文档库 最新最全的文档下载
当前位置:文档库 › 《数字通信》-第6章-数字信号传输-2

《数字通信》-第6章-数字信号传输-2

《数字通信》

第6章数字信号传输(2)

复习

数字传输的基本理论

基带传输和频带传输

常见基带信号波形:

单极性(归零/不归零)

双极性(归零/不归零)

差分

多电平

功率谱:包括连续谱和离散谱,双极性等概时无离散谱 基带传输系统构成

无码间干扰条件

滚降低通网络

复习 基带传输的常用码型

传号交替反转码(AMI码)

三阶高密度双极性码(HDB3码)

传号反转码(CMI码)

传输码型的误码增值

传输码型特性的分析比较:

连零

检测误码

误码增值

电路实现

应用

复习

数字信号的基带传输

基带传输信道特性:幅度变小、波峰延后、脉宽增加 再生中继系统:无噪声积累,有误码率积累

三大部分:均衡放大;定时提取;判决再生

均衡放大要求:幅度大波峰平坦;码间干扰小

常见均衡波形:升余弦;有理函数

码间干扰衡量:眼图

内容

1.频带传输系统的基本结构

2.数字调制

3.光纤数字传输系统

4.数字微波和卫星传输系统

1.频带传输系统的基本结构

1.频带传输系统的基本结构组成部分:

发送低通

调制

发送带通

接收带通

解调

接收低通

取样判决

2.数字调制

乘法器

)

(2t e ASK 二进制不归零信号

t

c ωcos )

(t s ωcos

T

相移键控ASK:

基带信号对载波的相位进行调制:

式中,表示第n个符号的绝对相位:

因此,上式可以改写为:

)

cos(A )(2PSK n c t t e ?ω+=??

?=”时

发送“”时发送“,1,00π?n ??

???=P

t P t t e c c 1,cos A ,

cos A )(2PSK 概率为概率为ωω

由于两种码元的波形相同,极性相反,故2PSK信号可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘:

式中

这里,g(t)是脉宽为Ts的单个矩形脉冲,而a n 的统计特性为

即发送二进制符号“0”时(a n 取+1),e 2PSK (t)取0相位;发送二进制符号“1”时(a n 取-1),e 2PSK (t)取π相位。这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。

()t

t s t e c ωcos )(2PSK =∑?=n

s n nT t g a t s )

()(??

???=P

P a n 1,1,

1概率为概率为

频移键控ASK:

基带信号对载波的频率进行调制,在2FSK中,载波的频率随二进制基带信号在f 1和f 2两个频率点间变化:

??

?++=”时

发送“”时发送“0),

cos(A 1),cos(A )(212FSK

n n t t t e θω?ω

3.光纤数字传输系统

光纤数字传输系统:

利用光导纤维传输光波信号的通信方式

光纤数字传输系统是对数字信号进行光调制,将其转换为光信号,然后在光纤中传输的系统:

“0”码:不发光

“1”码:发光

光纤数字传输系统组成:

电端机

光端机 光中继机 光纤线路想一想:为什么PCM的1~3次群均采用HDB3码,而4次群却建议采用CMI码?

系统框图:

系统组成:

电端机:完成A/D和D/A转换,同时还可能包括速率调整和适配,时分多路复用等模块

光端机:完成电/光和光/电转换,同时对输入的数字信号进行适当处理(如码型变换)后变为光脉冲

光中继机:作用是延长光波传输距离。包括光/电转换、放大整形和电/光转换

光纤线路:每个系统使用两根光纤,分别专用于信号的发信和收信

数字调制传输系统

第七章数字信号的调制传输 本章教学基本要求: 掌握:1. 二进制数字调制基本原理 2. 几种调制方式的特点、性能对比 3. 会画2ASK、2FSK、2PSK、2DPSK信号波形图 理解:多进制数字调制的几种方式 本章核心内容: 一、数字频带传输系统基本结构 二、模拟调制原理和频分复用 三、2ASK、2FSK、2PSK、2DPSK系统的调制和解调原理 四、二进制数字调制系统抗噪声性能和系统性能比较 五、简介其他数字调制系统 重点:二进制数字调制的基本原理;二进制数字调制的抗噪性能分析及比较; 难点:二进制数字调制的抗噪性能分析及比较 学时安排:6学时 引言:前一章介绍的数字基带传输系统,?是将信源发出的信息码经码型变换及波形形成后直接传送至接收端。虽然码型变换及波形形成可使其频谱结构发生某些变化,但分布的范围仍然在基带范围内。因此,数字基带信号不可能在诸如无线信道、光纤信道等传输媒质中直接传输。与模拟信号一样,必须经调制后才能在无线信道、光纤信道等媒质中传输。 1、数字信号的传输方式 数字信号共有两种传输方式 (1)、基带传输(已经在第6章介绍):数字信号直接传送的方式。 (2)、频带传输(将在本章介绍):用数字基带信号调制载波后的传送方式。 数字调制传输系统定义:用数字基带信号调制载波的一种传输系统,这个系统也称为数字频带传输系统。 2、载波的形式 载波的波形是任意的,但大多数的数字调制系统都选择单频信号(正弦波或余弦波)作为载波,因为便于产生与接收。 3、数字调制的分类 共有以下三种基本形式。 (1)振幅键控(ASK);(2)频移键控(FSK);(3)相移键控(PSK) 其它形式由此派生而来。也可分为:(1)线性调制(如ASK);(2)非线性调制(如FSK,PSK) 本章主要讨论二进制数字调制系统的原理及抗噪声性能,?并简要介绍多进制数字调制原理及其它几种派生出来的数字调制方式。 §7.1 二进制数字调制原理 §7.1.1 二进制幅度键控(2ASK) 一、ASK概念:正弦载波的幅度随着调制信号而变化。 即传“1”信号时,发送载波, 传“0”信号时,送0电平。 所以也称这种调制为通(on)、断(off)键控OOK。 其实现模型如图7.1-1所示,其调制波形如图7.1-2所示。

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

视频监控中的常见几种视频传输方式介绍

视频监控中的常见几种视频传输方式介绍 目前,在安防监控行业中用来传输图象信号的方式有很多,但主要传输介质是同轴电缆、双绞线和光纤,对应的传输设备分别是同轴视频放大器、双绞线视频传输设备和光端机。同轴电缆是较早使用,也是最传统的视频传输方式。后来,由于远距离和大范围图象监控的需要以及人们对监控图象质量的要求提高,监控网络中开始大量使用光纤来传输图象信号。虽然双绞线被使用到图象监控网络中是近来的事,但双绞线的视频平衡传输技术是很早就出现了。它也是视频传输技术的一个分支。下面详细介绍下常见视频传输方式: 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

各种视频传输模式比较分析

各种视频传输模式分析 视频线缆传输可以分为同轴基带传输、双绞线基带传输、射频传输、光缆传输、数字IP(网络)传输等几种方式。 一、视频同轴基带传输: 我国PAL-D视频基带0-6M,复合视频基带一般指视频基带和音频副载波为8M带宽。同轴视频传输是应用最早,用量最大,最容易操作的一种视频传输方式。同轴视频基带传输的技术要点是: 1.同轴电缆的信号传输是以“束缚场”方式传输的,就是说把信号电磁场“束缚”在外屏蔽层内表面和芯线外表面之间的介质空间内,与外界空间没有直接电磁交换或“耦合”关系。所以同轴电缆是具有优异屏蔽性能的传输线;同轴电缆属于超宽带传输线,应用范围一般为 0Hz—2Ghz以上;它又是唯一可以不用传输设备也能直接传输视频信号的线缆; 2.视频基带信号处在0-6M的频谱最低端,所以视频基带传输又是绝对衰减最小的一种传输方式。但也正是因为这一点,频率失真——高低频衰减差异大,便成为视频传输需要面对的主要问题;在视频传输通道幅频特性“-3db”失真度要求内,75-5电缆传输距离约为120—150米;工程应用传输距离在2、3百米以内还比较好,网上论坛里提供的“感官标准”传输距离数据,从3、5百米到1千多米都有,实际是没有标准,也就没有实际参考意义。 3.同轴视频基带传输的主要技术问题是:为实现远距离传输的频率加权放大和抗干扰问题。加权放大器可一定程度地抑制干扰,同时也能有效补偿电缆衰减和频率失真,属于抗干扰传输设备。其前端有源—后端无源抗干扰传输距离(75-5)在1000米左右,前后端都有源为1500-2000米;与加权视频放大器配套的抗干扰传输距离3公里,75-7电缆可以达到5公里。双绝缘双屏蔽抗干扰同轴电缆是与同轴电缆穿镀锌铁管原理一样,施工更方便,成本更低,在常见电磁干扰环境下,可以作为防止干扰入侵,又可方便设计和施工的工程选择; [同轴视频基带传输设备] 我国频率加权视频放大专利技术的出现,有效解决了视频传输的频率失真问题,产品已经比较成熟,在视频传输通道“-3db”失真度要求内,仅用一级末端补偿,75-5电缆传输距离已经提高到了2000米以上,前后双端补偿的视频恢复设备已经突破3公里。传输距离已可以满足多数中近距离工程需要,传输质量已达到高质量工程的要求; [认识、理解和应用上的盲区误区] 1.知道同轴传输有衰减,但不了解、不理解“频率失真才是视频同轴传输最需要重视的主要问题。频率失真改变了视频原信号各种频率成分的正常比例关系,降低了图像色度和清晰度;

