文档库 最新最全的文档下载
当前位置:文档库 › PCB的电磁兼容性设计

PCB的电磁兼容性设计

PCB的电磁兼容性设计
PCB的电磁兼容性设计

PCB 的电磁兼容性设计

收稿日期:2010-04-15;修订日期:2010-08-20

作者简介:方玉龙(1973-),男,安徽祁门人,讲师,维修电工技师,现为安徽大学在职研究生,研究方向:印制线路板的设计与电磁兼容、电磁散射。

方玉龙,赵昌友

(亳州职业技术学院,安徽亳州236800)

摘要:随着信息化社会的发展,各种电子产品趋向于小型化、智能化,电子元器件也趋向于体积更小、速度更高、

集成度更大,由此带来的电磁兼容问题也日益严重。所以,电磁兼容问题也就成为一个电工系统能否正常工作的关键。随着电子技术的飞速发展,印刷电路板(PCB )的密度越来越高,PCB 设计的好坏对电路的干扰及抗干扰能力影响很大。对PCB 进行电磁兼容性(EMC )设计是非常重要的,保证PCB 的电磁兼容性是整个系统设计的关键。文章分析了电磁干扰的产生机理和原因,提出了相应抗干扰设计的措施。关键词:PCB 设计;抗干扰;EMC ;耦合;噪声中图分类号:TN41文献标识码:A 文章编号:1008-8725(2010)10-0056-03

Electromagnetic Compatibility Design of PCB

FANG Yu-long,ZHAO Chang-you

(Bozhou Professional and Technical School,Bozhou 236800,China )

Abstract:With the development of information society,all kinds of electronic products tend to be miniature and intelligent.Electronic components also tend to be smaller ,faster and greater integration.The electromagnetic compatibility problems are more and more serious.So the EMC is the key of normal operation of the electronic system.With the rapid development of electronic technology ,the density of PCB is increasing,and the design of PCB has a great impact on the interference and anti -interference capability of the circuit.It is very important to design the EMC of PCB.It is the key point to ensure the PCB's EMC of the whole system's design.This paper analyzes the causes of electromagnetic interference and proposes the anti -interference measures.

Key words:PCB design;anti-interference;EMC;coupling;noise

0引言

目前各类电子设备和系统中的器件仍以印制线路板P CB 为主要装配方式,随着表贴元器件(S MD)制造水平的不

断提高及表面贴装技术

(S MT )的广泛应用,P CB 的设计也向着高密度、细导线、小间距、多层次方向发展,P CB 的设计必须充分考虑电磁兼容性。对于P CB 的EMC 设计内容主要有P CB 的总体设计、电源和地线布置、去藕设计和布线设计等。

1

认识EMC

1.1

EMC 定义

电磁兼容性

(EMC ),是指电子、电气设备或系统在其电磁环境中,按设计要求正常工作的能力。它是电子、电气设备或系统的一种重要的技术性能。EMC 包括3个方面的含义:①EMI 指处在一定环境中的设备或系统在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;②EMS 是指处在一定环境中设备或系统能承受相应标准规定范围内的电磁能量干扰,即具有一定程度的抗扰度,即电磁敏感性;③电磁环境,即系统或设备的工作环境。

随着信息化社会的发展,各种电子产品产生的电磁干扰所造成的危害日益严重。保护电磁环境、防止电磁污染,已引起社会的普遍关注,我国政府和世界各国以及有关国际组织

都对各类电子产品的电磁兼容性制定了严格的标准。1.2PCB 的EMC 设计必要性

P CB 就像一个产品的缩影,是EMC 技术中最值得探讨的部分,是设备工作频率最高的部分,同时也是电平最低、最为敏感的部分。在P CB 的EMC 设计中,实际上已经包含了接地设计、去耦旁路设计等。一个良好的P CB ,不但可以降低流过共模电流产生的压降,同时也是减少环路的重要手段。故电磁兼容性是衡量一个电子产品合格与否的重要指标之一。对于P CB 的电磁兼容性问题,一般有3种解决方法:

(1)问题解决法。问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决在调试过程中出现的电磁兼容性问题的方法。

(2)规范法。为了满足电磁兼容性的要求,各国政府和工业部门

(尤其是军方)都制订了很多强制执行的标准和规范,所谓规范法是指在采购系统的设备和设计建立子系统时必须满足已制订的规范。

(3)系统法。系统法集中了电磁兼容性方面的研究成果,从系统的设计阶段的最初就用分析程序来预测在系统中将要遇到的哪些电磁干扰问题,以便在系统设计过程中作为基本问题来解决。

1.3EMC 问题的3个因素

系统要发生电磁兼容性问题存在3个因素,即电磁干扰源、耦合途径、敏感设备。在遇到电磁兼容问题时,要从这3个因素入手,对症下药。理论上,消除其中任一环节都能解决

第29卷第10期2010年10期

煤炭技术

Coal Technology

Vol.29,No.10October,2010

表1

多层板布局方案

层数总层数

123

45

6

7

8

9

10

46(优选)

66810S1S1S1S1S1S1

G G S2G G G

P S2G S2S2S2

S2P P S3G P1

G S3P P S3S3S4S4S3G

G P2S4S4

G S5

注:S(signal )信号层;

G(ground)地层;P(power)电源层

电磁兼容问题,但要彻底消除某一环节是不可能的。实际中,

应同时从各方面着手,寻求解决EMC 问题的最主要因素。

(1)电磁干扰源。任何形式的自然或电能装置所发射的电磁能量,能使共享同一环境的人或其它生物受到伤害,或使其它设备或系统发生电磁危害,导致性能降级或失效,都称为电磁干扰源。如图1所示,电磁干扰源可分为外部干扰和内部干扰两大类,其中以电子设备内部P CB 及其上各元器件的固有噪声为主。对于外部干扰用屏蔽等方法有效加以抑制。

