文档库 最新最全的文档下载
当前位置:文档库 › 高斯投影与UTM投影的区别

高斯投影与UTM投影的区别

高斯投影与UTM投影的区别

高斯-克吕格(Gauss-Kruger)投影与UTM投影的区别

高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercat or,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,

从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。

从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。

从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。

由于高斯-克吕格投影与UTM投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

3度6度带高斯投影详解.

3度6度带高斯投影 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”): 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky

高斯投影计算的实用公式

§8.4高斯投影计算的实用公式 1子午线弧长计算公式 改写并扩充(7-65)(7-64)两式 )8sin()6sin()4sin()2sin(86420B a B a B a B a B a X ++++= )16384 17640512525646043)(1(21864222e e e e e a a +++--= )16384 88205122106415)(1(4186424e e e e a a ++-= )16384 252051235)(1(618626e e e a a +--= )16384 315)(1(81828e e a a -= 2正算公式(8-67)(8-81) 00/cos ρBl p = 2/)12/)30/))58(61())49(5((1(22222222p p p t t t Nt X x -++++-++=ηηp p p t t t N y )6/)20/)14)5818(5()1((1(22222222ηηη+--+++-+= )3/)5/)2())23(1((1(sin 22222 00p p t Bl r -++++=ηη 式中: B t tan = 22)cos (B e '=η 221η+=V V c N /= 0000L L l -= 21a/e c -= 3 底点纬度公式 00Xq B = (单位:弧度) ))) sin (sin (sin )(2sin(028*********B q q B q B q B B B f ++++=(单位:弧度) 式中: )16384110255123506445431)(1(864220e e e e e a a ++++-=

我国常用的三种地图投影

椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”)Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80采用)(长轴a: 6378140, 短轴b: 6356755.2882) WGS 84(长轴a: 6378137, 短轴b: 6356752.3142) 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影( transverse conformal cylinder projection)”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国

换带计算专题

2.2.3坐标的换带计算 为了限制高斯投影长度变形,将椭球面按一定经度的子午线划分成不同的投影带;或者为了抵偿长度变形,选择某一经度的子午线作为测区的中央子午线。由于中央子午线的经度不同,使得椭球面上统一的大地坐标系,变成了各自独立的平面直角坐标系,就需要将一个投影带的平面直角坐标系,换算成另外一个投影带的平面直角坐标,称为坐标换带。 2.2. 3. 1坐标换带的方法 坐标换带有直接换带计算法和间接换带计算法两种。目前采用间接换带计算法,因此下面仅就此方法作一介绍。 如将第一带(东带或西带)的平面坐标换算为第二带(西带或东带)的平面坐标,方法是先根据第一带的平面坐标x,y和中央子午线的经度L。按高斯投影坐标反算公式求得大地坐标B,L然后根据B,L和第二带 的中央子午线经度按高斯投影坐标正算公式求得在第二带中的平面坐标,。由于在换带计算中,把椭球面上的大地坐标作为过渡坐标,因而称为间接换带法。这种方法理论上是严密的,精度高,而且通用性强,他适用于6°带与6°带,3°带与3°带,6°带与3°带之间的坐标换带。虽然这种方法计算量较大,但可用电子计算机计算来克服,故已成为坐标换带中最基本的方法。 2.2. 3. 2坐标换带的实际应用 在生产实践中通常有以下两种情况需要换带计算 ⑴控制网中的已知点位于相邻的两个投影带中。如图5 (图5:坐标换带示意图) 中的附合导线,A,B,C,D为已知高级点。A,B 两点位于西带内,具有西带的高斯平面直角坐标值;C,D两点位于东带内,具有东带的高斯平面直角