基于MATLAB仿真的数字信号调制的性能比较和分析

2ASK、2FSK、2PSK数字调制系统的 Matlab实现及性能分析比较 指导教师: 班级: 学号:

姓名: 引言:数字信号有两种传输方式,分别是基带传输方式和调制传输方式,即带通,在实际应用中,因基带信号含有大量低频分量不利于传送,所以必须经过载波和调制形成带通信号,通过数字基带信号对载波某些参量进行控制,使之随机带信号的变化而变化,这这一过程即为数字调制。数字调制为信号长距离高效传输提供保障,现已广泛应用于生活和生产中。另外根据控制载波参量方式的不同,数字调制主要有调幅(ASK ),调频(FSK),调相(PSK) 三种基本形式。本次课题针对于二进制的2ASK 、2FSK 、2PSK 进行讨论,应用Matlab 矩阵实验室进行仿真,分析和修改,通过仿真系统生成一个人机交互界面,以利于仿真系统的操作。通过对系统的仿真,更加直观的了解数字调制系统的性能及影响其性能的各种因素,以便于比较,评论和改进。 关键词: 数字,载波,调制,2ASK ,2FSK ,2PSK ,Matlab ,仿真,性能,比较,分析 正文: 一 .数字调制与解调原理 1.1 2ASK (1)2ASK 2ASK 就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号"1时,传输载波;当调制的数字信号为"0"时,不传输载波。 表达式为: ???===0 01,cos )(2k k c ASK a a t A t s 当, 当ω

1.2 2FSK 2FSK 可以看做是2个不同频率的2ASK 的叠加,其调制与解调方法与2ASK 差不多,主要频率F1 和F2,不同的组合产生所要求的2FSK 调制信号。 公式如下: ?? ?===0 cos 1 ,cos )(212k k FSK a t A a t A t s 当,当ωω

监控系统中视频信号传输方式

监控系统中视频信号传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、 同轴电缆传输 (一)通过同轴电缆传输视频基带信号 视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减 19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还 可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术: 在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类: 一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分

网络视频传输六大方式

网络视频传输六大方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz 视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet 网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到

高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输;双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的

第六章数字信号的调制传输.

第六章 正弦载波数字调制系统 6.1 引言 一、 三要素 1、数字基带信号, 2、被调制信号:载波信号,例正弦信号 3、已调制信号:两信号迭加后形成的信号(键控信号) 二、分类 1、数字基带信号去改变载波A 、F 、P 幅度键控:ASK 频率键控:FSK 相位键控:PSK 2、二进制数字调制:2ASK 、2FSK 、2PSK 多进制数字调制:4ASK 、4FSK 、4PSK 线性调制:2ASK 、2PSK 非线性调制:2FSK 6.2 二进制数字调制原理 一、2ASK 1、数字基带信号的时域和频域 (1)、时域(以单极性不归零码为例) ()() ? ??→-→=-=? ? ? ????? ??∑”0“0”1“11:传传其中p p a nT t g a t s n s n n (2)、频域 {

()()()f T Sa T f G t g S S π=? ()()f f T Sa T f G s f f G s f f G p s f f G p p s f f s P S S δπδδ4 1 4) ()0(2241 )(241) ()0(2)1(2)(2)1()(22+=+=-+-=∴ 2、2ASK 时域和频域表达式 (1)、时域表达式 ()()()t nT t g a t t S t e c n n c ωωcos cos 0?? ? ???-==∑ (2)、频域表达式 ()()()()()()[]()()()c s c s c S c S E c S f f G f f f G f f f P f f P f P t t S f P t S +++= -++=??δω2 2201611614 1 cos 其中:P s (f)为S(t)的功率谱密度 2ASK 带宽: 2ASK 带宽 2×数字基带带宽 故:2ASK 带宽=2×(正频域第一过零点)=2×(1/波形宽度)=2/T S 3、2ASK 调制 定义为

