文档库 最新最全的文档下载
当前位置:文档库 › 上机-第二代测序中的数据分析-转录组

上机-第二代测序中的数据分析-转录组

2_重测序BSA分析项目结题报告

重测序BSA项目结题报告 客户单位:____________________________________ 报告单位:____________ 联系人:____________________________________ 联系电话: ___________________________ 传真:___________________________ 报告日期:____________________________________ 项目负责人:__________ 审核人: __________________ 目录 目录 (1) 1 项目概况 (1) 1.1 合同关键指标 (1)

1.2 项目基本信息 (1) 1.3 项目执行情况 (2) 1.4项目结果概述 (2) 2 项目流程 (3) 2.1 实验流程 (3) 2.2 信息分析流程 (3) 3 生物信息学分析 (5) 3.1 测序数据质控 (5) 3.1.1 原始数据介绍 (5) 3.1.2 碱基测序质量分布 (7) 3.1.3碱基类型分布 (9) 3.1.4 低质量数据过滤 (10) 3.1.5测序数据统计 (10) 3.2 与参考基因组比对统计 (11) 3.2.1 比对结果统计 (11) 3.2.2 插入片段分布统计 (11) 3.2.3 深度分布统计 (12) 3.3 SNP 检测与注释 (14) 331样品与参考基因组间SNP的检测 (14) 332样品之间SNP的检测 (17) 3.3.3 SNP结果注释 (19) 3.4 Small In Del 检测与注释 (22) 3.4.1 样品与参考基因组间Small InDel 的检测 (22) 3.4.2样品之间Small InDel 检测 (22) 343 Small In Del 的注释 (23) 3.5 关联分析 (26) 3.5.1高质量SNP筛选 (26) 3.5.2 SNP-index方法关联结果 (26) 3.5.3 ED方法关联结果 (28)

有参考基因组的转录组生物信息分析

一、生物信息分析流程 获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析: 二、项目结果说明 1 原始序列数据 高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。 FASTQ格式文件中每个read由四行描述,如下: @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT + @@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF 其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。 illumina 测序标识符详细信息如下:

第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Q phred 表示,则有下列关系: 公式一:Q phred = -10log 10 (e) illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下: 2 测序数据质量评估 2.1 测序错误率分布检查 每个碱基测序错误率是通过测序Phred数值(Phred score, Q phred )通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示: illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系 测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。对于RNA-seq技术,测序错误率分布具有两个特点: (1)测序错误率会随着测序序列(Sequenced Reads)的长度的增加而升高,这是由于测序过程中化学试剂的消耗而导致的,并且为illumina高通量测序平台都具有的特征(Erlich and Mitra, 2008; Jiang et al.)。 (2)前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq 建库过程中反转录所需要的随机引物的长度。所以推测前6个碱基测序错误率较高的原因为随机引物和RNA模版的不完全结合(Jiang et al.)。测序错误率分布检查用于检测在测序长度范围内,有无异常的碱基位置存在高错误率,比如中间位置的碱基测序错误率显着高于其他位置。一般情况下,每个碱基位置的测序错误率都应该低于0.5%。 图2.1 测序错误率分布图

转录组测序(RNA-seq)技术

转录组测序(RNA-seq)技术 转录组是某个物种或者特定细胞类型产生的所有转录本的集合。转录组研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理,已广泛应用于基础研究、临床诊断和药物研发等领域。基于Illumina高通量测序平台的转录组测序技术使能够在单核苷酸水平对任意物种的整体转录活动进行检测,在分析转录本的结构和表达水平的同时,还能发现未知转录本和稀有转录本,精确地识别可变剪切位点以及cSNP(编码序列单核苷酸多态性),提供最全面的转录组信息。相对于传统的芯片杂交平台,转录组测序无需预先针对已知序列设计探针,即可对任意物种的整体转录活动进行检测,提供更精确的数字化信号,更高的检测通量以及更广泛的检测范围,是目前深入研究转录组复杂性的强大工具。 技术优势: ?数字化信号:直接测定每个转录本片段序列,单核苷酸分辨率的精确度,同时不存在传统微阵列杂交的荧光模拟信号带来的交叉反应和背景噪音问题。 ?高灵敏度:能够检测到细胞中少至几个拷贝的稀有转录本。 ?任意物种的全基因组分析:无需预先设计特异性探针,因此无需了解物种基因信息,能够直接对任何物种进行转录组分析。同时能够检测未知基因,发现新的转录本,并精确地识别可变剪切位点及cSNP,UTR区域。 ?更广的检测范围:高于6个数量级的动态检测范围,能够同时鉴定和定量稀有转录本和正常转录本。 应用领域:转录本结构研究(基因边界鉴定、可变剪切研究等),转录本变异研究(如基因融合、编码区SNP研究),非编码区域功能研究(Non-coding RNA研究、microRNA前体研究等),基因表达水平研究以及全新转录本发现。 图1 RNA-seq获得的数据能够进行全面的数据挖掘,既能够进行基因结构分析,鉴定UTR、可变剪切位点,也能够发现新的转录本及非编码RNA,比较样本间的表达水平差异