坐标值。在坐标平差计算时,就必须将它们的坐标系统统一起来,或是将A,B点的西带坐标值换算至东带,或是将C,D点的东带坐标值换算至西带。 ⑵国家控制点的坐标通常是6°带的坐标,而在工程测量中往往需要采用带或1.5°带,这就产生了6°带与带或 1.5°带之间的坐标换算问题。 我们知道,带的中央子午线中,有半数与6°带的中央子午线重合。所以,由6°带到3°带的换算区分为2种情况: ① 3°带与6°带的中央子午线重合如图所示,3°带第 (图6:坐标换带示意图) 41带与6°第21带的中央子午线重合。既然中央子午线一致,坐标系统也就一致。所以,图中P1点在6°带第21带的坐标,也就是该点在3°带第41带的坐标。在这种情况下,6°带与3°带之间,不存在换带计算问题。 ② 3°带中央子午线与6°带分带子午线不重合如图所示,若已知P2点在6°带第21带的坐标,求它在3°带第42带的坐标。由于这2个投影带的中央子午线不同,坐标系统不一致,必须进行换带计算。不过P2点在6°带第21带的坐标与它在3°第41带的坐标相同,所以6°带到3°带坐标换算,也可看作是3°带到3°带的邻带坐标换算。 换带计算目前广泛采用高斯投影坐标正反算方法,他适用于任何情况下的换带计算工作。这种方法的程序是:首先将某投影带的已知平面坐标(x1,y1 ),按高斯投影坐标反算公式求得其大地坐标(B,L);然后 根据纬度B和对于所选定的中央子午线的经差,按高斯投影坐标正算公式求其在选定的投影带的平面坐标(x2,y2)。 例如,某点A在新54坐标系6°带的平面坐标为

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|) 一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”) 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777~1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的两条母线剪开展平,即得到高斯-克吕格投影平面。 高斯-克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

第7章 地图投影与高斯投影

第七章 地图投影与高斯投影 [本章提要] 本章介绍从椭球面上大地坐标系到平面上直角坐标系的正形投影过程。研究如何将大地坐标、大地线长度和方向以及大地方位角等向平面转化的问题。重点讲述高斯投影的原理和方法,解决由球面到平面的换算问题,解决相邻带的坐标坐标换算。讨论在工程应用中,工程测量投影面与投影带选择。 §7.1 高斯投影概述 1 投影与变形 地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。可用下面两个方程式(坐标投影公式)表示: ? ?? ==),(),(21B L F y B L F x 式中B L ,是椭球面上某点的大地坐标,而y x ,是该点投影后的平面直角坐标。 投影变形:椭球面是一个凸起的、不可展平的曲面。将这个曲面上的元素((距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。 投影变形的形式:角度变形、长度变形和面积变形。 地图投影的方式: (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 2 控制测量对地图投影的要求 (1)应当采用等角投影(又称为正形投影) 采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。 (2)在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。 (3)能按分带投影 3 高斯投影的基本概念 (1)基本概念:

高斯投影正反算——包括3度和6度带的选择

// guass coordinateDlg.cpp : implementation file // #include "stdafx.h" #include "guass coordinate.h" #include "guass coordinateDlg.h" #include "math.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App About class CAboutDlg : public CDialog { public: CAboutDlg(); // Dialog Data //{{AFX_DATA(CAboutDlg) enum { IDD = IDD_ABOUTBOX }; //}}AFX_DATA // ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(CAboutDlg) protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL // Implementation protected: //{{AFX_MSG(CAboutDlg) //}}AFX_MSG DECLARE_MESSAGE_MAP() }; CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { //{{AFX_DATA_INIT(CAboutDlg) //}}AFX_DATA_INIT }

地图投影复习题(补充修改版)

