文档库 最新最全的文档下载
当前位置:文档库 › 电动阀门控制原理图(第19页)

电动阀门控制原理图(第19页)

电动阀门控制原理图(第19页)

.

'.

KH

N

~220V

就地控制

自动控制

停止指示

关到位指示

开到位指示LA39-101XSF/k(短柄)

SA接点闭合表

触点编号

手动停止自动

X

左45°0

3-4X

右45°

1-2

电动阀门

控制原理图

KH KA1KA2QF

-44

-45

-46

-47

-50

KM2

KM1

-42

-43

至PLC

KA0

-41

开指示

开指示

开阀门

关阀门

关指示

关指示

自动控制指示

停止指示

电动阀门控制原理图

电动阀门控制原理图 对话世界能源巨头让中国每年省出13个核电站 “未来25年,全球能源需求增加的部分中将有近1/4来自于中国。而能效水平低于工业发达国家近20%状况,无疑使中国能源紧张的形势更加严峻。”“意法半导体营造了一个主动的可获益的大环境,数以百计的节能措施被建议并付诸实施,相关的节能投入每年平均为2500万美元。” 电子产品的发展给人类生活带来越来越多便利与美好体验的同时,一些弊端也随之而生,电子垃圾、环境污染、能源消耗速度过快等种种问题开始困扰人们。于是,全球对环保与节能的关注达到了前所未有的高度,如何应对环保指令、开发新的节能产品、充分利用能源逐渐成为一个越来越热门的话题。随着2008年奥运会的临近,中国政府也把环保节能提上日程。节约能源,越来越成为我们时刻关注的大事。为此,本报记者采访了意法半导体公司副总裁兼大中国区总裁柯明远,希望对该公司电子产品的能耗管理经验深入了解,并分析当今的能源管理市场及趋势。 >>>>

产品 名 称: 产品 型 号: D943H 产品 口 径: DN50~2000 产品 压 力: 1.0MPa~ 2.5MPa 产品 材 质: 铸钢、不锈钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS 生产。阀体材质:铜、铸铁、铸钢、碳钢、

WCB、WC6、WC9、20#、 25#、锻钢、A105、F11、 F22、不锈钢、304、 304L、316、316L、铬 钼钢、低温钢、钛合 金钢等。工作压力 1.0Mpa-50.0Mpa。工 作温度:-196℃ -650℃。连接方式: 内螺纹、外螺纹、法 兰、焊接、对焊、承 插焊、卡套、卡箍。 驱动方式:手动、气 动、液动、电动。 产品详细信息 一、产品概述 工洲引进能够国外先进技术的基础上,采用精密的J 形弹性密封圈和三偏心多层次金属硬密封结构,被广泛用于介质温度≤425℃的治金、电力、石油化工、以及给排水和市政建设等工业管道上,作调节流量和载断流体使用。该阀采用三偏心结构,阀座与碟板密

液压及电磁阀知识培训

液压及电磁阀应用培训教程 2009年1月21日 -24日

目录 第一章液压控制阀 (3) 第一节液压控制阀的分类 (3) 第二节压力控制阀 (4) 第三节方向控制阀 (9) 第四节流量控制阀 (12) 第五节比例控制阀(含高频响阀) (14) 第六节伺服控制阀 (22) 第二章液压原理图和基本回路分析 (24) 第一节TM区域液压原理图及阀件分布简介 (24) 第二节伺服控制回路 (24)