人类基因组重测序分析

6 首页 科技服务 医学检测 科学与技术 市场与支持 加入我们 关于我们提供领先的基因组学解决方案 Providing Advanced Genomic Solutions 诺禾致源 人类疾病基因组重测序分析图3 Circos 图 人类基因组重测序分析6项升级 Novo-Zhonghua Genomes 数据库注释 一些位点的突变可能在千人基因组中或在欧美人群中属于低频突变,但是对于中国人群来说却是常见突变。诺禾致源自建中国人数据库 Novo-Zhonghua Genomes,数据库中的所有样本均来自正常中国人群。已有研究表明,与国际通用的多人种数据库相比,使用单一人种数据库进行疾病研究,可以有效减少假阳性现象。 图2 真核生物基因的结构[6] 复杂疾病变异分类标准 DamLevel Variant Calling Variant Annotation Benign Likely Benign VUS Likely Pathogenic Custom knowledge Clinical Data Pathogenic Family Testing Published + in house data Population frequency Predictions: PolyPhen, SIFT, etc Amino acid conservation Published Disease Information Variant classification Candidate Variants Novo-Zhonghua Genomes 数据库注释 复杂疾病突变位点有害性分类 非编码区(Non-coding region)分析 疾病基因组 CNV/SV 分析 基于基因(Gene-based)的 Burden Analysis (复杂疾病散发样本) 可视化的数据结果展示 基于健康中国人群的千人测序数据,测序深度 > 30× 参考 ACMG 等,推出针对复杂疾病变异位点有害性的分类标准 应用 ENCODE 数据库最新内容,并结合国际通用数据库、自建数 复杂疾病突变位点有害性分类 基于美国医学遗传学会 ACMG[2]与 Duzkale H[3]提出的变异分类标准,诺禾致源疾病基因组信息分析团队推出了一套针对复杂疾病变异位点有害性的分类标准 DamLevel(如下图所示)。DamLevel 将变异位点的有害性分为5个层级:Pathogenic、Likely Pathogenic、VUS(Variant of uncertain significance)、Likely Begnin、Begnin,更好地鉴定个体遗传变异与疾病的相关性。 非编码区(Non-coding region)分析 基因组非编码区变异可以引发多种疾病,包括心脏类疾病、糖尿病、癌症、肥胖症等[4,5],但目前对非编码区突变的筛选和功能描述仍具挑战性。诺禾致源非编码区分析,应用 ENCODE 数据库最新内容对非编码区突变进行注释,通过国际通用数据库和自建的 Novo-Zhonghua Genomes 数据库进行频率筛选以及保守性过滤,精确定位非编码区中低频且保守的突变,筛选到与疾病相关的非编码区突变。 疾病基因组 CNV/SV 分析 CNV/SV 与基因表达、表型、人类疾病发生发展都有着非常密切的关系[7,8],诺禾致源疾病基因组信息分析团队研发了一整套 CNV/SV 筛选方法,包括有害性 CNV/SV 筛选和 de novo CNV/SV 分析(基于成三或成四家系)等。利用 DGV、DECIPHER、CNVD 等数据库对变异检出结果进行标记,从结果中进一步过滤掉良性 CNV/SV,经过一系列筛选后,准确鉴定个体 CNV/SV 遗传变异与疾病的相关性。 图4 CNV 分布图 表1 本次产品升级亮点 图5 Burden 分析结果的热图展示 1 2 3 4 5 Novo-Zhonghua Genomes 数据库注释 Novo-Zhonghua Genomes 数据库是诺禾致源自建针对 中国正常人群的数据库,助 力中国人群基因组信息解析。 复杂疾病突变位点 有害性分类 诺禾致源推出的复杂疾病变 异位点有害性的分类标准 (DamLevel),准确标识复杂 疾病的致病性突变位点。 非编码区 (Non-coding region)分析 应用 ENCODE 数据库最新内 容对非编码区进行注释、筛 选,精确定位非编码区中低 频且保守的突变。 疾病基因组 CNV/SV 分析 完整的有害性 CNV/SV 筛选 和 de novo CNV/SV 分析, 准确鉴定个体 CNV/SV 遗传 变异与疾病的相关性。 基于基因 (Gene-based)的 Burden Analysis 针对复杂疾病的研究,通过 检测疾病状态与基因变异的 相关性,寻找特定疾病(或 性状)的易感基因。 可视化的 数据结果展示 灵活易用的测序数据结果展 示,使大量复杂数据的分析 变得轻松而高效,提高数据 可读性。 ? log 10 ( P ? value ) Mutations of Genes Prioritized by Burden Analysis CIR1 PIGP CTSE PRB2 CYP HDAC1 GRK6 PIGK MYL6B EHD2 0810 246 Mutations 4 3 2 1 基于基因(Gene-based)的 Burden Analysis 关联分析是研究复杂疾病的1个重要方法,其通过检测疾病状态与基因变异的相关性,寻找特定疾病(或性状)的易感基因。通常是在具有不同表型的2组个体(一般为患病者和正常对照者)中,基于遗传位点(或基因、单体型)的频率分布差异,间接反映该遗传位点(或基因)可能与疾病(或性状)存在关联性。 Burden Analysis(Gene-based)基于复杂疾病的 case 和 control 散发样本,通过 Fisher's exact test 以及 SKAT 统计方法分析得到候选基因,针对候选基因可以进行富集分析(KEGG 富集分析和 GO 富集分析)与蛋白网络互作分析。 可视化的结果展示 诺禾致源疾病基因组信息分析团队,会为客户提供不断更新的变异注释、项目特异性分析和灵活易用的“变异-基因-疾病”可视化结果,让科学研究更轻松。 图6 疾病与基因关联性展示图 产品名称升级亮点 引领行 业新 标杆 参考文献 [1] Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals.[J]. Nature Communications, 2015, 6. 阅读原文 >> [2] Richards S, Aziz N, Bale S, et al Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genetics in Medicine, 2015. 阅读原文 >> [3] Duzkale H, Shen J, McLaughlin H, et al. A systematic approach to assessing the clinical significance of genetic variants[J]. Clinical genetics, 2013, 84(5): 453-463. 阅读原文 >> [4] Yoshinari M, Akihiko M, Dongquan S, et al. A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis.[J]. Nature Genetics, 2007, 39(4):529-33. 阅读原文 >> [5] Kjong-Van L, Ting C. Exploring functional variant discovery in non-coding regions with SInBaD.[J]. Nucleic Acids Research, 2012, 41 (1):e7-e7. 阅读原文 >> [6] https://https://www.wendangku.net/doc/fb11304483.html,/wiki/Regulatory_sequence 阅读原文 >> [7] Sudmant P H, Rausch T, Gardner E J, et al. An integrated map of structural variation in 2,504 human genomes.[J]. Nature, 2015, 526 (7571):75-81. 阅读原文 >> [8] Birney E, Soranzo N. Human genomics: The end of the start for population sequencing.[J]. Nature, 2015, 526(7571):52-3. 阅读原文 >> 免费升级7-9月 新签合同 免费升级数据分析