一、名词解释 地图投影:是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。 投影变换:是将一种地图投影点的坐标变换为另一种地图投影点的坐标的过程。 极值长度比:通常指沿变形椭圆的长半径a与短半径b的长度比之总称。 曲率半径:曲率的倒数,即某点的弯曲程度。 垂直圈:垂直圈又称地平经圈,指天球上经过天顶的任何大圆。 主法截面:通过A点的法线AL可作出无穷多个法截面,为说明椭球体在某点上的曲率起见,通常研究两个相互垂直的法截面的曲率,这种相互垂直的法截面为主法截面。 长度变形:长度变形又称“长度误差”、“长度变异”、“长度相对变形”,是衡量地图投影变形大小的一种数量指标。(公式见课本21页2.3式) 等角航线:是地球表面上与经线相交成相同角度的曲线。 变形椭圆:地球面上一微分圆投影到平面上一般成为微分椭圆,微分椭圆的任意两相互垂直的直径,投影后为微分椭圆的两共轭直径,且该微分椭圆可以表现投影变形的性质和大小。 面积变形:地球面上无限小面积投影到平面上的大小与它原有面积大小的相对变形。 二、简答题 地图投影的目的与意义 地图投影是将立体地球上的种种标线及位置,转换到平面方格坐标的一种方式,在投影出来的地图上,无论是长度和面机,都必须与实际长度面积等比例,位子也必须正确,这是地图投影最基本的原则。 地图投影与其他学科的关系 地图投影同许多学科和应用技术有着密切的联系 1. 与数学:从地图投影的发展来看,它是伴随着数学的发展而前进的; 2. 与测量学:天文-大地测量为测制地图提供地球参考椭球体的大小形状及有关参数,并建立 大地原点;大地测量学在大地原点的基础上所建立的各级三角点,则需要应用地图投影计算出它们的平面直角坐标; 3. 与地图编制:地图编制与地图投影同属于地图学的重要组成部分; 4. 与航海、航天、宇宙飞行:等角投影无角度变形适用于航海和航天图;宇宙飞行可以服务于 地图投影,并可促使地图投影向新的方向发展。 每种投影的性质,要满足的条件及原因 1. 等角投影:要满足的条件是ω=0,m=n,a=b和β=β’; 2. 等面积投影:要满足的条件是vp=P-1=0或P=1; 3. 等距离投影:要满足的条件是正轴经线长度比m=1,斜轴或横轴垂直圈长度比μ1=1。 地图投影学科发展趋势 1. 外星地图投影:随着宇航技术的发展,到时还会增加更多星体的地图投影; 2. 空间地图投影:空间墨卡托(SOM)投影,是一种最适合于陆地卫星扫描影像制图的投影; 卫星轨迹地图投影,包括卫星轨迹圆柱投影和卫星轨迹圆锥投影,其特点是非常简化并能在地图上显示出卫星轨迹和摄影地区,但变形较大,不能代替SOM投影用于大、中比例尺的卫星影像制图; 3. 多焦投影和变化比例尺投影:多焦投影,在同一种投影的地图上,运用不同的投影中心或视 点位置,增大或者缩小局部范围的比例尺,是制图现象的强度或密度与统计面的大小成比例

地图投影与高斯投影

第七章 地图投影与高斯投影 [本章提要] 本章介绍从椭球面上大地坐标系到平面上直角坐标系的正形投影过程。研究如何将大地坐标、大地线长度和方向以及大地方位角等向平面转化的问题。重点讲述高斯投影的原理和方法,解决由球面到平面的换算问题,解决相邻带的坐标坐标换算。讨论在工程应用中,工程测量投影面与投影带选择。 §7.1 高斯投影概述 1 投影与变形 地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。可用下面两个方程式(坐标投影公式)表示: 式中B L ,是椭球面上某点的大地坐标,而y x ,是该点投影后的平面直角坐标。 投影变形:椭球面是一个凸起的、不可展平的曲面。将这个曲面上的元素((距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。 投影变形的形式:角度变形、长度变形和面积变形。 地图投影的方式: (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 2 控制测量对地图投影的要求 (1)应当采用等角投影(又称为正形投影) 采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。 (2)在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。 (3)能按分带投影 3 高斯投影的基本概念 (1)基本概念: 如图1所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,如图2所示,此投影为高斯投影。高斯投影是正形投影的一种。 图1 图2 (2)分带投影 ● 高斯投影 6带:自 0子午线起每隔经差 6自西向东分带,依次编号1,2,3,…。我 国 6带中央子午线的经度,由 75起每隔 6而至 135,共计11带(13~23带),带号用n 表示,中央子午线的经度用0L 表示,它们的关系是360-=n L ,如图所示。 ● 高斯投影 3带:它的中央子午线一部分同 6带中央子午线重合,一部分同 6带的 分界子午线重合,如用n '表示 3带的带号,L 表示 3带中央子午线经度,它们的关系n L '=3图8-4所示。我国 3带共计22带(24~45带)。 (3)高斯平面直角坐标系

基于python的高斯投影计算

袁钱梅 (贵州省第二测绘院,贵州贵阳550000) 摘要: 本文基于python脚本语言编制了测量厂用的高斯投影正、反计算工具。有效的解决了在python及ARCGIS环境中高斯投影计算工作;并具有一定的灵活性。工具以在全国第一次地理国情普查数据生产中进行了批量性验证。 关键词:Python;高斯投影 1、Python语言概述 Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。Python吸收了Perl,TCL等脚本语言的优点,使得Python具备Tcl的扩展性,同时又具备Perl的文本解析和匹配能力。 2、高斯投影 高斯-克吕格投影是一种等角横轴切椭圆柱投影。它是假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面而成的。 这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形愈大。赤道线投影后是直线,但有长度变形。除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。经线和纬线投影后仍然保持正交。所有长度变形的线段,其长度变形比均大于1,随远离中央经线,面积变形也愈大。若采用分带投影的方法,可使