第一章液压控制阀 第一节液压控制阀的分类 1. 概述 在液压系统中,用于控制和调节工作压力的高低、流量大小以及改变流量方向的元件,统称为液压控制阀。液压控制阀通过对工作液体的压力、流量以及流液方向的控制与调节,从而可以控制液压执行元件的开启、停止和换向,调节其运动速度和输出扭矩(或力)。 2. 液压控制阀的分类 2.1 按功能分类 (1) 压力控制阀用于控制或调节液压系统或回路压力的阀,如溢流阀、减压阀、顺序阀压力继电器等; (2) 方向控制阀用于控制或调节液压系统或回路中方向及其通和断,从而控制执行元件的运动方向及其启动、停止的阀。如单向阀、换向阀等; (3) 流量控制阀用于控制或调节液压系统或回路中工作液体流量大小的阀。如节流阀、调速阀、分集流阀等 2.2 按阀的控制方式分类 液压控制阀按控制方式可分为: (1) 开关(或定值)控制阀:借助于通断型电磁铁及手动、机动、液动等方式,将阀芯位置或阀芯上的弹簧设定在某一工作状态,使液流的压力、流量或流向保持不变的阀。这类阀属于常见的普通液压阀 (2) 比例控制阀:采用比例电磁铁(或力矩马达)将输入信号转换成力或阀的机械位移,使阀的输出(压力、流量)也按照其输入量连续、成比例地进行控制的阀,比例控制阀一般属于开环控制阀,现在也很多用在闭环系统中。 (3) 伺服控制阀:其输入信号(电量、机械量)多为偏差信号(输入信号与反馈信号的差值),阀的输出量(压力、流量)也按照其输入量连续、成比例地进行控制的阀。这类阀的工作性能类似于比例控制阀,但具有较高的动态瞬应和静态性能,多用于要求较高的、响应快的闭环液压控制系统。 (4) 数字控制阀:用于数字信息直接控制的阀类。

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞杆带动机械装置。这样通过控制电磁铁的电流通断就控制了机械运动。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.wendangku.net/doc/f9393760.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

电动阀工作原理

1.电动阀即电磁阀,就是利用电磁线圈产生的磁场来拉动阀芯,从而改变阀体的通断,线圈断电,阀芯就依靠弹簧的压力退回。 电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动。电磁阀用于控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀。 电磁阀的工作原理,电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通过控制电磁铁的电流就控制了机械运动。(中华泵阀网) 一:适用性 管路中的流体必须和选用的电磁阀系列型号中标定的介质一致。流体的温度必须小于选用电磁阀的标定温度。电磁阀允许液体粘度一般在20CST以下,大于20CST应注明。工作压差,管路最高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;最低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;最高工作压差应小于电磁阀的最大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀。流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好。

注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节。注意环境温度对电磁阀的影响电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,必须注意交流起动时VA值较高。 二、可靠性 电磁阀分为常闭和常开二种;一般选用常闭型,通电打开,断电关闭;但在开启时间很长关闭时很短时要选用常开型了。 寿命试验,工厂一般属于型式试验项目,确切地说我国还没有电磁阀的专业标准,因此选用电磁阀厂家时慎重。 动作时间很短频率较高时一般选取直动式,大口径选用快速系列。 三、安全性 一般电磁阀不防水,在条件不允许时请选用防水型,工厂可以定做。 电磁阀的最高标定公称压力一定要超过管路内的最高压力,否则使用寿命会缩短或产生其它意外情况。 有腐蚀性液体的应选用全不锈钢型,强腐蚀性流体宜选用塑料王(SLF)电磁阀。 爆炸性环境必须选用相应的防爆产品。 四、经济性

电动阀门智能控制器说明书

电动阀门智能控制器说明书

————————————————————————————————作者:————————————————————————————————日期: 2

--------------------------------------------------------------------------------------------------- 产品的不断升级可能导致部分数据的变化,如有改动,恕不另行通知。KZQ07系列电子伺服式电动阀门智能控制器 使用说明书 本定位器出厂之前已对其输入、 输出性能进行严格标定,接线后一般 KZQ07-1A KZQ07-2A