常见视频传输方式及施工技巧

常见视频传输方式及施工技巧 1、同轴电缆传输 在闭路监控系统中,同轴电缆是传输视频图像最常用的媒介。同轴电缆截面的圆心为导体,外用聚乙烯同心圆状绝缘体覆盖,再外面是金属编织物的屏蔽层,最外层为聚乙烯封皮。同轴电缆对外界电磁波和静电场具有屏蔽作用,导体截面积越大,传输损耗越小,可以将视频信号传送更长的距离。 摄像机输出通过同轴电缆直接传输至监视器,若要保证能够清晰地加以显示,则同轴电缆的长度有限制。如果要传得更远,一种方法是改用截面积更大的同轴电缆类型,另一种方法是在靠近监视器处安装一台后均衡视频放大器(post equalizing video mplifier),通过补偿视频信号中容易衰减的高频部分使经过长距离传输的视频信号仍能保持一定的强度,以此来增长传输距离。需要指出的是,后均衡视频放大器只能安装在靠近监视器之处,如果安装在摄像机附近则失效。此外,所有电缆均应是阻抗为75欧姆的纯铜芯电缆,绝对不可用镀铜或铝芯电缆。采用同轴电缆传送视频信号时,由于存在不平衡电源线负载等因素会导致各点之间存在地电位差,其电压峰-峰幅值在0~10V。为此应采用被动式接地隔离变压器(GRO UND ISOLATION TRANSFORMER),它可放置在同轴电缆中存在地电位差的任何一处,并可放置多个,用它可以消除存在地电位差带来的问题,并有效地降低50Hz频率共模电压。 电缆的选择 认真选择合适的电缆对于设备是否能达到最佳性能至关重要,同轴电缆的阻抗都为75欧姆。 材质 只能使用纯铜芯导线的电缆。不要采用镀铜的铜芯电缆或铝芯电缆,因为它们不能在CATV网所用的整个频段上有效地传输信号。CATV信号传输要求电缆芯线具有底的直流阻抗。 在不发生弯折的情况下,实心裸铜导线最适于视频应用。如果在正常使用中,弯则无法避免,则应选用绞芯线。 绝缘材料最好是多孔(泡沫)聚乙烯。它比实心的聚乙烯有更好的电气特性,但容易受潮湿影响。因此在潮湿环境的应用中应采用实心聚乙烯绝缘的外部有厚绝缘层的电缆。屏蔽层必须是覆盖95%以上铜丝编辑层。 安装技巧:不要拉伸电缆或使之过度弯曲。避免电缆同供热管道和其他热源的接触。即使热量不足以造成对电缆的明显损害,也会使传输特性受到影响。在电缆必须连续弯曲的场合(如有扫描仪或水平俯仰云台),应使用专门的电缆。这种电缆的芯导线应是多股胶合线。只使用压接型的BNC连接器。 电缆类型和操作距离:最常用的电缆有RG-59/U和RG-11/U两类。每种都包括一系列具有不同电气特性的电缆产品,其中一些是不适于CATV应用的。当采用Belden之外的电缆时,应以表A中电缆的特性作为准则。材质和结构必须遵循上述原则。表B列出了最大电缆长度同图像质量之间的关系。除非特别说明,建议使用下列的同轴电缆。 2、光纤视频传输 光纤是能使光以最小的衰减从一端传到另一端的透明玻璃或塑料纤维,光纤的最大特性是抗电子噪声干扰,通讯距离远。 光纤有多模光纤和单模光纤之分。单模光纤只有单一的传播路径,一般用于长距离传输,多模光纤有多种传播路径,多模光纤的带宽为50M Hz~500M Hz/Km,单模光纤的带宽为2000MHz/Km,光纤波长有850 nm,1310 nm和1550 nm等。850nm波长区为多模光纤通信方式;1550 nm波长区为单模光纤通信方式;1

