文档库 最新最全的文档下载
当前位置:文档库 › 钻柱纵向和扭转振动分析

钻柱纵向和扭转振动分析

钻柱纵向和扭转振动分析
钻柱纵向和扭转振动分析

轴系扭振

汽轮发电机组的轴系扭振 电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。 产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。 从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。其中影响较大的可归纳为以下四个方面: 1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种 类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。 2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械 应力。例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短 路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同 时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭 转振动。 3.电力系统次同步振荡对轴系扭振的影响:在电力系统高压远距离输电线路上,当采用串联补偿电容用以提高输电能力时,该电容器同被补偿的输电线 路的电感,将构成L-C回路(略去回路电阻)并产生谐振。当电网频率与上 述的谐振频率的差值与轴系某一机械固有扭振频率相同或接近时,则上述的 电气谐振与机械扭振合拍并相互激励,从而给机组轴系的安全运行构成严重 的威胁。由于电气谐振频率低于电网频率,通常称为次同步振荡。 4.电力系统负序电流对轴系扭振的影响:发电机定子绕组中的负序电流可由三相负荷不平衡、各种不对称短路、断线故障引起。负序电流相当于一个外力 源,因此由负序电流产生的轴系扭振有别于上述的自激扭振,并称之为强迫 扭振。负序电流在电机中产生的旋转磁场与转子的励磁磁场相互作用,并产 生交变转矩作用在轴系上,如果这一交变转矩的频率同机组轴系某一个固有 的扭振频率重合,就会激发起轴系的扭振。 预防和抑制轴系扭振的措施可以从设计制造、运行方式,机—电配合、在线监测等几个方面针对不同的情况采取相应的措施。 设计制造,是指包括汽轮发电机轴系扭振频率、绕组的设计、选材、工艺和机械加工以及输电系统的线路的结构方式、继电保护、控制手段以及串联电容补偿方式的设计与选择

工程车辆传动系统扭转振动特性研究与分析

1工程车辆扭转振动动力学模型的建立 工程车辆传动系统一端通过离合器与发动机相连,输出端通过轮胎与工程车辆平动质量相连,组成了一个多质量的弹性扭转振动系统。在计算整个系统的固有频率和振型时,通常可忽略系统的阻尼,将整个传动系统看成是由多个刚性圆盘通过弹性轴连接的无阻尼振动系统。现在某型装备四缸柴油机的中型装载机传动系统为例,其扭转振动力学模型如图1-1所示。 1.1 当量转动惯量的计算 当量转动惯量J 是指将传动系统中与发动机曲轴不同转速旋转的零部件的转动惯量换算成与曲轴同转速旋转下的转动惯量,这种换算方法的原理是能量守恒。设传动轴的转动惯量为J,实际转速为ω曲轴转速为0ω,则将传动轴换算成曲轴转速0ω的当量转动惯量为 2 2 2 0212121??? ? ??=???? ??==g d d i J J J J J ω ωωω 式中,g i 为变速器的传动比。 1.2当量扭转刚度的计算 设两圆盘之间弹性轴的当量扭转刚度为d K ,则可以根据弹性变形量守恒的原理将系统中的时间扭转刚度K 换算过来。现以后桥半轴为例,相应的当量扭转刚度为 2 01??? ? ??=i i K K g d

式中,0i 为主减速器的传动比。 2传动系统扭转动力学方程 根据图1-1所示的简化的传动系统模型,可建立系统动力学方程组为 -0-)-)()(-----111010111111101010991010343332233232221122121111=+=+-=-+-=+=+)()(()()() (。。。。。。。。 。。 θθθθθθθθθθθθθθθθθθθθθK J K K J T K K J T K K J T K J (1) 方程组(1)中,111-θθ分别为对应质量的扭转角位移;41-T T 分别为发动机1-4缸的有效输出转矩。 为了简单起见,可以将(1)改为矩阵形式的动力学方程一般式,即 T K C J =++θθθ。 。。 式中,当量转动惯量矩阵??????? ? ????? ?? ?=111021 00J J J J J 阻尼矩阵C=[0];刚度矩阵; 圆盘的角位移矩阵[]T 114321 0θθθθθθ =。 一般以发动机振动激励为系统输入矩阵,则 []T T T T T T 004 321 = 2.1扭转系统固有特性的分析 这里的固有特性是指固有频率和主振型,多自由度系统的固有频率和主振型可以根据系统的无阻尼自由振动方程得到,即 0=+θθK J 。。 (2) 假设方程的解为 t n i e ωθA = (3) 式中,A 为系统自由振动时的振幅列向量,[]T m m m m A A A A A 1132 1 =。