尊敬的用户,请在安装本控制器前请仔细检查以下内容: 1、检查执行器的内部位置限位切换开关,确保限位开关在区域内工作,有无异 常现象,能否达到开度的零位与满位,确认限位开关能正常工作。 2、接线前请检查执行器中电位器有无强电,用万用表分别测量电位器三接线端 子,确保该电位器与电机控制端子绝缘,电位器在执行器运转过程中的阻值变化正常,排除断点等异常现象。 3、定位器与执行器间连线要正确,仔细检查两者端子的对应关系,特别注意定 位器电源、输入信号与输出信号接线,切莫把电源接至弱点信号端,同时用仪表测量控制输入信号在定位器接受信号范围内。 4、如与执行器配套使用,在严寒、酷热、高温的环境下开箱时,仪表应于现场 存放3小时以上方可进行标定效验。 目录 一、概述-----------------------------------------------------------------------------2 二、主要技术指标-----------------------------------------------------------------2 三、定位器控制原理--------------------------------------------------------------4 四、定位器面板与接线-----------------------------------------------------------5 五、基本操作方法-----------------------------------------------------------------9 六、标定接线及操作方法--------------------------------------------------------9 七、错误代码列表-----------------------------------------------------------------11 八、附录-----------------------------------------------------------------------------12 如客户所购买指明配置的本公司Z型(机电一体)执行器,无需对执行器转角标定,接线无误即可正常使用。 一、概述: KZQ07系列电动阀门智能定位器是专门为电动执行器配套开发的数字控制系统,采用汽车工业专用的微处理器作为核心处理单元,是真正意 义上的智能数字采集控制系统。可直接安装在电动执行器的接线盒内或以 DIN导轨方式固定在外,无须专门的控制箱,体积小,安装方便。 KZQ07系列电动阀门智能定位器使用固态可控硅进行无触点控制电机,简单可靠,配合高分辨率位置传感器,不但控制精度高,控制准确, 且寿命长,可靠性高。另外控制系统无须保持电池,可在完全停电后再次 通电时,自动识别出执行器位置的变化。 KZQ07系列电动阀门智能定位器能直接接收工业仪表或计算机等输出的4~20mA DC信号(其它输入信号类型可在出厂前定制),与安装有位置 反馈传感器的电动执行器配套,对各种阀门或装置进行精确定位操作,能 3

两位五通电磁阀工作原理几种控制方式

两位五通电磁阀工作原理几种控制方式 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理。 气动执行机构的几种控制方式 一、引言 气动马达作为一种执行机构,在工业生产和工业控制中起着很重要的作用。气动马达使用空气取代电力和液压来产生动力,可以实现无级变速,可瞬间启动、停滞和换向,具有自动冷却功能,无电火花,可在易燃易爆,如含有化学、易燃性或挥发性等物质湿热和多尘的环境下运行,如矿区、隧道、油漆厂、化学工厂、石化、生物科技、药厂、晶圆、半导体、光纤、兵工厂、船舶、养殖等行业用于驱动,因用空气作为动力,容易获得,用后空气可以直接排入大气无污染,压缩空气还可以进行集中供给和远距离控制。 二、气动阀门执行器工作原理 利用压缩空气推动执行器内多组组合气动活塞运动,传力给横梁和内曲线轨道的特性,带动空芯主轴作旋转运动,压缩空气气盘输至各缸,改变进出气位置以改变主轴旋转方向,根据负载(阀门)所需旋转扭矩的要求,可调整气缸组合数目,带动负载(阀门)工作。 三、气动阀门执行器的控制方式 由于现在的控制方式和手段越来越多,在实际工业生常和工业控制中,用来控制气动执行机构的方法也很多,常用的有以下几种。 (一)基于单片机开发的智能显示仪控制 智能显示仪是用来监测阀门工作状态,并控制阀门执行期工作的仪器,它通过两路位置传感器监视阀门的工作状态,判断阀门是处于开阀还是关阀状态,通过编程记录阀门开关的数字,并且有两路与阀门开度对应的4~20mA输出及两足常开常闭输出触点。通过这些输出信号,控制阀门的开关动作。根据系统的要求,可将智能阀门显示仪从硬件上分为3部分来设计:模拟部分、数字部分、按键/显示部分。 1、模拟电路部分主要包括电源、模拟量输入电路、模拟量输出电路三部分。 电源部分供给整个电路能量,包括模拟电路、数字电路和显示的能源供应。为了实现阀门开读的远程控制,需要将阀门的开度信息传送给其他的控制仪表,同时控制仪表能从远方制定阀门为某一开度,系统需要1路4~20mA的模拟量输入信号

