉格朗日乘数法.

拉格朗日乘数法求极值的具体步骤如下:

(1) 构造辅助函数),(),(),,(y x y x f y x F λ?λ+=;

(2) 求函数),,(λy x F 的驻点,即联立解方程组:

?????===+==+= 0),(00y x F f F f F y y y x x x ?λ?λ?λ

得到驻点),,(000λy x ;

(3) 判别求出的),(00y x 是否为极值点,通常根据实际问题的实际意义去判定. 例8.6.5试用条件极值的方法解决例8.6.4的问题.

解:设箱子的长、宽、高为z y x ,,,要求容量为V ,表面积为S .问题归结为在约束条件V xyz =下,求)(2xz yz xy S ++=的极小值.

令 )()(2),,,(V xyz xz yz xy z y x F -+++=λλ,

解方程组 ???

????=-=++==++==++=00)(20)(20)(2V xyz xy y x F xz z x F yz z y F z

y x λλλ 得330004

,V V z y x ====λ.

因为实际问题有极小值,而可能达到极值的点又唯一,所以极小值必定在此点达到,即当时3V z y x ===表面积S 最小,最小值32min 6V S =.

习题8-6

1.函数xy z =在适合条件1=+y x 时的极大值.

2.从斜边长为l 的一切直角三角形中,求周长最大的直角三角形.

3.求下列函数的极值.

(1)y x xy x z 1215323--+= (2))2(22y y x e z x ++=;

(3)求22y x z +=在条件121=+

y x 下的极小值. 4.求函数)0,0(ln 18ln 222>>--+=y x y x y x z 的极值.

5.求函数2xy z =在区域122≤+y x 上的最大值和最小值.

6.求曲面1=xyz 上在第一卦限中的一点,使它到原点的距离为最小.

多元函数的极值与最值例题极其解析

多元函数的极值与最值 1.求函数z=x3+y3?3xy的极值。 步骤: 1)先求驻点(另偏导数等于0,联立) 2)再求ABC A=f xx(x0, y0) B=f xy(x0, y0) C=f yy(x0, y0) 3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值, 且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o); (2)当B2-AC>0时,f(x o, y o )不是极值; (3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论. =3x2?3y=0 解:?z ?x ?z =3y2?3x=0 ?y 联立得驻点为(0,0),(1,1) A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导) B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导) C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导) 在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处

无极值。 在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为 A>0,故在此处为极小值点,极小值为 F (1, 1) =x3+y3?3xy=?1 2.求函数f(x, y)=x2+(y?1)2的极值。 解:f x’=2x=0 F y’=2y-2=0 联立得驻点为(0,1) A=f xx(x0, y0) =2 B=f xy(x0, y0) =0 C=f yy(x0, y0) =2 在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为 F (0, 1) = 0 3.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少? 解:另长宽高分别为x, y, z 故xyz=a, z=a xy S=xy+2(x a xy +y a xy )=xy+2(a y +a x ) S x’=y+2(?a x2 )=0 S y ’= x+2(?a y )=0

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

多元函数的极值及其求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有 极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 2 43y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2 2 43y x z +=的顶点,曲面在点 )0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

(整理)多元函数的极值.

实验六 多元函数的极值 【实验目的】 1. 多元函数偏导数的求法。 2. 多元函数自由极值的求法 3. 多元函数条件极值的求法. 4. 学习掌握MATLAB 软件有关的命令。 【实验内容】 求函数3282 4-+-=y xy x z 的极值点和极值 【实验准备】 1.计算多元函数的自由极值 对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤: 步骤1.定义多元函数),(y x f z = 步骤2.求解正规方程0),(,0),(==y x f y x f y x ,得到驻点 步骤3.对于每一个驻点),(00y x ,求出二阶偏导数,,,22222y z C y x z B x z A ??=???=??= 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02 >-B AC ,则该驻点是极值点,当0>A 为极小值, 0

MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 可以用help diff, help jacobian 查阅有关这些命令的详细信息 【实验方法与步骤】 练习1 求函数3282 4-+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x y z y x x z +-=??-=??再求解正规方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MATLAB 代码为: >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数: >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2) 结果为 A=2*x^2 B =-8 C =4 由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上,)2,4(--P 和)2,4(Q 是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍点。 >>clear; >>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y);