传动系统振动

汽车动力传动系振动分析 [ 摘要]综述了车辆动力传动系振动的研究进展从振动的角度看,车辆动力传动系可分为 弯曲振动系统和扭转振动系统目前主要采用试验模态分析和有限元等研究方法对动力传动系弯曲振动特性进行研究,建立了较为理想的弯曲振动分析模型在动力传动系扭转振动的 研究方面,许多学者对此进行了有益探索研究,并取得了一定的进展但限于分析条件,车辆 动力传动系弯曲、扭转振动耦合的研究尚不十分完善,尤其在国内,这一研究尚处于起步阶段因此,在动力传动系弯曲、扭转振动的研究已相对成熟的基础上,动力传动系的弯曲、扭 转振动耦合对其振动特性影响的研究将是今后一段时间的主要研究内容车辆是一个复杂的振动系统,它是由多个具有固有振动特性的子系统组成,作为子系统之一 的动力传动系,即包括动力总成、传动轴、驱动桥总成组成的系统是车辆振动和噪声的重要激励源从振动的角度看,车辆动力传动系可分为两个振动系统:弯曲振动系统和扭转振动系 统车辆动力传动系的弯曲振动系统和扭转振动系统不仅有各自的固有振动特性,而且还存 在一定程度的振动耦合这些不同形式的振动及其耦合,是影响车辆行驶平顺性,乘坐舒适性及动力传动系零部件使用寿命的主要原因之一,因此对车辆动力传动系的整体振动进行深入细致的研究,显得十分必要 1 动力传动系弯曲振动研究车辆动力传动系弯曲振动在很大的频率段内对车辆振动和噪声有着重要影响,动力传动系低频段内的刚体振动直接影响车辆的乘坐舒适性, 而较高频段内的弹性振动将会引起车辆 的结构共振和声学共振近年来,随着对提高乘坐舒适性、减小汽车振动要求的提高,对动力传动系弯曲振动特性的进一步研究,已显得十分迫切,国内外对动力传动系弯曲振动的研究 起步较早,在理论研究方面取得一定进展,试验研究也较为成熟建立由离散的集中质量、弹 簧、阻尼器组成的力学模型是对动力传动系弯曲振动特性进行研究分析的一种行之有效的方法後藤进[1 ]建立了具有1 1个自由度的动力传动系的弯曲振动力学模型,并通过试验验证 试验结果和计算结果取得较好一致文献[2 ]也建立了动力传动系弯曲振动多自由度力学模型,指出系统的弯曲振动是由发动机运动部件往复惯性力、传动轴的不平衡等引起的, 并通 过实验测定有关参数值,计算系统的固有频率、振型隋军[3、4]建立包括动力总成及传动轴的 5 个自由度的弯曲振动力学模型,计算系统的固有振动特性和响应, 指出动力总成的弯 曲振动是汽车飞轮壳损坏的主要原因这种建模方法及其实用性已为大量的计算和试验分析结果所证实,并且已总结出了确定模型集中质量、弹性和阻尼的一般原则,能有效地用于分析解决车辆动力传动系弯曲振动问题日臻完善的试验模态分析技术,在动力传动系弯曲振动特性的研究中得到广泛应用试验模态分析在动力传动系弯曲振动特性研究中的应用, 经历了从单个总成发展到多个总成直至整个动力传动系的过程隋军[4] 、张建文[5]对动力传动 系动力总成进行了试验模态分析,认为动力总成的弯曲振动是造成汽车离合器壳开裂的主 要原因余龄[6] 利用试验模态分析技术测定了包括动力总成及传动轴的组合系统的一阶弯曲振动频率,张金换[7]则通过模态试验分析研究动力传动系传动轴的临界转速孙方宁[8, 9] 、俄延华[1 0 ] 在整车条件下,对动力传动系弯曲振动进行模态试验,得到整个动力传动系弯曲 振动的模态参数高云凯[1 1 ] 在台架及整车条件下,对汽车动力总成弯曲振动试验模态分析中的非线性特性进行研究,结果表明这一非线性特性仅存在于整车条件下的试验模态分析 试验模态分析具有快速、简便地识别结构固有特性的特点,但其精度主要取决于试验者的经 验和所使用的测试仪器、分析程序模态综合法是对动力传动系弯曲振动进行分析的有效方法,其基本思想是将动力传动系分为若干个子系统,在完成对各子系统的模态分析后, 建立 自由模态的综合方程,再利用平衡条件和约束条件将自由度简化,最后获得一个自由度大为