数字视频信号的传输

数字视频信号的传输 刘怀林 数字视音频的大潮已经向我们涌来。数字小岛、数字视音频中心、数字转播车已陆续在我国不少电视台出现。甚至数字播出与发射已不再是纸上谈兵。数字化及计算机化将引起电视技术领域的极大变革。本文将从一个非常小的侧面谈一下这个数字大潮。因为数字视频信号的传输在系统设计与安装中是不可缺少的一环。 目前,设备间、系统间的数字视频信号的传输多使用串行信号。其接口为SDI(Serial Digital Interface)。这是因为该方式较简单易行。传送距离较远。因此本文所谈的数字信号的传输实质上就是串行数字视频信号的传输。 数字视频信号的传输在某种意义上讲与模拟信号相似。分为同轴电缆传送,三同轴传送和光纤传送三种。 但由于两者信号有着本质的不同。所以其处理手法上有着很大的区别。 一、同轴电缆传送 在数字环境中,设备间、系统之间的数字视频信号的传送多采用同轴电缆,其接口为SDI。它由三部分组成。如图1所示。 1、串行数据发送: 串行数据发送电路的主要功能是:将数字视频并行信号变成串行信号,通过扰频(scrambler)和NRZI(NonreturntoZeroInverfed)编码,可限制信号的直流成份,前者还有利于接收端回收时钟信号。图2是其示意图: 我们知道,数字分量并行数据率为27MB/秒,10比特。当变成串行数据时,27MHZ10倍频成为270MHZ时钟。在并──串移位寄存器的输出端就变成了270Mb/s的串行数据。 2、电缆和连接器 目前模拟环境下使用的高质量视频电缆可以运行于数字系统。模拟环境下的视频电缆从直流到10MHZ都呈现很低的阻抗。这在数字领域也是需要的。但由于串行数字信号频率很高,这种电缆传输对数字视频信号将有明显的衰减。由于SDI接收端设有自动电缆均衡,另外串行数字信号对这种衰减不敏感。因此现在使用的优质电缆原则上可用于数字环境。为了更好地传输数字视频信号。电缆厂家已生产出专门为串行数字信号设计的新的低耗泡沫介质电缆。比目前电缆更细、更柔软,并且对数字信号有更好的电特性。如Belden1505A。有关连接器,直至目前,视频电缆采用BNC连接器。阻抗为50欧姆。而同轴电缆阻抗为75欧姆。这种看上去不合理的现象为什么能保持至今呢?其主要原因是在视频信号所涉及的频率率上。这种失配并不产生什么问题。但在数字视频信号频率很高的情况下会不会引起脉冲畸变或比特率误差呢?经测试表明,只要接收端输入阻抗看上去为75欧姆。这种50

视频监控传输技术方案的选择.