(2)耦合途径,即传输电磁干扰的通路或媒介。各种干扰源和敏感设备之间的耦合途径有传导、感应、辐射以及它们

之间的组合。耦合主要发生在导线间、器件间及导线与器件间。

(3)敏感设备。敏感设备是指当受到电磁干扰源所发出的电磁能量的作用时,会受到影响导致性能降级或失效的器件、设备或系统,主要为电子设备内部各器件。

2

PCB 的EMC 设计与布局

2.1

PCB 的合理分层

首先,根据电源/地的种类、信号线的密集程度、特殊布

线要求的信号数量以及成本价格等方面的综合因素,来确定最终采用单层板、双面板还是多层板。使用多层印制电路板可从结构上获得理想的屏蔽效果。以中间层作电源线或地线,将电源线密封在板内,两面做绝缘处理,可使流经上下面的开关电流彼此不影响。印制板内层做成大面积的导电区,各导线面之间有很大的静电电容,形成阻抗极低的供电线路,可有效预防电路板辐射和接收噪声。实验表明

,4层板比双面板噪声低20dB ,6层板比4层板噪声低10dB 。如果成本允许,采用多层板来解决EMC 问题,不失为一种行之有效的途径。但是,在使用时需要注意多层板各层的设置。表1给出了优选的层设置。由表1可见,分层时应该尽可能将电源面靠近地平面,并安排在接地平面之下,以充分利用平行金属板间电容对电源的平滑作用和地平面对电源的屏蔽作用;尽可能将信号层与整块金属面相邻,以减小电流环路面积。2.2分割与布局

在P CB 的设计中,合理的分割与布局是一个重要环节,

其结果的好坏将直接影响最终走线的效果。分割是指用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线

和地线的耦合。图2给出了用分割技术将4个不同类型的电路分割开的例子。在地线面,非金属沟槽用来隔离4个地线面。为减少不同电路电源面间的耦合,高速数字电路由于其更高的瞬时功率需求而要求放在靠近电源入口处。接口电路可能会需要抗静电放电(ES D)和暂态抑制的器件或电路来提高其电磁抗扰性,应独立分割区域。

2.3抑制电源线和地线阻抗引起的振荡

设计装配密度很高的电路板应注意降低电源线和地线

阻抗,对公共阻抗、串扰和反射等引起的波形畸变和振荡现象需采取必要措施。当电路板上有较多集成电路器件同时工作时,板上电源电压和地电位易产生波动,导致信号振荡,引起电路误动作。尤其当浪涌电流流过印制导线时,会出现瞬时电压降,形成电源尖峰噪声,其中以导线电感引起的干扰为主。在实际设计中,应尽量避免该电感对电路的影响。在各集成电路的电源和地线间分别接入旁路电容,以缩短开关电流的流通途径。

如图3所示,对于一般的印刷电路板,将电源线和地线设计成如图3(b )所示的格子形状,而不用图3(a )所示的梳子形状,这是因为格子状能显著缩短线路环路,降低线路阻抗,减少干扰。

当印刷电路板上装有多个集成电路,且部分元件功耗较大,地线出现较大电位差,形成公共阻抗干扰时,宜将地线设

计成如图3(d )所示的封闭环路,这种环路无电位差,比图3(c )所示的方式有更高的噪声容限;应尽量缩短引线,将各集成电路的GND 以最短距离连到电路板入口地线,降低印制导线产生的尖峰脉冲;让地线、电源线走向与数据传输方向一致,以提高电路板的噪声容限。

3集成电路板的接地设计

大家最熟悉的“地”就是自然界的地球。电子设备产品为了安全最终需要把产品的金属导体接入大地。EMC 中的接地可以最大限度地降低产品的EMI 辐射,也可以最大限度地减少进入产品的外界干扰。电子设备的接地方式如图4所示。

(1)串联单点接地。图4(a )中,各工作单元共用1条地线,最后汇总到O 点,此为串联单点接地方式。由于导线中电

流存在,使得A ,B ,C 各点电位均升高,而且存在电位差

(与导线长度有关),从而影响电路模块的正常工作,因此必须抑制。

(2)并联单点接地。显然,地线中的阻抗产生的干扰电压不会相互干扰其它单元的工作状态。但是,由于导线中电流存在,A ,B ,C 各点电位均会升高。而且,随着信号频率的增加,地线中阻抗、地线间的电感及电容藕合均会加大,故这种接地方式只适合于低频电路。

图1电磁干扰来源

图2电路板的模块分割

图3电源线和地线之间的布局

方玉龙,等:PCB 的电磁兼容性设计第10期·57

·

煤炭技术第29卷

·58·(3)多点接地。如图4(c )所示,电器设备中各单元直接与距其最近的地线相接,使各单元的接地线尽可能地短,从而降低过长的接地线产生的地线干扰。显然,在多点接地电路中,各单元地线最短,地线阻抗最小,造成的干扰最小。但各单元和地线之间形成了环路,容易形成地环路干扰。

(4)混合接地。电器设备工作时,如果其工作频带较宽,在低频时需要采用单点接地,而在高频时又需要采用多点接

地,则可以选择混合接地。图4

(d )中,低频时电路为单点接地,高频时电容C 相当于短路,因此,电路为多点接地,满足了电路工作频带宽的需求。

以上的各种接地方式,各自适用于不同的工作场合,应合理选择使用。通常频率在1MHz 以下的低频,布线和器件间电感影响小,但接地形成环流对干扰影响较大,应采用单点接地方式,频率在10MHz 以上时,地线阻抗较大,应尽量降低阻抗,就近多点接地;而频率在1~10MHz 之间可采用混合接地的方式。若采用单点接地,地线长不应超过波长的1/20。