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电动阀门控制原理图

电动阀门控制原理图 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电动阀门控制原理图对话世界能源巨头让中国每年省出13个核电站 “未来25年,全球能源需求增加的部分中将有近1/4来自于中国。而能效水平低于工业发达国家近20%状况,无疑使中国能源紧张的形势更加严峻。” “意法半导体营造了一个主动的可获益的大环境,数以百计的节能措施被建议并付诸实施,相关的节能投入每年平均为2500万美元。” 电子产品的发展给人类生活带来越来越多便利与美好体验的同时,一些弊端也随之而生,电子垃圾、环境污染、能源消耗速度过快等种种问题开始困扰人们。于是,全球对环保与节能的关注达到了前所未有的高度,如何应对环保指令、开发新的节能产品、充分利用能源逐渐成为一个越来越热门的话题。随着2008年奥运会的临近,中国政府也把环保节能提上日程。节约能源,越来越成为我们时刻关注的大事。为此,本报记者采访了意法半导体公司副总裁兼大中国区总裁柯明远,希望对该公司电子产品的能耗管理经验深入了解,并分析当今的能源管理市场及趋势。 >>>> 产品名 称: 产品型 号: D943H 产品口 径: DN50~2000 产品压 力: ~ 产品材 质: 铸钢、不锈钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、

不锈钢、304、304L、316、316L、铬钼 钢、低温钢、钛合金钢等。工作压力。工 作温度:-196℃-650℃。连接方式:内螺 纹、外螺纹、法兰、焊接、对焊、承插 焊、卡套、卡箍。驱动方式:手动、气 动、液动、电动。 产品详细信息 一、产品概述 工洲引进能够国外先进技术的基础上,采用精密的J形弹性密封圈和三偏心多层次金属硬密封结构,被广泛用于介质温度≤425℃的治金、电力、石油化工、以及给排水和市政建设等工业管道上,作调节流量和载断流体使用。该阀采用三偏心结构,阀座与碟板密封面均采用不同硬度和不锈钢制作,具有良好的耐腐蚀性,使用寿命长,本阀军邮双向密封功能,产品符合国家GB/T13927-92阀门压力试验标准。 二、特点 1、本阀采用三偏心密封结构,阀座与蝶板几乎无磨损,具有越观越紧的密封功能。 2、密封圈选用不锈钢制作,具有金属硬密封和弹性密封的双重优点,无论在低温和高温的情况下,均具有优良的密封性能,具有耐腐蚀,使用寿命长等特点。 3、碟板密封面采用堆焊钴基硬质合金,密封面耐磨损,使用寿命长. 4、大规格蝶板采用绗架结构,强度高,过流面积大,流阻小。 5、本阀具有双向密封功能,安装时不受介质流向的限制,也不受空间位置的影响,可在任何方向安装。 6、驱动装置可以多工位(旋转90°或180°)安装,便于用户使用。 三、主要技术参数 公称通经DN(mm)50~2000 公称药理PN(MPa) 密封试验(MPa) 强度试验(MPa) 适用温度碳钢:-29℃~425℃不锈钢:-40℃~650℃ 适用介质水、空气、天然气、油品及弱腐蚀性流体 泄漏率符合GB/T13927-92标准 驱动方式蜗轮传动、电动、气动、液动 四、主要零部件材料 零件名称材料 阀体WCB、合金钢、不锈钢、QT450-10 蝶板WCB、合金钢、不锈钢、QT450-10 阀轴2Cr13不锈钢、合金钢 密封圈不锈钢圈 填料柔性石墨 五、采用标准 制造标准JB/T8527-97

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔内形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔内形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差范围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装@_@)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构与材料上得不同以及原理上得区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反)?特点:在真空、负压、零压差时能正常工作,DN5 0以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产得直动电磁阀可用于1、33×10-4 Mpa真空。?二、反冲型电磁阀?原理:它得原理就是一种直动与先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀得同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。?三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔内形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔内形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差范围受限,必须满足压差条件。?两位三通电磁阀通常与单作用气动执行机构配套使用,两位就是两个位置可控:开-关,三通就是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构得进气口连接,1个与执行机构排气口连接,具体得工作原理可以参照单作 用气动执行机构得工作原理图。?两位五通电磁阀通常与双作用气动执行机构配套使用,两位就是两个位置可控:开-关,五通就是有五个通道通气,其中1个与气源连接,两个与双作用气缸得外部气室得进出气口连接,两个与内部气室得进出气口接连,具体得工作原理可参照双作用气动执行机构工作原理?在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音得话也可以不装_)。?两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔与1个反动作出气孔(分别提供给目标设备得一正一反动作得气源)、1个正动作排气孔与1个反动作排气孔(安装消声器)。 对于小型自动控制设备,气管一般选用8~12mm得工业胶气管。在电气上来说,两位三通电磁阀一般为单电控(即单线圈),两位五通电磁阀一般为双电控(即双线圈)。线圈电压等级一般采用DC24V、AC220V等。 两位三通电磁阀分为常闭型与常开型两种,常闭型指线圈没通电时气路就是断