轴系扭振

电信号扰动下的轴系扭振 摘要 本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。 关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动 1.引言 转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。 当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法 (TMM)解决频域内的动态问题。TMM使用了一种匹配过程,即从系统一侧的边界条 1

含有故障的齿轮系统扭转振动分析

第22卷 第4期2007年12月 北京机械工业学院学报 Journa l of Be ijing Institute o fM ach i nery V o.l22N o.4 D ec.2007 文章编号:1008-1658(2007)04-0013-05 含有故障的齿轮系统扭转振动分析 朱艳芬1,陈恩利1,申永军1,王翠艳2 (1.石家庄铁道学院 机械工程分院,石家庄050043;2.石家庄铁道学院 工程训练中心,石家庄050043) 摘 要:建立了故障单自由度齿轮系统扭转振动的数学模型,采用加入脉冲的形式进行故障模拟,并利用数值方法进行对该模型进行仿真,进行定性研究。作出了系统模型的幅频响应曲线,与无故障时的曲线相比较,发现在低速时脉冲对系统的影响较大。另外,还对该模型进行了参数研究,分别比较了在不同阻尼比和不同激振力情况下的脉冲对系统幅频曲线的影响。 关 键 词:单自由度直齿轮系统;扭转振动;数值方法;幅频响应曲线;参数研究 中图分类号:TH113 文献标识码:A Analysis of torsional vibration of a spur gear system w ith faults ZHU Y an-fen1,C H E N Een-li1,SH E N Yong-jun1,WANG Cu-i yan2 (1.Schoo l ofM echan i calEng i neeri ng,Shiji az huang Rail w ay Ins tit u te,Sh iji az huang050043; 2.Eng i neeri ng Tra i n i ng C enter,Sh iji az hu ang Rail w ay I n stitute,Sh ijiazhuang050043) Abstract:The torsional v i b ration m odel o f the spur sing le-DOF gear syste m w it h fau lts is bu il,t and the for m o f the pulses is adop ted to si m u late the faults.Th i s m ode l is ca lculated by usi n g the num erica l m ethod.The response o f the m ode l is ana lyzed,and the Am p litude frequency Curves are p l o tted,and t h e greater fl u ence of the pu lse is found in the lo w frequency.The para m eters of the mode l are researched, and the Am plitude-frequency Curves under vari o us da m pi n g ratio and under vari o us exc iting-v ibration force are co m pared respectively. Key w ords:spur si n gle-DOF gear syste m;torsi o na l v ibration;num erica lm ethod;t h e Am plitude-fre-quency Curves;para m eters study 齿轮作为机械系统中的重要传动装置,在机械、化工、航天等行业的装备中起着非常关键的作用。为了满足航空、航天及机器人等技术发展的需要,采用传统的线性分析和控制理论已难以满足这一要求。由于零部件间的间隙、运动负重的摩擦及时变刚度等因素,实际的齿轮传动系统都是非线性系统,传统的线性分析和控制是对其进行的一种近似处理,只有对齿轮传动系统实施非线性分析和非线性控制才能获得精度高、振动小和噪声低等性能的齿轮传动系统。齿轮的工作状态正常与否对运动和动力的传输具有重要的影响[1]。因此,研究齿轮系统的动力学与故障诊断具有重要的理论价值和工程意义。 关于带故障的齿轮系统动力学建模及动力学分析则见于Parey的文章[2],其中的缺陷主要包括摩擦、磨损、点蚀和剥落等,介绍了带有故障的各种齿轮动力学模型等,另外,Kuang[3]等人建立了考虑齿面磨损的齿轮动力学方程,齿面磨损会影响啮合过程中的齿面轮廓,从而会影响到啮合刚度、阻尼力以及摩擦力等,这样将会使得系统的方程非常复杂。 本文从单自由度齿轮系统入手,经过模型简化,模拟了齿轮系统故障引起的刚度变化后的齿轮模型,并定性地分析了其动力学特性。 1故障单自由度齿轮系统理论模型 首先建立正常直齿轮副扭转振动的数学模型。扭转振动模型是仅考虑系统扭转振动的模型,在齿轮系统的振动分析中,若不考虑传动轴的横向和轴向弹性变形以及支承系统的弹性变形,则可将系统简化成纯扭转的振动系统,在实际工程中许多复杂 收稿日期:2007-09-04 基金项目:国家自然科学基金资助项目(10602038) 作者简介:朱艳芬(1976-),女,河北藁城人,石家庄铁道学院机械工程分院硕士研究生,主要从事机械系统动力学控制等研究。