以上介绍了几种接地方式。为了达到最好的屏蔽和抑制效果,应尽量加粗接地线,如有可能,应>3mm ,最好用大面积敷铜板。地线>电源线>信号线是线宽的合理选择。另外,接地导线应根据具体情况,采取环接和空接等,而且也要遵循一般的布线原则。

4

去耦、滤波与阻断

4.1

去耦与去耦电容的选择

在直流电源回路中,负载的变化会引起电源噪声。配置去耦电容可以抑制因负载变化而产生的噪声,是集成电路板设计中常规而有效的做法,配置原则如下:

(1)电源输入端跨接1个10~100μF 的电解电容器。如电路板位置允许,接100μF 以上的更好。

(2)每个集成电路芯片都应布置1个0.01μF 的瓷片电容,如遇印制板空隙不够,可每4~10个芯片布置1个1~10μF 的钽电容。这种器件高频阻抗特别小,在500kHz ~20

MHz 范围内,阻抗小于1Ω,而漏电流很小

(0.5μA 以下)。(3)对于抗噪能力弱、关断时电源变化大的器件,如RAM ,ROM 存储器件,应在芯片的电源线(Vcc )和地线(GND )之间直接接入去藕电容。

(4)去耦电容引线不能过长,特别是高频旁路电容不能带引线。4.2滤波

滤波指各类信号按频率特性分类并控制它们的方向。常用的有各种低通滤波器、高通滤波器、带通滤波器。低通滤波器用在接入的交流电源线上,旨在让50Hz 的交流电顺利通过,将其它高频噪声导入大地。低通滤波器的配置指标是插入损耗,选择的低通滤波器插入损耗过低起不到抑制噪声的

作用,而过高的插入损耗会导致

“漏电”,影响系统的人身安全性。高通、带通滤波器则应根据系统中对信号的处理要求选择使用。4.3阻断

典型的信号隔离是光电隔离。使用光电隔离器件将控制器的输入输出隔离开,一方面使干扰信号不得进入控制系统,另一方面控制系统本身的噪声也不会以传导的方式传播出去。屏蔽则是用来隔离空间辐射的,对噪声特别大的部件,如开关电源,用金属盒罩起来,可减少噪声源对控制系统的干扰。对特别怕干扰的模拟电路,如高灵敏度的弱信号放大电路可屏蔽起来。而重要的是金属屏蔽本身必须接真正的地。

5结语

印刷电路板设计是一项实践性较强的工作,它要求设计人员要根据布局、布线等原则,善于随具体情况灵活运用,设计中善于采用新的设计手段,吸取先进的设计经验,利用成熟的安装工艺,并根据电磁兼容性原理,采取有效的技术措施减小电磁干扰,使电磁干扰控制到一定范围内,从而保证系统或设备的兼容性,设计出高性能、高可靠性的印制电路板。通常,使用以上基本的抗干扰措施,可基本解决常见形式的EMC 问题。要消除一些特殊的、小概率的干扰以获得更高的电磁兼容性,就要采用特殊的、更复杂的硬件抗干扰电路。过多地采用硬件抗干扰措施会明显提高产品的常规成本,且硬件数量的增加,还会产生新的干扰,导致系统的可靠性下降。所以应根据设计条件和目标要求,合理采用一些硬件抗干扰措施,提高系统的抗干扰能力。参考文献:

[1]林晓铮.EMC 与产品设计[J ].印制电路信息,2006,

(5):25-29.[2]余长青.电磁兼容设计中的接地技术[J ].黔南民族师范学院学

报,2008,

(5):26-29.[3]刘建斌.电磁兼容与电路板的可靠性设计[J ].电子工艺技术,

2006,

(5):281-283.[4]顾海林.电磁干扰与电磁兼容性技术综述[J ].科技创新导报,

2008,

(28):88-89.[5]肖麟芬.印制电路板的抗干扰设计[J ].电工技术,2005,

(12):80-82.

[6]朱洪涛.印制电路板的电磁兼容性设计[J ].电子质量,2007,

(1):81-86.

[7]

宋艳芳.印刷电路板的电磁兼容性设计[J ].电脑开发与应用,2007,

(12):29-31.[8]樊光荣.印制线路板的可靠性设计[J ].电子质量,2008,

(2):36-38.

[9]白运芳.电磁兼容与电磁兼容设计[J ].无线电工程,2008,

(11):34-36.

(责任编辑

王凤英)

图4电器设备接地方式示意图

(a )串联单点接地(b )并联单点接地

(c )多点接地(d )混合接地

电磁兼容性(EMC)仿真

设计早期对电磁兼容性(EMC)问题的考虑 随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。 较高的时钟速率会加大满足电磁兼容性需求的难度。在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。 传统的电磁兼容设计方法 正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。 在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。 电磁兼容仿真的挑战 为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。设计师可借助麦克斯韦(Maxwell)方程的3D解法就能达到这一目的。麦克斯韦方程是对电磁相互作用的简明数学表达。但是,电磁兼容仿真是计算电磁学的其它领域中并不常见的难题。 典型的EMC问题与机壳有关,而机壳对EMC影响要比对EMC性能十分重要的插槽、孔和缆线等要大。精确建模要求模型包含大大小小的细节。这一要求导致很大的纵横比(最大特征尺寸与最小特征尺寸之比),从而又要求用精细栅格来解析最精细的细节。压缩模型技术可使您在仿真中包含大大小小的结构,而无需过多的仿真次数。 另一个难题是你必须在一个很宽的频率范围内完成EMC的特性化。在每一采样频率下计算电磁场所需的时间可能是令人望而却步的。诸如传输线方法(TLM)等的时域方法可在时域内采用宽带激励来计算电磁场,从而能在一个仿真过程中得出整个频段的数据。空间被划分为在正交传输线交点处建模的单元。电压脉冲是在每一单元被发射和散射。你可以每隔一定的时间,根据传输线上的电压和电流计算出电场和磁场。

