文档库 最新最全的文档下载
当前位置:文档库 › 排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)
排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

教学目标

1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力

3.学会应用数学思想和方法解决排列组合问题. 复习巩固

1.分类计数原理(加法原理)

完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:

种不同的方法.

2.分步计数原理(乘法原理)

完成一件事,需要分成n 个步骤,做第1步有1m

种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有

m 种不同的方法,那么完成这件事共有:

种不同的方法.

3.分类计数原理分步计数原理区别

分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.

解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,

先排末位共有1

3C

然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113

4

34288C C A =

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两

端的花盆里,问有多少不同的种法

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合

元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原

理可得共有522

5

22480A A A 种不同的排法

练习题:某人射击8枪,命中4枪,

4枪命中恰好有3

枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目

的出场顺序有多少种

解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一

步排好的6个元素中间包含首尾两个空位共有种4

6A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起

进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同

排法种数是:73

73/A A

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4

7A 种方法,其余的三个

位置甲乙丙共有 1种坐法,则共有4

7A 种方法。

思考:可以先让甲乙丙就坐吗

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法

5

10C 五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配

到车间也有7种分依此类推,由分步计数原理共有67种不同的排法

练习题:

1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.

如果将这两个节目插入原节目单中,那么不同插法的种数为 42

2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87

六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人4

4

A并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!

A B C D E A

E

H

G

F

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120

七.多排问题直排策略

例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有2

4

A种,再排后4个位置上的特殊元素丙有1

4

A种,其余的5人在5个位置上任

意排列有5

5

A种,则共有215

445

A A A种

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有2

5

C种方法.再把4个元素(包含

一个复合元素)装入4个不同的盒内有4

4

A种方法,根据分步计数原理装球

的方法共有24

54

C A

允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数

一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m 个元素作圆形排列共有

1

m

n

A

n

一般地,元素分成多排的排列问题,可归结为一排考虑,再

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任

务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之

间,这样的五位数有多少个

解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共

有2222A A 种排法,由分步计数原理共有222

222A A A 种排法.

练习题:

1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的

种数为254

254A A A

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种

十.元素相同问题隔板策略

例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案

解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

一班二班三班四班七班

练习题:

1. 10个相同的球装5个盒中,每盒至少一有多少装法 49C

2 .100x y z w +++=求这个方程组的自然数解的组数 3

103C

十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的

取法有多少种

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1

解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策小集团排列问题中,先整体后局部,再结合其它策略进

将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为1

1m n C --

个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +。再淘汰和小于10的偶数共9种,符合条件的取法共有123

5

559C C C +-

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的

抽法有多少种

十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法

解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为

ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则

222

642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33

A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22236423/C C C A 种分法。

练习题:

1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法(544213842/C C C A ) 名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不

同的

分组方法 (1540)

3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安

排2名,则不同的安排方案种数为______(222

24262/90C C A A =) 十三. 合理分类与分步策略

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2

人唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究

只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人

选上唱歌人员112

5

34C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有

22112

22335

3455C C C C C C C ++种。

练习题:

有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰. 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n

n A (n 为均分的组数)避免重复计数。 解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿

相关文档