投影边缘的变形不致过大。我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。其中大于1:1万的地形图采用3°带;1:2.5万至1:50万的地形图采用6°带。 3、Python模块 P博闻新闻ython是中许多功能是由一系列的模块组成的,每个模块可以是一个py为后缀的文件。模块也可以理解为lib库,如果需要使用某个模块中的函数或对象,则要导入这个模块才可以使用;除了系统默认的模块(内置函数)不需要导入。在实际使用中高斯投影计https://www.wendangku.net/doc/fb10957660.html,算是使用在实际工作中的各个部分的,为方便调用,采用Python的模块方式对高斯计算进行封装,可高效利用模块在不同的应用中进行计算。 4、高斯投影计算 高斯投影计算分正算和反算,正算为经纬度坐标计算到投影坐标;反算为投影坐标计算到经纬度坐标。高斯投影正算需要确定投影后的中央经度,及投影椭球参数信息;如采用CGCS2000坐标系及1980西安坐标系其采用椭球参数不同,经过正算的投影坐标即不同。 由于Python为脚本语言,其在进行科学计算时小数位取位是无法保证计算精度的,在Python中实现高斯投影计算单纯的使用其提供的基本计算函数是无法满足计算精度需求的,因此需要借助Python提供的模块进行提高精度计算。Python提供了decimal模块用于十进制数学计算,它具有以下特点: 1.提供十进制数据类型,并且存储为十进制数序列; 2.有界精度:用于存储数字的位数是固定的,可以通过decimal.getcontext ().prec=x 来设定,不同的数字可以有不同的精度;

80椭球高斯投影坐标换带计算编程

辽宁工程技术大学 大地测量基础 综合训练二 教学单位测绘与地理科学学院 专业测绘工程 名称 80椭球高斯投影坐标换带计算编程班级测绘14-1 学号 学生姓名 指导教师王佩贤

目录 一、高斯投影坐标换带的原理 (3) 二、高斯投影坐标换带的目的 (6) 三、坐标换带的意义 (8) 四、程序设计基础 (8) 五、程序界面及源码 (11) 六、程序验证 (15) 七、软件评价 (15) 八、软件使用说明 (16)

一、高斯投影坐标换带的原理 1.1高斯投影基本概念 想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。 特点:(1)正形投影(角度不变,a=b:长度比与方向无关); (2)中央子午线投影为纵坐标轴; (3)中央子午线投影后长度不变。 1.2高斯投影邻带换算

1.定义:将一个带的高斯平面坐标换算为另一带的高斯平面坐标称为高斯坐标的邻带换算 2.内容: 1 )不同六度带和不同三度带之间的化算 2 )三度带和六度带之间的化算 3.方法: 1 )直接法: 利用相邻两带坐标之间关系式进行坐标互换 2 )间接法:通过大地坐标进行高斯正反算互相换算 目前广泛采用间接换带计算法,因此下面就此方法作介绍。 如将第一带(东带或西带)的平面坐标换算为第二带(西带或东带)的平面坐标,方法是先根据第一带的平面坐标x,y 和中央子午线的经度L 。按高斯投影坐标反算公式求得大地坐标B,L 然后根据B,L 和第二带的中央子午线经度按高斯投影坐标正算公式求得在第二带中的平面坐标 。由于在换带计算中,把椭球面 上的大地坐标作为过渡坐标,因而称为间接换带法。这种方法理论上是严密的, 精度高,而且通用性强,他适用于6°带与6°带,3°带与3°带,6°带与3°带之间的坐标换带。虽然这种方法计算量较大,但可用电子计算机计算来克服,故已成为坐标换带中最基本的方法。 正算公式: 6 4256 4 42234 22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+ ''++-''+''?''+=ρηηρ ρ