船舶柴油机的轴系扭转振动的分析与研究

船舶柴油机的轴系扭转振动的分析与研究 【摘要】本文通过一些国内因轴系扭转振动而引起的断轴断桨的事故实例,来分析引起轴系扭转振动的主要原因,分析扭振主要特性,并提取一些减振和防振的基本控制措施。 【关键词】船舶柴油机轴系扭振危害分析措施 在现代船舶机械工程中,船舶柴油机轴系扭转振动已经成为一个很普遍的问题,它是引起船舶动力装置故障的一个很常见的原因,国内外因轴系扭转而引起的断轴断桨的事故也屡见不鲜,随着科学水平的提高和航运业的发展,人们越来越重视船舶柴油机组的轴系扭转振动,我国《长江水系钢质船舶建造规范》和《钢质海船入级与建造规范》(简称《钢规》)和也均规定了在设计和制造船舶过程中,必须要向船级社呈报柴油机组的轴系扭转振动测量和计算报告,以此来表明轴系扭转振动的有关测量特性指标均在“规范”的允许范围内。 1 船舶柴油机轴系扭转振动现象简介 凡具有弹性与惯性的物体,在外力作用下都能产生振动现象。它在机械,建筑,电工,土木等工程中非常普遍的存在着。振动是一种周期性的运动,在许多场合下以谐振的形式出现的,船舶振动按其特点和形式可分为三种,船体振动,机械设备及仪器仪表振动,和轴系振动。船舶柴油机轴系振动按其形式可分为三种:扭转振动,纵向振动,横向振动。柴油机扭转振动主要是由气缸内燃气压力周期性变化引起的,它的主要表现是轴系上各质点围绕轴系的旋转方向来回不停的扭摆,各轴段产生不相同的扭角。纵向振动主要是由螺旋桨周期性的推力所引起的。横向振动主要是由转抽的不平衡,如螺旋桨的悬重以及伴流不均匀产生的推力不均匀等的力的合成。 船舶由于振动引起的危害不但可以产生噪音,严重影响旅客和船员休息,还会造成仪器和仪表的损害,严重的时候甚至出现船体裂缝断轴断桨等海损事故,直接影响船舶的航行安全。而在船舶柴油机轴系的三种振动中,产生危害最大的便是扭转振动,因扭转振动而引起的海损事故也最多,因此对扭转振动的研究也最多。而且当柴油机轴系出现扭转振动时,一般情况下,船上不一定有振动的不适感,因此这种振动也是最容易被忽视的一种振动形式,一旦出现扭转振动被忽视,往往意味着会发生重大的事故。更应该注意的是,当发动机运转在主临界速度时,自由端的传动齿轮箱往往容易发生齿击或噪声大的现象,这时检查时会发现齿轮有点蚀或剥落等磨损现象,严重时会有断齿事故。有时在强共振的情况下,轴系中的某些位置只要数分钟运行就能自行发热,稍有疏忽,就可能造成断轴断桨的海损事故。 2 船舶柴油机因扭振而引起的断轴断桨的事故及分析 (1)广西海运局北海分局所属沿海货轮400吨桂海461、462、463,三条