视频监控传输技术方案的选择 自从上世纪八十年代末期以来,视频监控技术得到越来越广泛的应用,随着系统应用的不断推广,相应的有关技术也处于不断的淘汰更新的过程之中。在视频监控系统的初期,人们利用同轴电缆进行视频信号的传输,在监控中心采用画面分割器、小型矩阵等设备来搭建系统,由于同轴电缆传输模拟视频信号受距离的限制,即使在利用放大器进行中继的情况下,采用这种方式构建的系统一般为覆盖方圆几百米的小型监控系统。 上世纪九十年代为视频监控技术高速发展的时期,随着光纤通信技术的发展及在视频传输领域的应用,采用光端机将视频信号转化为光信号,利用光纤进行传输的方式使得视频监控系统的覆盖范围得到了很大的延伸,由于光纤传输的众多优势以及系统建设成本的持续下降,采用光纤传输的方案成为建设大型视频监控系统的主流传输方案。在视频光端机不断发展的同时,互联网技术开始兴起并逐渐深入到人们的生活之中,由于互联网商用非常的成熟,覆盖范围广泛,利用网络进行视频图像高质量的传输成为众多网络硬件、软件厂商的努力方向。 到目前为止,利用互联网进行可视及时通信已经成为现实,但是由于监控行业的专业性,由于监控用户对于画面质量、控制性能的高要求,使得这种方案在目前的技术条件下,在监控领域表现出勃勃生机,却难以在中高端市场对上一种方案形成冲击。在监控系统中,监控图象的传输是整个系统的一个至关重要的环节,选择何种介质和设备传送图象和其它控制信号将直接关系到监控系统的质量和可靠性。在监控系统中用来传输图象信号的介质主要有同轴电缆、双绞线和光纤,传输设备以及传输网络的构建模式的非常众多。要组建一个高质量的监控网络,就必须根据系统的规模、覆盖范围等要求,结合各种传输系统的特点选择合适的方案构建传输网络。 下面我们首先分析采用各种传输介质进行视频信号传输的特点: 一、同轴电缆 图象传输最初采用的是同轴电缆,由于同轴电缆具有价格较便宜、铺设较方便的优点,一般在小范围的监控系统中有着广泛的应用。利用同轴电缆传输视频信号由于信号衰减的原因,使得信号的传输距离有限,因此同轴电缆只适合于近距离传输图象信号,当传输距离达到200米左右时,图象质量将会明显下降,特别是色彩变得暗淡,有失真感。在工程实际中,为了延长传输距离,要使用同轴放大器。同轴放大器对视频信号具有一定的放大作用,并且还能通过均衡调整对不同频率成分分别进行不同大小的补偿,以使接收端输出的视频信号失真尽量小。但是,同轴放大器并不能无限制级联,一般在一个点到点系统中同轴放大器最多只能级联2到3个,否则无法保证视频传输质量,并且调整起来也很困难。因此,在监控系统中使用同轴电缆时,为了保证有较好的图象质量,一般将传输距离范围限制在四、五百米左右。另外,同轴电缆在监控系统中传输图象信号还存在着一些缺点: 1)、同轴电缆本身受气候变化影响大,气候不好图象质量受到一定影响; 2)、同轴电缆较粗,在密集监控应用时布线不太方便; 3)、同轴电缆一般只能传视频信号,如果系统中需要同时传输控制数据、音频等信号时,则需要另外布线或增加设备; 4)、同轴电缆抗干扰能力有限,无法应用于强干扰环境; 5)、同轴放大器还存在着调整困难的缺点。 二、双绞线和双绞线视频传输设备 由于传统的同轴电缆监控系统存在着一些缺点,特别是传输距离受到限制,所以寻求一种经济、传输质量高、传输距离远的解决方案十分必要。早期,在传输距离超过五、六百米的监控系统中一般使用多模光纤和多模光端机,这虽然解决了远距离传输的问题,但是系统造价增加了很多,并且光纤的施工复杂,需要专业人员和专用设备。所以,对这种距离不是太

数字信号的传输

第7章数字信号的传输 第一节数字信号传输的基本理论 ●基带传输——未经调制变换的基带数字信号直接在电缆信道上传输。数字信号的波形 P186图6.1 第二节基带传输的线路码型 一、对基带传输码型的要求 P193 二、常见的传输码型 1、单极性不归零码(即NRZ码)——不适合基带传输 2、单极性归零码(即RZ码)——不适合基带传输 3、AMI码 P195图6.15 ●AMI码基本符合要求,适合作为基带传输码型。 ●AMI码的缺点——如果长连“0”过多,对定时钟提取不利。 为了克服这一缺点,引出了HDB3码。 ●二进码 AMI码 例、二进码序列如下,将其转换为AMI码。 二进码序列: 1 1 0 1 0 1 0 0 1 1 1 0 1 AMI码: +1-10+1 0-1 0 0+1-1+1 0-1 4、HDB3码 二进码 HDB3码 ●HDB3码码型变换规则 P196 ●HDB3码码型反变换的原则 196 例1、二进码序列如下,将其转换为HDB3码。 二进码序列: 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 HDB3码:V+ 解: 二进码序列 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 HDB3码:V+ -1 0+1 B-0 0V-+1-1+1 0 0 0V+B-0 0 V-0 +1 例2、设接收到的HDB3码如下(不包括参考点),将其还原为二进码序列。HDB3码: +1 0 0 0+1 0-1+1 0 0-1 0 0 0-1+1 0 0+1 0-1 解: HDB3码 +1 0 0 0+10–1+1 0 0–1 0 0 0–1+1 0 0+1 0-1 二进码序列 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 5、CMI码 二进码 CMI码 CMI码变换规则 P197表6.1 例1、二进码序列如下,将其转换为CMI码。