PCB电磁兼容性设计报告样本

PCB电磁兼容性设计报告 学科专业: 测控技术与仪器 本科生: 张亚新 学号: 1002445 班号: 232121 指导教师: 宋恒力

中国地质大学( 武汉) 自动化学院 10月24号

PCB电磁兼容性设计 摘要: 随着信息化社会的发展, 电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化, 电子元器件也趋向于体积更小、速度更高、集成度更大, 这也导致了她们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。因此, 电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样, 随着电子技术的飞速发展, 印刷电路板( PCB) 的密度越来越高, 其设计的好坏对电路的干扰及抗干扰能力影响很大。因此, 对PCB进行电磁兼容性(EMC)设计是非常重要的, 保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析, 介绍电磁干扰的产生机理和 原因, 并提出了相应抗干扰设计的措施。 关键词: 信息化; 电磁兼容( EMC) ; 电磁兼容性; PCB;

一: 引言 .......................................................................... 错误!未定义书签。二: 电磁干扰与电磁兼容概述. (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三: 电磁兼容学科的发展历史 (5) 四: 中国EMC技术的发展状况 (8) 五: 抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六: 电磁兼容学科发展趋势 (10) 七: 小结 (12) 参考文献 (13) 一、引言 电磁干扰是现代电路工业面正确一个主要问题, 为了克服干扰, 电路设计者不得不赶走干扰源, 或者是设法保护电路不受到干扰源的干扰, 其目的都是为了让电路按照预期的目标开工作——

芯片级电磁兼容性的设计

芯片级电磁兼容性的设计 日期:2005年10月29日人气:0 查看:[大字体中字体小字体] 芯片级电磁兼容性的设计 殷和国,杨银堂,付俊兴,李雯 (西安电子科技大学微电子研究所陕西西安710071) 摘要:介绍了电磁兼容性的基本概念、原理及其在集成电路设计中的重要性,对电磁兼容性设计的基本方法作了介绍,其中着重论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点。 关键词:集成电路;电磁兼容;设计方法;芯片 随着现代科学技术的发展,电子、电气设备及系统获得了越来越广泛的应用。然而运行中的电子、电气设备大多伴随着电磁能量的转换,对通信系统、控制系统和计算机系统为主干的电子系统(尤其在集成电路方面)产生了巨大的副面影响。这主要是因为集成电路极易受射频影响并可能会以有害的方式影响检波信号,通常会导致原设计的功能失效,并且可能会危及安全。另外,在集成电路设计中要求具有低的电磁能量辐射及高的敏感度。因此,提高集成电路的电磁兼容性已成为当今的研究重点之一。 本文介绍了一些电磁兼容性设计的基本方法,重点分析了芯片级电磁兼容性的设计方法及其应用,并讨论了芯片级电磁兼容性研究中存在的问题及未来的研究重点。 1 分析和解决电磁兼容性的一般方法 随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProblemSolving Approach)[1]、规范法(SpecificationApproach)[1]和系统法(Systems Approach)[1]。 1.1 问题解决法 问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决

电磁兼容性原理与设计

第一章电磁兼容性原理与设计 1.电磁兼容性的基本概念 电磁兼容性是一个新概念,它是抗干扰概念的扩展和延伸。从最初的设法防止射频频段内的电磁噪声、电磁干扰,发展到防止和对抗各种电磁干扰。进一步在认识上产生了质的飞跃,把主动采取措施抑制电磁干扰贯穿于设备或系统的设计、生产和使用的整个过程中。这样才能保证电子、电气设备和系统实现电磁兼容性。 1. 1电磁兼容性的概念 A、电磁噪声与电磁干扰 电磁噪声是指不带任何信息,即与任何信号都无关的一种电磁现象。 在射频频段内的电磁噪声,称为无线电噪声。 由机电或其他人为装置产生的电磁现象,称为人为噪声。 来源于自然现象的电磁噪声,称为自然噪声。 电磁干扰则是指任何能中断、阻碍,降低或限制通信电子设备有效性能的电磁能量。 由大气无线电噪声引起的,称为天线干扰。 由银河系的电磁辐射引起的,称为宇宙干扰。 由输电线、电网以及各种电子和电气设备工作时引起的,称为工业干扰。 B、电磁兼容 电磁兼容性是指电子、电气设备或系统在预期的电磁环境中,按设计要求正常工作的能力。它是电子、电气设备或系统的一种重要的技术性能。其包括两方面的含义: ①设备或系统应具有抵抗给定电磁干扰的能力,并且有一定的安全余量。 ②设备或系统不产生超过规定限度的电磁干扰。 从电磁兼容性的观点出发,电子设备或系统可分为兼容、不兼容和临界状态三种状态:IM=Pi-Ps(dB) 式中:IM -------电磁干扰余量 Pi-------干扰电平 Ps-------敏感度门限电平 当Pi>Ps即干扰电平高于敏感度门限电平时,IM>0, 表示有潜在干扰,设备或系统处于不兼容状态 当Pi

PCB的电磁兼容性设计

PCB的电磁兼容性设计 印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则: 布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。应留出印制板定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则: 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。 布线 布线的原则如下: 输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为1 ~ 15mm 时.通过2A的电流,温度不会高于3℃,因此.导线宽度为 1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生胀和脱落现?。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。印刷线路板的布线要注意以下问题:专用零伏线,电源线的走线宽度≥1mm;电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡;要为模拟电路专门提供一根零伏线;为减少线间串扰,必要时可增加印刷线条间距离,在意;

华为电磁兼容性结构设计规范_第三版

华为技术有限公司企业技术规范 DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范 2003-11-30发布2003-11-30实施 华为技术有限公司

内部公开 前言 本规范于1999年12月25日首次发布。 本规范于2001年7月30日第一次修订。 本规范于2003年10月30日第二次修订。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部本 华为机密,未经许可不得扩散 第1页,共1页