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

传动系统振动

汽车动力传动系振动分析 [摘要 ]综述了车辆动力传动系振动的研究进展从振动的角度看 ,车辆动力传动系可分为弯曲振动系统和扭转振动系统目前主要采用试验模态分析和有限元等研究方法对动力传动系弯曲振动特性进行研究 ,建立了较为理想的弯曲振动分析模型在动力传动系扭转振动的研究方面 ,许多学者对此进行了有益探索研究 ,并取得了一定的进展但限于分析条件 ,车辆动力传动系弯曲、扭转振动耦合的研究尚不十分完善 ,尤其在国内 ,这一研究尚处于起步阶段因此 ,在动力传动系弯曲、扭转振动的研究已相对成熟的基础上 ,动力传动系的弯曲、扭转振动耦合对其振动特性影响的研究将是今后一段时间的主要研究内容 车辆是一个复杂的振动系统,它是由多个具有固有振动特性的子系统组成,作为子系统之一 的动力传动系,即包括动力总成、传动轴、驱动桥总成组成的系统是车辆振动和噪声的重要激励源从振动的角度看,车辆动力传动系可分为两个振动系统:弯曲振动系统和扭转振动系统车辆动力传动系的弯曲振动系统和扭转振动系统不仅有各自的固有振动特性,而且还存在一定程度的振动耦合这些不同形式的振动及其耦合,是影响车辆行驶平顺性,乘坐舒适性及动力传动系零部件使用寿命的主要原因之一,因此对车辆动力传动系的整体振动进行深入细致的研究,显得十分必要 1 动力传动系弯曲振动研究 车辆动力传动系弯曲振动在很大的频率段内对车辆振动和噪声有着重要影响,动力传动系低频段内的刚体振动直接影响车辆的乘坐舒适性,而较高频段内的弹性振动将会引起车辆的结构共振和声学共振近年来,随着对提高乘坐舒适性、减小汽车振动要求的提高,对动力传动系弯曲振动特性的进一步研究,已显得十分迫切,国内外对动力传动系弯曲振动的研究起步较早,在理论研究方面取得一定进展,试验研究也较为成熟建立由离散的集中质量、弹簧、阻尼器组成的力学模型是对动力传动系弯曲振动特性进行研究分析的一种行之有效的方法後藤进[1 ]建立了具有 1 1个自由度的动力传动系的弯曲振动力学模型,并通过试验验证,试验结果和计算结果取得较好一致文献[2 ]也建立了动力传动系弯曲振动多自由度力学模型,指出系统的弯曲振动是由发动机运动部件往复惯性力、传动轴的不平衡等引起的,并通过实验测定有关参数值,计算系统的固有频率、振型隋军[3、4]建立包括动力总成及传动轴的5个自由度的弯曲振动力学模型,计算系统的固有振动特性和响应,指出动力总成的弯曲振动是汽车飞轮壳损坏的主要原因这种建模方法及其实用性已为大量的计算和试验分析结果所证实,并且已总结出了确定模型集中质量、弹性和阻尼的一般原则,能有效地用于分析解决车辆动力传动系弯曲振动问题日臻完善的试验模态分析技术,在动力传动系弯曲振动特性的研究中得到广泛应用试验模态分析在动力传动系弯曲振动特性研究中的应用,经历了从单个总成发展到多个总成直至整个动力传动系的过程隋军[4]、张建文[5]对动力传动系动力总成进行了试验模态分析,认为动力总成的弯曲振动是造成汽车离合器壳开裂的主要原因余龄[6]利用试验模态分析技术测定了包括动力总成及传动轴的组合系统的一阶弯曲振动频率,张金换[7]则通过模态试验分析研究动力传动系传动轴的临界转速孙方宁[8, 9]、俄延华[1 0 ]在整车条件下,对动力传动系弯曲振动进行模态试验,得到整个动力传动系弯曲振动的模态参数高云凯[1 1 ]在台架及整车条件下,对汽车动力总成弯曲振动试验模态分析中的非线性特性进行研究,结果表明这一非线性特性仅存在于整车条件下的试验模态分析试验模态分析具有快速、简便地识别结构固有特性的特点,但其精度主要取决于试验者的经验和所使用的测试仪器、分析程序模态综合法是对动力传动系弯曲振动进行分析的有效方法,其基本思想是将动力传动系分为若干个子系统,在完成对各子系统的模态分析后,建立自由模态的综合方程,再利用平衡条件和约束条件将自由度简化,最后获得一个自由度大为缩减又保持了系统特性的运动方程,即组合系统方程孙方宁[8, 9]将一大型客车动力传动系划分为五个子系统,通过试验模态分析获得各子系统的模态参数,然后利用模态综合方法建立整个系统的理论分析模型,编制计算程序,对该大型客车动力传动系弯曲振动的固有振动特性进行计算,并在激振试验台上进行整个动力传动系弯曲振动的试验模态分析,结果表明理论计算和试验结果具有很好的一致性应用模态综合方法,只需获得动力传动系各子系统的模态参数,就可以通