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

多元函数极值

多元函数极值 课时教学计划表 (基础部:邓敏英) 授课日期: 教案编号:第七章 06 课程名称班级专业、层次高等数学 2010级机电2班大专 理论课型: 讲授教学方式: 多媒体教学资源 7.7多元函数的极值(第七章第七节) 授课题目(章、节) 教材:《高等数学》参考书:《高等数学》(高教出版社,同济大学教材和主要参考书 数学系及盛祥耀等编著) 教学目的与要求:了解多元函数极值的概念,理解函数极值的必要条件,会用充分条件判定 二元函数的极值,掌握求极值的一般方法; 教学重点和难点: 重点:多元函数极值的概念,求极值的一般方法。 难点:二元函数的极值的判定。 教学内容与时间安排:(1课时) 一、引入课题 (3分钟) 关于一元函数的极值,最大值和最小值等知识。 二、多元函数极值的概念 (35分钟) 定义,定理1,定理2(求极值的一般方法),例题1, 三、练习 (4分钟) 四、小结、布置作业 (3分钟)

思考题与作业:(选做题)习题7,7 第 1(1,2)题。 (选做题)习题7,7 第 1(3) 题。 课后体会: 7.7 多元函数的极值一,引入课题 我们在前面学过一元函数的极值,最大值和最小值等知识。这对学习多元函数的极值有 很大的帮助。 二,新课:多元函数极值的概念 1. 极值的概念 Pxy,定义设函数z=f(x,y)在点的某一邻域内有定义.如果对该邻域内任一异,,000 fxyfxy,,,,Pxy,于的点P(x,y),都有则称函数z=f(x,y)在点处有极大P,,,,,,000000 fxyfxy,,,,Pxy,值;如果都有则称函数z=f(x,y)在点处有极小 fxy(,),,,,,,0000000 Pxy,值.函数的极大值和极小值统称为极值,使得函数取极值的点称为极值fxy(,),,00000 点( 强调:定义中的极大值、极小值、极值、极值点等概念( 221,,xy例z=f(x,y)=在点(0,0)处取得极大值l(见书上图7-37)( 22z=f(x,y)=在点(0,0)处取得极小值0(见书上图7-38)( 24xy, Z=f(x,y)=xy 在(0,0)处不取极值。 指出:在一般情况下,函数的极值并不容易看出,因此,与一元函数一样,我们需要研究二

函数的极值与最值练习题及答案

【巩固练习】 一、选择题 1.(2015 天津校级模拟)设函数2 ()ln f x x x =+,则( ) A.1 2x = 为()f x 的极小值点 B. 2x =为()f x 的极大值点 C. 1 2 x =为()f x 的极大值点 D.2x =为()f x 的极小值点 2.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和 1 3 ,则( ) A .a -2b =0 B .2a -b =0 C .2a +b =0 D .a +2b =0 3.函数y =2 3 x +x 2-3x -4在[0,2]上的最小值是( ) A .173- B .10 3 - C .-4 D .643- 4.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( ) A .x =-1一定是函数f (x )的极大值点 B .x =-1一定是函数f (x )的极小值点 C .x =-1不是函数f (x )的极值点 D .x =-1不一定是函数f (x )的极值点 5.(2015 金家庄区校级模拟)若函数32()132x a f x x x = -++ 在区间1,43?? ??? 上有极值点,则实数a 的取值范围是( ) A.102, 3?? ??? B. 102,3?????? C. 1017,34?? ??? D. 172,4?? ??? 6.已知函数y=―x 2―2x+3在区间[a ,2]上的最大值为 15 4 ,则a 等于( ) A .32- B .12 C .12- D .12或32 - 7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是( ) A .-13 B .-15 C .10 D .15 二、填空题 8.函数y=x+2cosx 在区间1 [ ,1]2 上的最大值是________ 。 9. 若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是__ _。 10.f (x )= 1+3sin x + 4cos x 取得最大值时,tan x = 11.设函数3 ()31(R)f x ax x x =-+∈,若对于任意x ∈[-1,1],都有()0f x ≥成立,则实数a 的值为________。

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

二元函数极值问题

浅谈二元函数的极值问题 摘 要:本文首先给出二元函数极值的定义,实例分析了二元函数极值存在的必要条件和充分条件,并通过实例解析了求二元函数极值的步骤. 关键词:二元函数; 极值;必要条件;充分条件 To discuss the extreme-value problem of the binary function shallowly Abstract : In this paper, the definition and conditions of the extreme of binary function are firstly given, on the basis, steps of finding the extreme value are discussed, and specific examples of relevant to this are given to expound them. Key words: binary function; extreme; necessary condition; sufficient condition 前言 函数极值在数学、工程、金融风险管理等多领域都有广泛应用,本文以二元函数为例,讨论函数极值的若干方面问题. 1. 预备知识 定义 设函数f 在点00(,)x y 0p 的某领域0()U p 内有定义,若对于任意点 0(,)()p x y U p ∈,成立不等式 0()()f p f p ≤ (或0()()f p f p ≥) , 则称函数f 在点0p 取得极大(或极小)值,点0p 称为f 的极大(或极小)值点,极大值、极小值统称极值,极大值点、极小值点统称极值点. 注意:这里所讨论的极值点仅限于定义域的内点.