内部公开 目录 1 范围 ... ....................................................................................................................................................... ..4 2 引用标准 ... . (4) 3 术语 ... ....................................................................................................................................................... ..4 4 电磁兼容基本概念... (5) 4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .5 4.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..6 5 电磁屏蔽基本理论... (7) 5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..7 5.2.1缝隙屏蔽 ... (7) 5.2.2开孔屏蔽 ... (8) 5.2.3电缆穿透 ... . (10) 6 屏蔽设计 ... .. (12) 6.1 结构屏蔽效能 ... .......................................................................................................................... (12) 6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13) 6.3.1紧固点连接缝隙 ... . (13) A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13 B. 增加缝隙深度 ... ........................................................................................................................................ .. 14 C. 紧固点间距 ... ........................................................................................................................................... (15) 6.3.2安装屏蔽材料 ... ....................................................................................................................... ..17 6.3.3屏蔽材料的选用 ... . (18) A. 常用屏蔽材料................................................................... .. 18 B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 24 6.4 开孔屏蔽设计 ... .......................................................................................................................... (25) 6.4.1通风孔屏蔽 ... .......................................................................................................................... (25) 6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27) 6.6 单板局部屏蔽 ... .......................................................................................................................... (28) 6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28

抗干扰滤波器在电磁兼容设计中的作用要点

抗干扰滤波器在电磁兼容设计中的作用 干扰滤波在电磁兼容设计中的作用大多数电子产品设计师对干扰滤波器的认识一般局限在:“电子产品要通过电源线传导发射试验和电源线抗扰度试验,必须在电源线上使用干扰滤波器”。而对于干扰滤波器的其它作用了解很少,这就导致了产品设计完毕后,往往不能通过其它试验项目,例如辐射发射、辐射抗扰度、信号线上的传导敏感度等试验。实际上,电磁干扰滤波器对于顺利大部分电磁兼容试验以及保证产品的功能都是十分重要一类器件。当出现下面这些干扰问题时,往往是由于滤波措施不完善。 1.设备的机箱或机柜屏蔽十分完善,但是仍然产生超标的辐射发射; 2.独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题; 3.在信号电缆线上注入电快速脉冲时,出现故障; 4.不能通过辐射抗扰度试验 5.不能通过电缆束上的传导敏感度试验 6.不能通过静电放电试验; 7.电缆中的导线之间或电缆之间相互干扰,导致设备不能实现预定功能。下面就如何用滤波器解决上述问题的方案作简单介绍。 1)虽然机箱或机柜屏蔽很好,但是辐射发射超标,或者不能通过辐射抗扰度试验 这是由于机箱或机柜上的外拖电缆起着天线的作用。天线的一个特性是互易性,也就是说:一个天线如果具有很高的辐射效率,那么它的接收效率也很高。因此,设备的外拖电缆既能产生很强的辐射,也能有效的将空间电磁波接收下来,传进设备,对电路形成干扰。由于某种原因,在外拖电缆上形成了干扰电流,这些电流从机箱内传导出来,并以电缆作为辐射天线辐射电磁波。解决这种问题的方法就是在电缆的端口处安装一只滤波器,将干扰电流滤除掉。 2)独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题; 这个问题与第一类问题的本质相同,就是外拖电缆相当于天线。当没有电缆时,相当于没有辐射天线和接收天线,因此容易通过辐射发射和抗扰度试验,但是当拖上电缆后,这些电缆作为辐射天线和接收天线,导致设备的辐射增强、对外界空间干扰的敏感度提高。解决方法就是在电缆的端口处安装滤波器,将这些导体从空间接收到的电磁能量在它们到达电子线路之前滤除掉,另一方面,阻止电子线路中的干扰能量进入这些导体后借助导体辐射。 3)在信号电缆线上注入电快速脉冲时,出现故障; 我们知道电快速脉冲的频率是很高的,这些干扰通过电容耦合钳耦合进电缆,在电缆上形成干扰电流,这些电流一方面直接流进电路,对电路形成干扰,另一方面产生辐射,对电路形成干扰。解决方法就是采用屏蔽电缆和加装滤波器。 4)不能通过电缆束上的传导敏感度试验 电快速瞬变脉冲群抗扰度试验,目的是验证由闪电、接地故障或切换电感性负载而引起的瞬时扰动的抗干扰能力。这种试验是一种耦合到电源线路、控制线路、信号线路上的由许多快速瞬变脉冲组成的脉冲群试验,自然也可以通过在电缆端口处滤波的方式来解决。 5)不能通过静电放电试验; 静电放电对设备电路的影响很大程度上是由于静电放电电流周围的高频电磁场,这些电磁场由于频率很高,因此很容易被导线所接收,对电路形成干扰净,某设备在做静电放电试验时,发现当在活动面板上进行放电时,电路出现故障。经检查,发现面板后面是一束电缆,面板上的静电放电电流产生的电磁场在电缆束上感应出了噪声电流,形成干扰。在电缆的端口处安装滤波器后,问题解决。 随着开关电源的普遍应用,在电源线入口处安装滤波器已经是项必要的措施。因为开关电源工作在大功率脉冲状态,它会产生很强的电磁辐射,这些辐射感应到线路上形成传导发射。如果不使用滤波器,就没有可能通过满足电磁兼容试验。

emc结构设计

[导读]电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施 期刊文章分类查询,尽在期刊图书馆 李永梅(东南大学成贤学院江苏南京210088)【摘要】EMC设计是电子设备设计中的重要环节。本文依据EMC的基本原理,综合考虑了屏蔽材料、屏蔽方式、缝隙和孔的处理等诸多因素,结合机械加工的手段和工艺,对机箱EMC的结构设计方法进行分析和探讨。【关键词】机箱;电磁屏蔽;结构设计1.引言随着科学技术的迅速发展,现代各种电子、电气、信息设备的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电子设备工作时常受到各种电磁干扰,包括自身干扰和来自其它设备的干扰,同时也对其它设备产生干扰[1]。在这种情况下,要保证设备在各种复杂的电磁环境中正常工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。如果忽视了这一问题,到新产品使用时,干扰问题就会暴露出来。因此及早地解决电磁干扰问题是电子设备机箱结构设计时必须考虑的重要环节。 2.理论基础电子设备结构中常见的电磁干扰方式主要有传导干扰和辐射干扰两种,因此电磁兼容(EMC)设计的主要方法有屏蔽、滤波、接地等。 2.1屏蔽电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗

干扰要求进行有针对性的电磁屏蔽设计。屏蔽通常有静电屏蔽、磁屏蔽和电磁屏蔽三种。 2.2滤波电路中的干扰信号常常通过电源线、信号线、控制线等进入电路造成干扰,所以对公用电源线及通过干扰环境的导线一般均要设置滤波电路。 2.3接地接地问题在电磁兼容性设计中也是一个极其重要的问题,正确的接地方法可以减少或避免电路间的互相干扰。根据不同的电路可用不同的接地方法。通常组合单元电路接地有串联一点接地、并联一点接地和多点接地三种方式。整机接地方式也是保障产品电磁兼容性的主要措施之一。由于其功能不同,故电路差别甚大,接地状况也不大相同。一般常用的方法是:将模拟电路、数字电路、机壳分开,各自独立接地,避免相互间的干扰,最后三地合一接入大地,这种方式较好地抑制了电磁噪声,减少了数字信号和模拟信号之间的干扰。 3.机箱EMC 的结构设计一电子设备中的机箱,机箱有电源线、信号线、控制线等的穿入及穿出以及散热用的通风孔、调节用的调节孔、显示窗等,同时机箱也是由多个零件组合而成,各部分的连接处难免有泄漏。如何抑制电磁能从上述因素中泄漏,就成了电磁兼容性的关键。在这里仅介绍几种结构设计中比较简单可行的方法: 3.1缝隙的屏蔽 缝隙指的是连接后要拆卸的,如机箱上下盖、前后面板和箱体的连接缝,这类连接通常用螺钉来紧固。这类情形增加屏蔽效能的途径有如下:(1)增加缝隙深度,也就是增加箱体及盖板的配合宽度。(2)在结合处加入导电衬垫或者提高结合面的加工精度,即减少缝隙长度。一般比较经济的办法是在接合面安装导电衬垫。这样既可以

IC芯片的电磁兼容性设计方案

IC芯片的电磁兼容性设计方案 2011-12-19 22:48:43| 分类:EMC/EMI | 标签:|字号大中小订阅 IC芯片的电磁兼容性设计方案 论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点 1、分析和解决电磁兼容性的一般方法 随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProlemSolvingApproach)、规范法(SpecificationApproach)和系统法(SystemsApproach)。 1.1问题解决法 问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决在调试过程中出现的电磁兼容性问题的方法。系统内或系统间存在的干扰问题有三要素,即干扰源、接受器和干扰的传播路径。因此用问题解决法解决系统内或系统间的电磁兼容性问题时,首先必须正确地确定干扰源。为了做到这一点,从事电磁兼容性方面工作的工程师要比较全面地熟悉各种干扰源的特性。在确定干扰源后再确定干扰的耦合路径是辐射耦合模式还是传导耦合模式,最终决定消除干扰的方法。 1.2规范法 为了满足电磁兼容性的要求,各国政府和工业部门尤其是军方都制订了很多强制执行的标准和规范,例如美国军用标准MIL-STD-461.所谓规范法是指在采购系统的设备和设计建立子系统时必须满足已制订的规范。规范法预期达到的效果就是:如果组成系统的每个部件都满足规范要求,则系统的电磁兼容性就能保证。 1.3系统法 系统法集中了电磁兼容性方面的研究成果,从系统的设计阶段的最初就用分析程序来预测在系统中将要遇到的那些电磁干扰问题,以便在系统设计过程中作为基本问题来解决。目前有下列几种已广泛使用的大规模电磁干扰分析程序: 系统和电磁兼容性分析程序(SEMCAP);系统和电磁兼容性分析程序; 干扰预测程序IPP-1; 系统内部分析程序IAP; 共场地分析模型程序COSAM等。 对于EMC系统设计的3种方法而言,问题解决法即先建立系统,在系统出现EMC问题时,利用EMI抑制技术解决EMC问题,这种方法很冒险,有可能会出现大量的返工。规范法则是要求每个分系

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

电磁兼容EMC设计指南

EDP电磁兼容设计平台专注EMC解决方案,规范EMC设计流程; 打造智能化的EMC设计平台。 1、企业面临的EMC设计应用现状 ?投入成本高,解决问题周期长;为解决产品EMC问题,不断进行测试验证, 反复的进行改版设计。 ?企业设计人员EMC知识储备不全面;解决EMC问题往往靠设计人员过去的 工作经验。 ?EMC设计流程不规范,EMC设计没有参透于电子产品开发过程各个阶段(总 体方案阶段、设计阶段、开发阶段、测试阶段、认证阶段等)。 ?公司技术文献和多年积累的产品开发经验不能良好的共享、消化,没有一个 系统将公司无形的技术经验转化为有形的产品开发技术要求。 2、企业面临的EMC问题 ?激烈的产品竞争要求企业开发的产品有更高的品质。 ?快速的市场变化要求企业有更高的产品开发效率。 ?高规格的EMC认证和EMC设计技术要求企业有更高的产品开发能力。 ?规范化的企业文化要求有更高效的产品开发流程。 3、EDP电磁兼容设计平台优势 ?赛盛技术多位专家10多年的经验融合荟萃; ?赛盛技术多项产品电磁兼容设计专利技术; ?智能化标准化项目管理设计平台 ?几十种典型接口电磁兼容解决方案; ?上百种PCB层叠电磁兼容设计方案; ?完整的电磁兼容布线设计规则; ?完整的结构屏蔽电磁兼容设计方案; ?多行业电缆与连接器电磁兼容解决方案; ?多行业、近百个产品实际电磁兼容设计验证与经验总结;