SMC电磁阀工作原理

S MC MC电磁阀 工作原理 电磁阀工作原理 电磁阀 SMC电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动.电磁阀用于控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀.电磁阀是用电磁控制的工业设备,用在工业控制系统中调整介质的方向,流量,速度和其他的参数.电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀,安全阀,方向控制阀,速度调节阀等.电磁阀是用电磁的效应进行控制,主要的控制方式由继电器控制.这样,电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证.图中杆状的物体就是通过电控制的阀杆,利用电磁力可以将阀杆打开或者关闭.下面以气动系统为例子说明电磁阀在工业控制中的应用.所谓气动系统,就是以气体为介质的控制系统.气动系统中,这种能源的介质通常就是空气.在真正使用的时候,通常把大气中的空气的体积加以压缩,从而提高它的压力.压缩空气主要通过作用于活塞或叶片来作功.气动系统中,电磁阀的作用就是在控制系统中按照控制的要求来调整压缩空气的各种状态,气动系统还需要其他元件的配合,其中包括动力元件,执行元件,开关,显示设备及其它辅助设备.动力元件包括各种压缩机,执行元件包括各种气缸.这些都是气动系统中不可缺少的部分.而阀体是控制算法得以实现的重要设备.比如单向阀让压缩空气从压缩机进入气罐,当压缩机关闭时,阻止压缩空气反方向流动;安全阀当储气罐内的压力超过允许限度,可将压缩空气排出;方向控制阀通过对气缸两个接口交替地加压和排气,来控制运动的方向;速度调节阀能简便实现执行元件的无级调速.气路系统:油路系统:冷冻系统:A进气过滤器J油箱PB冷冻压缩机空气进气阀K恒温旁通阀Q冷凝器C压缩机主机L油冷却器R热交换器D单向阀M油过滤器S旁通系统EF空气/油分离器N回油阀T 空气出口过滤器最小压力阀O断油阀G后冷却器H带自动疏水器的水分离器气动系统的示意图电磁阀不但能够应用在气动系统中,在油压的系统,水压的系统中也能够得到相同或者类似的应用,比如低功率不供油小型电磁换向阀,密封件不需供油,排出的气体不会污染环境,可用于食品,医药,电子等行业.电磁换向阀现在,电磁阀技术与控制技术,计算机技术,电子技术相结合,已经能够进行多种复杂的控制.比如可以把电磁阀应用在智能控制领域,应用在无线控制技术等方面.电磁阀正是因为能够用电磁进行控制,所以它能与现在的各种电子系统很好地接口,这也是它得到广泛应用的一个主要原因.电磁阀已经广泛地应用在生产的各个领域中,随着电磁控制技术和制造工艺的提高,电磁阀能够实现更加精巧的控制,为实现不同的气动系统,液压系统发挥它的作用.电磁阀的工作原理:电磁阀的工作原理:电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动.这样通过控制电磁铁的电流就控制了机械运动. 电磁阀的结构原理: 一:直动式电磁阀有常闭型和常开型二种.常闭型断电时呈关闭状态,当线圈通电时产生电磁力,使动铁芯克服弹簧力同静铁芯吸合直接开启阀,介质呈通路;当线圈断电时电磁力消失,动铁芯在弹簧力的作用下复位,直接关闭SMC电磁阀有什么作用之处,阀口,介质不通.结构简单,动作可靠,在零压差和微真空下正常工作.常开型正好相反.如小于φ6流量通径的电磁阀. 二,分步直动式电磁阀该阀采用一次开阀和二次开阀连在一体,主阀和导阀分步使电磁力和压差直接开启主阀口.当线圈通电时,产生电磁力使动铁芯和静铁芯吸合,导阀口开启而导阀口设在主阀口上,且动铁芯与主阀芯连在一起,此时主阀上腔的压力通过导阀口卸荷,在压力差和电磁力的同时作用下使主阀芯向上运动,开启主阀介质流通.当线圈断电时电磁力消失,此时动铁芯在自重和弹簧力的作用下关闭导阀孔,此时介质在平衡孔中进入主阀芯上腔,使上腔压力升高,此时在弹簧复位和压力的作用下关闭主阀,介质断流.结构合理,动作可靠,在零压差时工作也可靠.如:ZQDF,ZS,2W等。 三,间接先导式电磁阀该系列电磁阀由先导阀和主阀芯联系着形成通道组合而成;常闭型在未通电时,呈关闭状态.当线圈通电时,产生的磁力使动铁芯和静铁芯吸合,导阀口打开,介质流向出口,此时主阀芯上腔压力减少,低于进口侧的压力,形成压差克服弹簧阻力而随之向上运动,达到开启主阀口的目的,介质流通.当线圈断电时,磁力消失,动铁芯在弹簧力作用下复位关闭先导口,此时介质从平衡孔流入,主阀芯上腔压力增大,并在弹簧力的作用下向下运动,关闭主阀口.常开式原理正好相反.如:SLA,DF(φ15以上口径),ZCZ等。 电磁阀的选型: 一:适用性管路中的流体必须和选用的电磁阀系列型号中标定的介质一致.流体的温度必须小于选用电磁阀的标定温度.电磁阀允许液体粘度一般在20CST以下,大于20CST应注明.工作压差,管路最高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;最低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;最高工作压差应小于电磁阀的最大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀.流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好.注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节.注意环境温度对电磁阀的影响电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,必