轧机主传动系统扭振分析

冷连轧机主传动系统扭振分析 摘要:针对某新建的1420冷连轧机组,基于设计图纸建立了轧机主传动系统动力学模型。通过计算得到系统的固有频率和反共振频率、振型和Bode图,并进一步对系统的设计方案进行分析评价。结果表明,该冷连轧机主传动系统设计基本合理,部分设计参数还有优化的余地。 关键词:轧机主传动扭转振动固有频率 Torsional Vibration Analysis of the Tandem Cold Mill Main Drives WANG Zeji1,WANG Ruiting1,ZHANG Xiangjun2 (1 Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China 2 Tsinghua University, Beijing 100084, China) Abstract:Focused on the newly-built 1420mm tandem cold mill group of some iron & steel corporation, the dynamic models of the main driving system are established basing on the basis of design drawing. The natural frequencies and anti-resonance frequencies, vibration modes and Bode diagrams of the system are gained by calculating. Subsequently, the analysis and judgement of the main driving system are carried out. The results show that the design of the main driving system is reasonable on the whole, but some design parameters need to be optimized. Key words:rolling mill;main drive;torsional vibration;natural frequency 1 概述 旋转体在旋转方向产生的振动称为扭转振动,它是转转机械中普遍存在的问题【1,2】。在 冷轧生产线上,随着高速、大功率电机在冷连轧机上的使用,接轴和齿轮轴等传动系统由于 扭转振动引起的事故随着增加。轧机主传动系统的事故主要与扭振有关,它往往会对钢板表 面的平直度、厚度公差产生影响。由于扭振引起的最大附加应力可以超过电机驱动力矩所产 生的工作应力的几倍。轧机主传动系统扭振会产生很高的交变应力,严重时会造成减速箱齿 轮断裂、地脚螺丝松动等设备事故,使生产不能顺利进行,或大大缩短轴系零部件的疲劳寿 命,具有极大的破坏性,给企业造成重大损失【2,3】。 目前国内的轧机主传动系统扭振分析工作往往是在现场出现问题后才开展的,扭振问题 无法从根本上解决。现代的轧机设计除了要进行强度、刚度等静力学设计外,还要进行动力 学设计。某公司1420冷轧工程是国家冶金装备自主集成重大创新项目,冷连轧机主传动系 统设计好坏直接关系到工程的成败。为了保证工程顺利建成投产,在设计阶段对轧机主传动 系统进行扭振分析显得尤为重要。 2 系统建模