4、EMC设计平台介绍 利用计算机技术,整合人工智能、数据库、互联网等开发手段,对于现有的电磁兼容技术资源(包括各种设计规则,解决方案等)以及企业产品研发积累的技术检验等进行全面的管理和应用,实现现阶段对于企业电磁兼容的研发流程规范化和研发工程师电磁兼容设计的技术支持和辅助开发;未来电磁兼容专家系统一提供智能化技术支持(包括产品开发电磁兼容风险评估功能,自动检查和纠正电磁兼容设计功能、产品设计系统仿真和功能电路仿真等)为主要目标和发展方向。 电磁兼容设计平台:主要包括PCB设计、原理图设计、结构设计、电缆设计等四部分组成;系统依据用户设计要求和EMC设计要素,智能化输出相应的产品PCB设计方案、产品原理图设计方案、产品结构设计方案、产品电缆设计方案,然后用户依据产品信息保存方案(方案为标准技术设计模板,内容依据设计内容自动生成格式化的文件)。 使用电磁兼容设计(EDP)软件,会让我们很轻松的完成这些复杂困难的工作,用户输入产品产品设计的相关要素,软件就能够智能化输出产品EMC设计方案。 不管企业之前是否有电磁兼容设计经验?是否有电磁兼容设计规范?是否有电磁兼容标准化设计流程?是否有电磁兼容技术专家?企业在应用EDP软件后,EDP软件能够快速帮助企业解决以下方面问题: 1、快速提升企业产品电磁兼容性能:系统一旦使用上就能够快速地指导企业产品进行电磁兼容有效的设计工作,迅速提升企业产品的电磁兼容性能; 2、能够解决企业多型号产品同时开发,技术专家资源不够使用的情况:智能化的软件可以同时多款多个型号产品,不用设计阶段并行进行开发;能够在很短的时间内给出相应的设计方案,结合产品设计要求指导设计人员进行设计,不耽误产品由于专家资源不足而造成正常设计进度延误; 3、提高产品研发人员EMC技术设计水平:由于有规范化、标准化的方案输出,设计人员在进行新产品开发的时候,能够参考、学习标准化的技术方案;提升自身EMC设计知识水平,减少后期类似设计问题; EDP软件在手,EMC设计得心应手!

印制电路板PCB的电磁兼容设计

线路板(PCB )级的电磁兼容设计 1.引言 印制线路板(PCB )是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,它是各种电子设备最基本的组成部分,它的性能直接关系到电子设备质量的好坏。随着信息化社会的发展,各种电子产品经常在一起工作,它们之间的干扰越来越严重,所以,电磁兼容问题也就成为一个电子系统能否正常工作的关键。同样,随着电于技术的发展,PCB 的密度越来越高,PCB 设计的好坏对电路的干扰及抗干扰能力影响很大。要使电子电路获得最佳性能,除了元器件的选择和电路设计之外,良好的PCB 布线在电磁兼容性中也是一个非常重要的因素。 既然PCB 是系统的固有成分,在PCB 布线中增强电磁兼容性不会给产品的最终完成带来附加费用。但是,在印制线路板设计中,产品设计师往往只注重提高密度,减小占用空间,制作简单,或追求美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空间形成骚扰。一个拙劣的PCB 布线能导致更多的电磁兼容问题,而不是消除这些问题。在很多例子中,就算加上滤波器和元器件也不能解决这些问题。到最后,不得不对整个板子重新布线。因此,在开始时养成良好的PCB 布线习惯是最省钱的办法。 有一点需要注意,PCB 布线没有严格的规定,也没有能覆盖所有PCB 布线的专门的规则。大多数PCB 布线受限于线路板的大小和覆铜板的层数。一些布线技术可以应用于一种电路,却不能用于另外一种,这便主要依赖于布线工程师的经验。然而还是有一些普遍的规则存在,下面将对其进行探讨。 为了设计质量好、造价低的PCB ,应遵循以下一般原则: 2.PCB 上元器件布局 首先,要考虑PCB 尺寸 大小。PCB 尺寸过大时,印 制线条长,阻抗增加,抗噪 声能力下降,成本也增加; 过小,则散热不好,且邻近 线条易受干扰。在确定PCB 尺寸后.再确定特殊元件的 位置。最后,根据电路的功 能单元,对电路的全部元器 件进行布局。 电子设备中数字电路、模拟电路以及电源电路的元件布局和布线其特点各不相同,它们产生的干扰以及抑制干扰的方法不相同。此外高频、低频电路由于频率不同,其干扰以及抑制干扰的方法也不相同。所以在元件布局时,应该将数字电路、模拟电路以及电源电路分别放置,将高频电路与低频电路分开。有条件的应使之各自隔离或单独做成一块电路板。此外,布局中还应特别注意强、弱信号的器件分布及信号传输方向途径等问题。 在印制板布置高速、中速和低速逻辑电路时,应按照图1-①的方式排列元器件。 在元器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题。原则之一是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。如图1-②所示。 时钟发生器、晶振和CPU 的时钟输入端都易产生噪声,要相互靠近些。易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路。如有可能,应另做电路板,这一点十分重要。 2.1 在确定特殊元件的位置时要遵守以下原则: (1) 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2) 某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。 (3) 重量超过15g 的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 (4) 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。 图1:印制板元器件布置图

