文档库 最新最全的文档下载
当前位置:文档库 › 工程电磁场实验三

工程电磁场实验三

工程电磁场实验三
工程电磁场实验三

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场实验

实验一 静电场边值问题 对于复杂边界的静电场边值问题,用解析法求解很困难,甚至是不可能的。在实际求解过程中,直接求出静电场的分布或电位又很困难,其精度也难以保证。本实验根据静电场与恒定电流场的相似性,用碳素导电纸中形成的恒定电流场来模拟无源区域的二维静电场,从而测出边界比较复杂的无源区域静电场分布。 一、 实验目的: 1、学习用模拟法测量静电场的方法。 2、了解影响实验精度的因素。 二、 实验原理: 在静电场的无源区域中,电场强度E '电位移矢量D '及电位Ф、满足下列方程: ▽×E 、= 0 ▽×D '= 0 D '=ε E 、 E 、 = - ▽φ 、 (1.1.1) 式中ε为静电场的介电常数。 在恒定电流场中,电场强度E 、电流密度J 及电位Ф满足下列方程: ▽×E = 0 ▽·J = 0 J = δE E =-▽Φ (1.1.2) 式中δ为恒定电流场中导电媒质的电导率。 因为方程组(1.1.1)与方程组(1.1.2)在形式上完全相似,所以φ、(静电场中的电位分布函数)与Φ(恒定电流场中的电位分布函数)应满足同样形式的微分方程。由方程组(1.1.1)和方程组(1.1.2)很容易求得: ▽·(ε▽φ、)= 0 (1.1.3) ▽·(δ▽Φ)= 0 (1.1.4) 式中ε与δ处于相应的位置,它们为对偶量。 若ε与δ在所讨论区域为均匀分布(即其值与坐标无关),则方程(1.1.3)、(1.1.4)均可简化为 拉普拉斯方程: 2?φ'= 0 02=Φ? 电位场解的唯一定理可知:满足相同微分方程的两个电位场,它们具有相同的边界电位值,因此,在保证边界电位值不变的情况下,我们可以用恒定电流场的模型来模拟无源区域的静电场,当静电场中媒质为均匀媒质时,其导电媒质也应为均匀媒质,这样测得的恒定电流场的电位分布就是被模拟的静电场的电位分布,不需要任何改动。 三、 实验内容及实验装置: 1、被测模型有两个:一个用来模拟无边缘效应的平行板电容器中的电位分布;另一个用来模拟有金属盖的无限长接地槽形导体内电位分布。被模拟的平行板电容器,加盖槽形导体及

工程电磁场

如何描述线1周围的用来决定对线2作用力的力场?

Note that in the third case (perpendicular currents), I2 is in the same direction as H, so that their cross product (and the resulting force) is zero. The actual force computation involves a different field quantity, B, which is related to H through B = μ0H in free space. This will be taken up in a later lecture. Our immediate concern is how to find H from any given current distribution. 第三种情况,磁场与电流平行,叉乘=0

特别注意与距离的平方成反比, 而且叉矢量指向纸内(右手螺旋法则决定)Note the similarity to Coulomb’s Law a point charge of magnitude dQ1at Point 1 would generate electric field at Point 2 given by: The units of H are [A/m]

To determine the total field arising from the closed circuit path, we sum the contributions from the current elements that make up the entire loop, or The contribution to the field at P from any portion of the current will be just the above integral evalated over just that portion.

武大电气工程电磁场仿真实验报告

武汉大学 工程电磁场及高电压综合实验

一、题目 有一极长的方形金属槽,边宽为1cm,除顶盖电位为100sinπxV外,其他三面的电位均为零,试用差分法求槽内电位的分布。 二、解题原理:均匀媒质中的有限差分法 我们在求解场的分布时,当边界形状比较复杂时,解析分析法不再适合了,我们可以采用数值计算的方法,数值计算法的基本思想,是将整体连续的场域划分为若干个细小区域,一般称之为网格或单元,如图1所示,然后用所求的网格交点(一般称为节点或离散点)的数值解,来代替整个场域的真实解。因而数值解,即是所求场域离散点的解。虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点数目也愈多,近似解(数值解)也就愈逼近于真实值。 实解。在此处键入公式。 图1场域的剖分,网格节点及步长