高斯投影正反算及换带计算VB程序设计

摘要 本设计主要阐述了高斯投影分带以及高斯投影坐标正、反算的推导公式,从而根据公式来编写基于VB语言基础上的换带及坐标转换程序。作者系统介绍了测量中经常使用的坐标系以及地图投影的概念和高斯投影的具体含义,叙述了换带和临带计算的原因以及它们在运算时的原理、过程,详细叙述了在VB语言中实现的原理基础以及代码的编写设计。 在设计中根据高斯的正反算公式写出了基于VB语言的程序设计,其程序设计任务完成了由地理坐标向54平面坐标系和80平面坐标系转换的功能,以及由54坐标系和80坐标系向地理坐标系转换的功能,同时也有同一平面坐标系不同投影带之间的换带计算和同一平面坐标系相同投影带临带计算等相互转换的功能。 关键词:高斯投影、坐标正反算、换带计算、临带换算、程序设计 5程序设计 5.1界面设计 本程序要实现的功能是根据所选择的椭球参数和指定的分带情况,将已知地理坐标或高斯投影坐标经正算和反算求得相应的高斯坐标和地理坐标,以及相应的换带计算和临带计算。因此需要用一个框架控件来组织椭球参数、两个框架分别组织分带选择和换算方式选择,两个框架组织地理坐标和高斯坐标,三个命令按钮分别执行投影计算、换带和临带计算。程

序设计界面如图5-1[9] 图5-1 高斯投影计算程序设计界面 命令按钮属性设置表如表5-1 表5-1 命令按钮属性设置表

选择椭球框架内控件的属性值表5-2 表5-2 择椭球框架内控件的属性值 单选按钮控件属性设置表5-3 5-3 单选按钮控件属性设置表 5.2程序代码设计 在这里主要介绍高斯投影坐标转换的正反算代码设计,完整的代码见附录1所示。 5.2.1投影计算过程的正算子过程代码设计

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):

高斯投影以及中央子午线的判断

高斯投影及其中央子午线的判断 一、高斯-克吕格投影 1、高斯-克吕格简介 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。 2、高斯-克吕格特性 (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 3、投影的基本概念 它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕格投影分为3o带和6o带投影。 4、分带投影

高斯投影正反算 代码

#include "stdafx.h" #include "iostream.h" #include "math.h" #include "stdio.h" #define P 206264.806247096355 #define PI 3.141592653589793 void GaosZ_fun() { printf("高斯投影的正算\n"); double l,L,B,n2,x,y,N,t,V,c,e2; double i,j,k,n,h,a0,a4,a6,a3,a5,cB2; int m; e2=0.006738525414683; c=6399698.901782711; B=17.33557339*3600/P; L=119.15521159*3600/P; l=L-111*3600/P // l=((m%6)*3600+n*60+h)/P; t=tan(B); n2=e2*cos(B)*cos(B); V=sqrt(1+n2); cB2=pow(cos(B),2); N=6399698.902-(21562.267-(108.973-0.612*cB2)*cB2)*cB2; // N=c/V; a0=32140.404-(135.3302-(0.7092-0.004*cB2)*cB2)*cB2; a4=(0.25+0.00252*cB2)*cB2-0.04166; a6=(0.166*cB2-0.084)*cB2; a3=(0.3333333+0.001123*cB2)*cB2-0.1666667; a5=0.0083-(0.1667-(0.1968+0.0040*cB2)*cB2)*cB2; // x=X+N*sin(B)*cos(B)*l*l/2+N*sin(B)*pow(cos(B),3)*(5-t*t+9*n2+4*n2*n2)*pow(l, 4)/24+N*sin(B)*pow(cos(B),5)*(61-58*t*t+pow(t,4))*pow(l,6)/720; // y=N*cos(B)*l+N*pow(cos(B),3)*(1-t*t+n2)*pow(l,5)/6+N*pow(cos(B),5)*(5-18*t*t +pow(t,4)+14*n2-58*n2*t*t)*pow(l,5)/120; x=6367558.4969*B-(a0-(0.5+(a4+a6*l*l)*l*l)*l*l*N)*sin(B)*cos(B); y=(1+(a3+a5*l*l)*l*l)*l*N*cos(B); printf("x=%f\ny=%f\n",x,y); } void GaosF_fun() { printf("高斯投影的反算\n"); double B,Bf,Nf,b,b2,b3,b4,b5,Z,x,y,L0,l;

相关文档
相关文档 最新文档