产品的电磁兼容性设计

产品的电磁兼容性设计 * 造成设备性能降低或失败的电磁干扰必须同时具备三个要素: 即存在一个电磁骚扰源、存在一条骚扰传输的途径、存在一个对骚扰敏感的设备。 * 为解决设备间的电磁兼容问题,说来很简单,只要在上述三个要素中的任何一个环节上取得突破,都能取得满意的结果。事实上,国际和国内的电磁兼容标准已为每个设备至少应具备的自身电磁骚扰抑制要求及最起码的抗扰度要求都已作出明确规定,设计人员应当根据这些要求采取适当的措施,使产品的电磁兼容性能达标。 第一章产品骚扰的抑制方法 * 产品的骚扰抑制主要有三种主要措施:接地、屏蔽、滤波。这几个措施既有独立性,又有相互关连。例如,良好的接地可降低设备对屏蔽和滤波的要求。又由于滤波技术有它的两面性,产品骚扰的抑制要用它,在产品抗扰度提高时也要用它,故在下一章(产品抗扰度性能提高)再谈。1--接地 *“接地”用在不同场合中有不同理解:一个是真正意义上的接地(接大地);另一个是接参考地(接参考电位)。 * 设备的接大地不是必须的,例如:飞机、卫星、移动电话、电子手表

等都没有接大地,但它们照样工作得很好。实际上设备的接大地,更多地是和人体的安全、设备的安全、设备安装中的安全联系在一起。* 设备接参考地则是必须的,以便给设备的工作提供一个稳定的基准电位。参考地可以是一个点,也可以是一个面,但在实际设备中往往是取一个大面积的导体作为基准电位面,如用设备的底板、专用接地铜排、甚至是设备的框架等等。 * 理想的接地平面是一个零电位,零阻抗的物理实体,任何电流通过它时都不会产生压降,这个理想平面可为设备的任何信号提供公共的参考电位,而不必担心各接地点是否存在电位差。事实上这样的平面并不存在,即使是电阻率接近为零的超导体,也会由于电子在两个点之间运动时的延迟而呈现某种电抗效应,因此所谓理想的接地平面也只是近似的,即使如此,上述概念对设备考虑电磁兼容性仍有着重要的影响。 2--基本的信号接地方式 * 实用中有三种基本信号接地方式:浮地、单点接地和多点接地。2.1浮地 * 采用浮地的目的是将设备或电路与公共地或者可能引起环流的公共导体隔离开来。浮地还可以使不同电位的电路之间(通过光耦或隔离变

电子产品的电磁兼容性设计的基本要求

电子产品的电磁兼容性设计的基本要求 电子产品的电磁兼容性设计包括:限制干扰源的电磁发射,控制电磁干扰的传播以及增强敏感产品的抗干扰能力。 1.优化倍号设计 传结信息的电悟号密占用一定的额诺,为尽量威小干扰,对有用信号应规定必要的最小占有带宽,这有赖于优化信号波形。 2.完警线路设计 应设计和选用自身发射小、抗干扰能力强的电子线路(包括集成电路)作为电子产品 的单元电路。对于一般小信号放大器应尽可能增大放大器的线性动态范围,以提高电路 的过载能力,减少非线性失真。希迪电子晶闸管和工作于开关状态的三极管,工作时均产生电流脉 冲,发射频潜很宽的电磁能置,因此必须采取相应的抑制措施*利用铁包体痘环进行功率合成,可能由于磁饱和引起较严重的谐波失真,因此,也要采取相应的抑制措施。功率放大器工作在甲类状态时产生的谐波最少;工作在推挽形式的乙类状态时,只要电路结构对称就可以抑制二次谐波,但不对称就可能产生强的偶次谐波;丙类功率放大器仅用于射频放大,需采用锐谐调、高Q值滤波器抑制其谐波电平。 为了减小放大器因非线性失真而产生的谐波发射,可采用反馈和非线性补偿方法改 善放大器的线性。采用平衡电路(如差分放大器)传翰信号不但可减小共模电流产生的干扰,而且还能抑制共模干扰对放大器的影响。 3.屏蔽 用屏蔽体将干扰源包封起来,可以防止干扰电磁场通过空间向外传播。反之,用屏蔽体将感受据包封,就可使感受器免受外界空间电磁场的影响。屏蔽技术虽能有效地阻断 近地感应和远场辐射等电磁干扰的传播通道,但是它有可能使产品的通风散热困难,维修不使,并导致重量、体积和成本的增加。所以设计人员需权衡利弊,采用合理的措施,以最佳效果、费用比来满足电磁兼容性要求。 4.授地与搭接 不管是否与大地实际连接,只要为电源和信号电流提供了回路和基淮电位,就统称为 接地。设计中如能周密设计出地线系统,综合使用接地、滤波和屏蔽等措施,往往可事半功倍,有效地提高产品的电磁兼容性。事实证明,一个产品和分系统在金机时出现故障,多半是由接地系统不完善引起的。 5.滤波 滤波是借助抑制元件将有用信号频谱以外不希望通过的能量加以抑制。它既可以抑 制干扰源的发射,又可以抑制干扰源频谱分量对敏感产品、电路或元件的影响。滤波虽能十分有效地抑制传导干扰,但制造大容量、宽频带的抗干扰滤波器的代价是昂贵的。 6.合理布局 合理布局包括产品内各单元之间的相对位置和电缆走线等,其基本原则是使感受器 和干扰源尽可能远离,输入与输出端口妥善分割,高电干电缆及脉冲引线与低电乎电缆分别铺设。通过合理布局能使相互于扰减小到最低程度而又费用不多。 需要说明的是以上电磁兼容性设计都是针对电子产品工作中产生的“无意干扰”的, 至于对于有特定目的的“有意干扰”,已屑电子对抗范畴,采取的措施不尽一致。 5.3.3 电场屏蔽的原理及屏蔽物的结构要点 1.电场屏蔽厦理 电场屏蔽的最简单的方式是在干扰源与受感器之间加一块接地良好且导电性能良好 的金属板,就可以把感应电荷短接到地以达到屏蔽的目的。

相关文档
相关文档 最新文档