电动门的控制原理接线、调试步骤及常见故障处理

电动门的控制原理、调试步骤及常见故障处理 我厂使用的电动门和执行结构有扬州、常州、ROTORK、SIPOS、AUMA、瑞基、EMG 等系列。 一、概述 电动装置是电动阀门的驱动装置,用以控制阀门的开启和关闭。适用于闸阀、截止阀、节流阀、隔膜阀、其派生产品可适用于球阀、碟阀和风门等,它可以准确地按控制指令动作,是对阀门实现远控和自动控制的必不可少的驱动装置. 二、电动门的控制原理 (一)电动装置的结构 阀门电动装置由六个部分组成:即电机,减速器,控制机构,手--自动切换手轮及电气部分. 1、控制机构由转矩控制结构,行程控制机构及可调试开度指示器组成.用以控制 阀门的开启和关闭及阀位指示. 1)转矩控制机构由曲拐、碰块、凸 轮、分度盘、支板和微动开关组成.当输 出轴受到一定的阻转矩后,蜗杆除旋转外 还产生轴向位移,带动曲拐旋转,同时使 碰块也产生一角位移,从而压迫凸轮,使 支板上抬.当输出轴上的转矩增大到预定 值时,则支板上抬直至微动开关动作,切 断电源,电机停转,以实现电动装置输出 转矩的控制. 2)行程控制机构 由十进位齿轮组,顶 杆,凸轮和微动开关 组成,简称计数器.其 工作原理是由减速箱 内的主动小齿轮(Z=8) 带动计数器工作.如 果计数器已经按阀门 开或关的位置已调好, 当计数器随输出轴转 到预先调整好的位置 时,则凸轮将被转动90度,压迫微动开关动作,切断电源,电机停转,以实现对电动装置的控制. 2、手自动切换机构为半自动切换,电动转变为手动需要扳动切换手柄,而由手动变为电动时系自动进行。由电动变为手动时,即用人工把切换手柄向手动方向推动,使输出轴上的中间离合器向上移动,压迫压簧。当手柄推到一定位置时,中间离合器脱离蜗轮与手动轴爪啮合,则可使手轮上的作用力通过中间离合器传到输出轴上,即成为手动状态。手动变为电动为自动切换,当电机旋转带动蜗轮转动时,

相关文档
相关文档 最新文档