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算 (一) 可微函数的无条件极值 如果(,)z f x y =在区域D 上存在二阶连续偏导数,我们可以用下面的方法求出极值。 首先,通过解方程''00 x y f f ?=??=?? 得到驻点。其次,对每个驻点求出二阶偏导数: '''''',,xx xy yy A f B f C f === 最后利用课本定理7.8进行判断。 20,0,AC B A ->> 函数在此点取极小值; 20,0,AC B A ->< 函数在此点取极大值; 20,AC B -< 函数在此点不取极值; 20,AC B -= 不能确定。 (二) 如何求多元函数的最值 如果函数(,)z f x y =在有界闭域D 上连续,那么函数(,)z f x y =在有界闭域D 上一定存在最大值和最小值。下面介绍如何求出(,)z f x y =在有界闭域D 上的最值。 首先, 在D 的内部求出函数(,)z f x y =的驻点 及 偏导数不存在的点。 其次,求出函数(,)z f x y =在D 的边界上的最大值点和最小值点。这里分两种情况处理: 第一种情况:D 的边界是由显函数来表示 的(包括边界是分段用显函数表示的情形),可以用消元法转化为一元函数在闭区间上的最值问题 来解决。 第二种情况:D 的边界是由 隐函数(,)0x y ?=来表示 的,而且函数(,)z f x y =,(,)x y ?在包含D 的区域上存在二阶连续偏导数,此时可以用拉格朗日乘数法求出驻点。 最后, 通过比较函数(,)z f x y =在我们得到的点上的函数值,就可得到(,)z f x y =在有界闭域D 上的最值。 (三) 如何求条件极值 下面介绍求函数(,)z f x y =在约束条件(,)0x y ?=下的条件极值。 第一种情况:如果(,)0x y ?=确定了显函数)(y g x =或者)(x h y =,可以用消元法转化为一元函数在闭区间上的极值问题 来解决。 第二种情况:如果函数(,)z f x y =,(,)0x y ?=在区域D 上存在二阶连续偏导数,而且(,)0x y ?=确定了隐函数,此时可以用拉格朗日乘数法。首先,求出拉格朗日函数),,(λy x L 在区域D 内的驻点。

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极 值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、多元函数的极值及最大值、最小值 定义设函数z f(x, y)在点(X。, y。)的某个邻域内有定义,对于该邻域内异 于(X。,yo)的点,如果都适合不等式 f (X, y) f(X o,y。) 则称函数f(X,y)在点(X0,y。)有极大值f(X0,y。)。如果都适合不等式 f (X, y) f(X。,y。), 则称函数f(X,y)在点(X0,y。)有极小值f(X0,y。).极大值、极小值统称为极值。 使函数取得极值的点称为极值点。 22 例1 函数z 3X 4y在点(。,。)处有极小值。因为对于点(。,。)的任一邻域内异于(。,。)的点,函数值都为正,而在点(。,。)处的函数值为零。从22 几何上看这是显然的,因为点(。,。,。)是开口朝上的椭圆抛物面z 3X2 4y2 的顶点。

例2函数z x y在点(0, 0)处有极大值。因为在点(0, 0)处函数值为零,而对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为负, 点(0, 0, 0)是位于xOy平面下方的锥面z: x2 y2的顶点。 例3 函数z xy在点(0, 0)处既不取得极大值也不取得极小值。因为在 点(0, 0)处的函数值为零,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1 (必要条件)设函数z f(x,y)在点(X0,y。)具有偏导数,且在点(X o, y o)处有极值,则它在该点的偏导数必然为零: f x(X o,y°)0, f y(x o,y°)0 证不妨设z f(x,y)在点(x0,y0)处有极大值。依极大值的定义,在点 (X。,y。)的某邻域内异于(X。,y。)的点都适合不等式 f (x, y) f(x°,y o) 特殊地,在该邻域内取y y0,而x X0的点,也应适合不等式 f(x, y°) f(X o,y°) 这表明一元函数f(x,y o)在X X o处取得极大值,因此必有 f x(X o,y o)0 类似地可证 f y(X o,y o) 0

相关文档
相关文档 最新文档