模拟信号的数字传输

135 第七章 模拟信号的数字传输 7.1 引 言 前几章已讨论了模拟信号在模拟通信系统中的传输和数字信号在数字通信系统中的传输。 本章将要讨论的是模拟信号经过数字化以后在数字通信系统中的传输,简称模拟信号的数字传输。 数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。另外,还可以存储,时间标度变换,复杂计算处理等。 模拟信号用得多的是语音信号,把语音信号数字化后,在数字通信系统中传输,称为数字电话通信系统。 模拟信号的数字传输的方框图见下图: 图中,)(t m 、∧)(t m :模拟随机信号,{}k s 、{}∧ k S :数字随机序列。 模拟信号的数字传输分三个步骤进行: ① A/D 把模拟信号变成数字信号 ② 数字信号传输 ③ D/A 把数字信号还原成模拟信号 第二步骤在第5章,第6章已经论述。因此,本章仅讨论第一和第三步骤。 模拟信号数字输入的关键是模拟信号和数字信号的互相转换。 A/D 转换步骤示意如下图: A/D 转换 D/A 转换

136 本章主要内容: 1、抽样(介绍模拟信号数字化的理论基础之一:抽样定理) 2、量化(介绍模拟信号的量化) 3、编码和译码 4、PCM (脉冲编码调制) (模拟信号抽样、量化、编译码的一种常用方式)系统 5、m (增量调制)系统(模拟信号数字化的另一种常用方式) 6、DPCM 系统 7、数字电话通信系统 (简要介绍模拟电话信号的数字传输)(一个例子) 7.2抽样定理 将模拟信息源信号转变成数字信号叫做A/D 转换,A/D 转换中有三个基本过程: 抽样、量化、编码。 抽样是A/D 转换的第一步。 A/D 转换时,抽样间隔越宽,量化越粗,信号数据处理量少,但精度不高,甚至可能失掉信号最重要的特征。 抽样间隔如何确定?(抽样速率如何确定?) 举正弦波信号抽样的例子: t 抽样 量化 1 t 024 t 100 编码 A/D 转换步骤示意图

常见的几个视频传输方式介绍

常见的几个视频传输方式介绍 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、 维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能最好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级 扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,有Internet网络安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明 显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:省去布线及线缆维护费用,可动态实时传输广播级图像。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间很容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;Ku波段受天气影响较为严重,尤其是雨雪天气会有严 重雨衰想象。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境复杂场合的解决方式之一,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输;双绞线传输高频 分量衰减较大,图像颜色会受到很大损失。

基于Matlab的数字信号传输系统实验

1)、实验原理及框图 原理上说,数字信息可以直接用数字代码序列表示和传输,但在实际传输中,视系统的要求和信道的情况,一般需要进行不同形式的编码,并且选用一组取值有限的离散波形来表示。这些取值离散的波形可以是未经调制的电信号,也可以是调制后的信号。未经调制的数字信号所占据的频谱是从零频率或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经过载波调制而直接进行传输。例如,在计算机局域网中直接传输基带脉冲。这种不经载波调制而直接传输数字基带信号的系统,称为数字基带传输系统,其系统框图如下所示: 本次实验采用单极性归零码,所谓归零(Return-to-zero,RZ)波形是指它的有电脉冲宽度τ小于码元宽度T,即信号电压在一个码元终止时刻前总要回到零电平。通常,归零波形使用半占空码,即占空比(τ/ T)为50%。波形如下所示: 2)、实验结果

附:程序源代码 Fs=1e4; len=20; sig=[]; out=[]; for t=1:2000 n=fix(t/100); if n==0 in_a(t)=0; else in_a(t)=in(n); end end subplot(2,1,1); plot(in_a,'LineWidth',3); title('基带信号 ','FontWeight','bold','FontSize',20); xlabel('t/s','FontSize',18); axis([100,2100,-0.5,3.5]); set(gca,'XTick',0:100:2000); grid on; CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; subplot(2,1,2); plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx,'LineWidth',2); title('基带信号功率谱 ','FontWeight','bold','FontSize',20); axis([0,5000,-10,40]); xlabel('Hz','FontSize',18,'FontSize',18); if in(i)==0 ins=[0,0]; elseif in(i)==1 ins=[1,0]; elseif in(i)==2 ins=[2,0]; else ins=[3,0]; end sig=[sig,ins]; end for t=1:4000 n=fix(t/100); if n==0 s(t)=0; else s(t)=sig(n); end end figure; plot(s,'LineWidth',3); title('单极性归零码 ','FontWeight','bold','FontSize',20); xlabel('t/s','FontSize',18); axis([100,4100,-0.5,3.5]); set(gca,'XTick',0:200:4100); grid on; cxn=xcorr(s,'unbiased'); nfft=1024; CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; subplot(2,1,2); plot_Pxx=10*log10(Pxx(index+1));

相关文档
相关文档 最新文档