(一)、场域的剖分、网格节点及步长 由边界Γ所界定的二维平行平面场(见图1),若采用直角坐标系则可令该场处在xoy 平面内。 所谓场域的剖分就是场域的离散化,即将场域剖分为若干个网格或单元。最常见最简单的剖分为正方形剖分,这种剖分就是在xy 平面上作许多分别与x 轴及y 轴平行的直线,称为网格线。网格线的交点称为节点或离散点,场域内的节点称为内节点,场域边界上的节点称为边界节点。两相邻网格线间距离称为步长,一般以h 表示。若步长相等则整个场域就被剖分为许多正方形网格,这就是正方形剖分。节点(离散点)的布局不一定采用正方形剖分,矩形剖分也常采用,正三角形剖分偶尔也被应用,不过最常见的最简单的仍然是正方形剖分。 (二)、差分与微分 从前面的分析可知,稳恒电、磁场的求解问题,归根到底是求解满足给定边界条件的偏微分方程(泊松方程或拉普拉斯方程)的解的问题所谓差分方法,就是用差商近似代替偏微商,或者说用差分代替微分,从而把偏微分方程转换为差分方程,后者实际上为代数方程。因此这种转化有利于方程的求解。 下面分别对一阶及二阶的差分公式进行推导。首先回顾有关偏导数的定义,有 00(,)(,)(,)(,) lim lim x x f f x x y f x y f x y f x x y x x x →→?+---==? (1) 因此当|x| 充分小时,可近似地用(,)(,)f x x y f x y x +- 或(,)(,) f x y f x x y x -- 代 替 f x ??,所谓差分公式,即是基于上述观点推得的。 设图1所示场域中的位函数为A ,任取一网格节点0,它在xy 平面上的坐标为(x ,i i y ),记节点0的矢量磁位为,i j A ,并把与节点0相邻的其他四个节点1、2、3、4的矢量磁位分别记为1,i j A +、,1i j A +、1,i j A -、,1i j A -,将节点0处函数A 的 一阶偏微商A x ??,用1、0两点函数值的差商1,,i j i j A A h +-近似代替,则有

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

工程电磁场实验报告

实验一 实验目的和要求:学习矢量的定义方法(例A=[1,2,3]),加减运算,以及点积dot(A,B)、叉积cros s (A,B)、求模运算n orm(A)。 实验内容: 1、通过调用函数,完成下面计算【p31,习题1.1】。 给定三个矢量A 、B 和C 如下: 23452x y z y z x z A e e e B e e C e e =+-=-+=- 求(1)A e ;(2)||A B -; (3)A B ?; (4)AB θ (5)A 在B 上的投影 (6)A C ?; (7)()A B C ??和()C A B ??; (8)()A B C ??和()A B C ?? 程序如下: A=[1,2,-3]; B=[0,-4,1]; C=[5,0,-2]; ea=A/norm(A) T2=norm(A-B) T3=dot(A,B) theta=acos(dot(A,B)/(norm(A)*norm(B))) theta*180/pi T5=norm(A)*cos(theta) T6=cross(A,C)

T71=dot(A, cross(B,C)) T72=dot(cross(A,B), C) T81=cross(cross(A,B),C) T82=cross(A,cross(B,C)) 运行如图: 结果如下:

2、三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三角形的面积;(2)与该三角形所在平面垂直的单位矢量。 程序如下: A=[6,-1,2]; B=[-2,3,-4]; C=[-3, 1,5]; n=cross(B-A, C-A); S=1/2*norm(n)

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场实验报告

实验一:静电场的分析与求解 1.求二维标量场u(r)=y^2-x的梯度 [x,y]=meshgrid(-2:.2:2,-2:.2:2); z=y.^2-x; [px,py]=gradient(z,.2,.2); contour(z) hold on quiver(px,py) hold off title('等值线与梯度'); 2.2个等量同号点电荷组成的点电荷系的电势分布图clear v='1./((x-3).^2+y.^2).^0.5+1./((x+3).^2+y.^2).^0.5'; xmax=10; ymax=10; ngrid=30; xplot=linspace(-xmax,xmax,ngrid); [x,y]=meshgrid(xplot); vplot=eval(v); [explot,eyplot]=gradient(-vplot); clf; subplot(1,2,1),meshc(vplot); xlabel('x'); ylabel('y'); zlabel('电位');

subplot(1,2,2),axis([-xmax xmax -ymax ymax]); cs=contour(x,y,vplot); clabel(cs); hold on quiver(x,y,explot,eyplot) xlabel('x'); ylabel('y'); hold off 3.电偶极子的场(等位线和梯度) clear; clf; q=2e-6; k=9e9; a=1.5; b=-1.5; x=-6:0.6:6; y=x; [X,Y]=meshgrid(x,y); rp=sqrt((X-a).^2+(Y-b).^2); rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); [Ex,Ey]=gradient(-V); AE=sqrt(Ex.^2+Ey.^2); Ex=Ex./AE; Ey=Ey./AE; cv=linspace(min(min(V)),max(max(V)),49);

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

工程电磁场实验报告

工程电磁场实验报告 姓名: 学号: 联系式: 指导老师:

实验一螺线管电磁阀静磁场分析 一、实验目的 以螺线管电磁阀静磁场分析为例,练习在 MAXWELL 2D 环境下建立磁场模型,并求解分析磁场分布以及磁场力等数据。 二、主要步骤 a) 建立项目:其中包括生成项目录,生成螺线管项目,打开新项目 与运行MAXWELL 2D。 b) 生成螺线管模型:使用MAXWELL 2D 求解电磁场问题首先应该选择求解 器类型,静磁场的求解选择Magnetostatic,然后在打开的新项目中定义画图平面,建立要求尺寸的螺线管几模型,螺线管的组成包括 Core 、Bonnet 、Coil 、Plugnut、Yoke。 c) 指定材料属性:访问材料管理器,指定各个螺线管元件的材料,其中部分 元件的材料需要自己生成,根据给定的BH 曲线进行定义。 图1 元件材料 图2 B-H曲线 d) 建立边界条件和激励源:给背景指定为气球边界条件,给线圈Coil 施加电 流源。 e) 设定求解参数:本实验中除了计算磁场,还需要确定作用在螺线管铁心上 的作用力,在求解参数中要注意进行设定。

f) 设定求解选项:建立几模型并设定其材料后,进一步设定求解项,在对话 框Setup Solution Options 进入求解选项设定对话框,进行设置。 三、实验要求 建立螺线管电磁阀模型后,对其静磁场进行求解分析,观察收敛情况,画各种收敛数据关系曲线,观察统计信息;分析 Core 受的磁场力,画磁通量等势线,分析P lugnut 的材料磁饱和度,画出其B H 曲线。通过工程实例的运行,掌握软件的基本使用法。 四、实验结果 1.螺线管模型 图3 2.自适应求解 图4 收敛数据

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场实验报告

电磁场实验报告 姓名:KZY 班级:自动化1405 学号:090114050X 时间:2016年10月23日

实验名称单缝衍射实验、自由空间中电磁波参量的测量 一、实验目的 1、了解电磁波的空间传播特性 2、通过对电磁波波长、波幅和波节的测量进一步了解和认识电磁 波。 3、利用电磁波的干涉原理,研究均匀无耗媒质εr的测量方法。 4、熟悉均匀无耗媒质分界面对电磁波的反射和透射特性。 二、实验仪器设备 1、单缝衍射仪器配置 2、单缝衍射板 3、半透射板 4、全反射板 三、实验原理 1、单缝衍射原理 查阅参考书籍可知,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为Фmin=sin-1λ/α。其中λ是波长,α是狭缝宽度。两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角

度为:Фmin=sin-1(3/2·λ/α)。 2、迈克尔逊干涉原理 由于两列波存在一定关系的波程差,两列波将发生干涉。而两列波发生干涉,存在合成振幅会出现最大与最小的情况。实验中,为了提高测量波长的精确度,测量多个极小值的位置,设S0为第一个极小值的位置吗,S n为第(n+1)个极小值的位置,L=|S n-S0|,则波长λ=2L/n。 三、实验内容与实验步骤 (1)单缝衍射实验 1、打开DH1121B的电源; 2、将单缝衍射版的缝宽α调整为70mm左右,将其安放在刻度盘上,衍射版的边线与刻度盘上两个90°对齐。

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

北邮电磁场与电磁波演示实验

频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行:

GSM900下行:

CDMA下行: 3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请 分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G 网络参量测量演示实验 1矢量网络分析仪所测频段:300KHz—3GHz 2端口最大射频信号: 10DBM 3矢量网络分析仪为何要校准: 首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。 4默认校准和用户校准的区别: 默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。 5使用矢量网络分析仪的注意事项: 1、检查电源: 分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地; 2、供电电源要求: 为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电; 3、电源线的选择: 使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

电磁场实验一报告

电磁场与电磁波测量 实验报告 电磁波的反射和折射实验 2016年03月7日 姓名 学号 班级 班内序号 米靳隆 2013211004 7 16 岳志恒 2013211005 7 17 王力 2013211006 7 18

实验一电磁波反射和折射实验 1 实验目的 熟悉S426型分光仪的使用方法 掌握分光仪验证电磁波反射定律的方法 掌握分光仪验证电磁波折射定律的方法 2 实验设备 S426型分光仪 图1 S426型分光仪 3 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居法线两侧,反射角等于入射角。 电磁波斜入射到两种不同媒质分界面上时会发生反射和折射现象,同时,分界面对电磁波的反射和折射现象与入射波的极化方向有关。 4 实验内容与步骤 4.1 熟悉分光仪的结构和调整方法 4.2 连接仪器,调整系统 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,

并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。 4.3 测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻度就与金属板的法线方向一致。转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。如果此时表头指示太大或太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接近满量程。 做此项实验,入射角最好取30至65度之间。因为入射角太大接受喇叭有可能直接接受入射波。做这项实验时应注意系统的调整和周围环境的影响。 5 实验数据处理与误差分析 5.1 金属板全反射实验 5.1.1 实验数据 表1 金属全反射实验结果记录 5.1.2 数据分析 理论上的反射角应等于入射角,实验测得的反射角在与入射角接近的角度附近有两个不同的峰值,但与入射角值,验证了电磁波的反射定律。但是随着入射角的增大,入射角和反射角的差值有逐渐增大的趋势。 5.1.3 误差分析 1. 实验仪器本身存在系统误差,两个喇叭天线、反射板之间无法实现绝对的平行或垂直。 2. 环境影响产生误差,分光仪的一侧是墙壁,而另一侧是实验室内空间,两侧环境带来不同的且不稳定的漫反射,从而干扰了电磁波。随着入射角的增大,两个喇叭天线之间的距离越大,环境影响产生的误差也就越显著。

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βωλν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λππ2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

相关文档
相关文档 最新文档