轴系扭振计算例子

1 轴系基本数据 轴系布置数据 船舶类型海船 安装类型螺旋桨 中间轴连接方式键槽 减振器无 弹性联轴器无 齿轮箱无 总质量数12 主支质量数12 1级分支数0 2级分支数0 柴油机基本参数 型号7S60MC 制造厂/ 气缸数目7 冲程数 2 气缸型式直列 额定功率(kW) 13570 额定转速(r/min) 105 最低稳定转速(r/min) 30 缸径(mm) 600 活塞行程(mm) 2292 往复部件重量(kg) 5559 平均有效压力(MPa) 1.7 连杆中心距(mm) 2628 发火顺序1-7-2-5-4-3-6 机械效率0.83 第1气缸质量号 2 螺旋桨基本参数 型号Fault 制造厂Fault 直径(mm) 700 叶数 4 盘面比0.7 螺距比 1.1 转动惯量(kg.m^2) 230 螺旋桨所处单元号12

2 系统当量参数表 序号分支号惯量(Kgm^2) 刚度(MNm/rad) 外径(mm) 内径(mm) 传动比标识 1 0 209.0000 1329.787 2 672.0 115.0 1 2 0 10171.0000 1095.290 3 672.0 115.0 1 气缸#1 3 0 10171.0000 1135.0738 672.0 115.0 1 气缸#2 4 0 10171.0000 1054.8523 672.0 115.0 1 气缸#3 5 0 10171.0000 1055.9662 672.0 115.0 1 气缸#4 6 0 10171.0000 1133.7868 672.0 115.0 1 气缸#5 7 0 10171.0000 1165.5012 672.0 115.0 1 气缸#6 8 0 10171.0000 1538.4615 620.0 115.0 1 气缸#7 9 0 3901.0000 3115.2648 620.0 115.0 1 推力轴 10 0 5115.0000 60.3500 480.0 0.0 1 中间轴 11 0 613.9000 166.8335 590.0 0.0 1 螺旋桨轴 12 0 75197.0000 1.0000 100.0 0.0 1 螺旋桨

船舶轴系扭振计算步骤2006(精)

船舶轴系扭振计算 1 已知条件 轴系原始资料 2 当量系统 2.1惯量计算(或给定) 2.2 刚度计算(或给定) 2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表) 当量系统参数

3 固有频率计算(自由振动计算并画出振型图)Holzer表 4 共振转速计算

5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算

步骤2:计算第1惯性圆盘的平衡振幅步骤3:计算各部件的动力放大系数 步骤4:求总的放大系数 111111=++++ QQeQpQsQrQd 步骤5:计算第1质量的振幅 A=Q×A1st 步骤6:轴段共振应力计算 τk,k+1=τ0?A1 步骤7:共振力矩计算步骤8:非共振计算 A1= ??n?1- n???c 步骤9:扭振许用应力计算(按CCS96规范)步骤10:作出扭振应力或振幅-转速曲线 能量法计算步骤:

步骤1 相对振幅矢量和的计算(如为一般轴系,可省略) A1st? ??? 2 ?1?n?+2 Q ??nc ? 2 ???? 2 步骤2 激励力矩计算Mv(若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定)步骤3:激励力矩功的计算WT=πMνA1∑k 步骤4:阻尼功的计算各部件的阻尼功 部件外阻尼功的计算: 步骤5:阻尼力矩功Wc的计算(为系统各部件总阻尼功之和) Wc=Wce+Wcd+Wcp+Wcs+Wcr+ 步骤6:求第1质量振幅A1 A1= WT Wc 步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表:

6 一缸不发火的扭振计算 1)不发火气缸的平均指示压力近似为零,相应的气体简谐系数为bv;其他气缸的平均指示压力pimis为:pimis=zpi N/mm2;式中:z-气缸数,pi按前面计算公式计算。 z-1 2)相应的Cimis为:Cimis=avpimis+bv Cimis∑amis3)一缸不发火影响系数为:γ=Cνa 式中:Cv、Cvmis——分别为正常发火与一缸不发火时的简谐系数; 、分别为正常发火与一缸不发火时的相对振幅矢量和,其中aaa∑mis按下式计算:∑∑mis zz 2∑amis=(∑βkaksinνζ1,k)+(∑βkakcosνζ1,k)2 k=1k=1 不发火缸βk=bν Cvmis,其他气缸为1; 4)一缸不发火的振幅、应力和扭矩: 第1质量振幅为: 轴段应力为:A1mis=γA1 τ1misk,k+!=γτk,k+1

相关文档