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

高通量测序NGS数据分析中的质控

高通量测序错误总结 一、生信分析部分 1)Q20/Q30 碱基质量分数与错误率是衡量测序质量的重要指标,质量值越高代表碱基被测错的概率越小。Q30代表碱基的正确判别率是99.9%,错误率为0.1%。同时我们也可以理解为1000个碱基里有1个碱基是错误的。Q20代表该位点碱基的正确判别率是99%,错误率为1%。对于整个数据来说,我们可以认为100个碱基里可能有一个是错误的, 在碱基质量模块报告的坐标图中,背景颜色沿y-轴将坐标图分为3个区:最上面的绿色是碱基质量很好的区,Q值在30以上。中间的橘色是碱基质量在一些分析中可以接受的区,Q值在20-30之间。最下面红色的是碱基质量很差的区。在一些生信分析中,比如以检查差异表达为目的的RNA-seq分析,一般要求碱基质量在Q在Q20以上就可以了。但以检查变异为目的的数据分析中,一般要求碱基质量要在Q30以上。 一般来说,测序质量分数的分布有两个特点: 1.测序质量分数会随着测序循环的进行而降低。 2.有时每条序列前几个碱基的位置测序错误率较高,质量值相对较低。 在图中这个例子里,左边的数据碱基质量很好,而右边的数据碱基质量就比较差,需要做剪切(trimming),根据生信分析的目的不同,要将质量低于Q20或者低于Q30的碱基剪切掉。 2)序列的平均质量 这个是碱基序列平均质量报告图。横坐标为序列平均碱基质量值,纵坐标代表序列数量。通过序列的平均质量报告,我们可以查看是否存在整条序列所有的碱基质量都普遍过低的情况。一般来说,当绝大部分碱基序列的平均质量值的峰值大于30,可以判断序列质量较好。如这里左边的图,我们可以判断样品里没有显着数量的低质量序列。但如果曲线如右边的图所示,在质量较低的坐标位置出现另外一个或者多个峰,说明测序数据中有一部分序列质量较差,需要过滤掉。 3)GC含量分布 这个是GC含量分布报告图。GC含量分布检查是检测每一条序列的GC含量。将样品序列的GC 含量和理论的GC含量分布图进行比较,用来检测样品数据是否有污染等问题。理论上,GC含量大致是正态分布,正态分布曲线的峰值对应基因组的GC含量。如果样品的GC含量分布图不是正态分布,如右图出现两个或者多个峰值,表明测序数据里可能有其他来源的DNA序列污染,或者有接头序列的二聚体污染。这种情况下,需要进一步确认这些污染序列的来源,然后将污染清除。 4)序列碱基含量

转录组测序结题报告

转录组测序结题报告 1.mRNA纯化: 抽提得到的总RNA首先利用10U的DNaseI(Ambion,美国)在37℃消化1小时;然后利用Micropoly(A)PuristTM mRNA purification kit(Ambion,美国),进行mRNA纯化:把RNA稀释到250μl的体积,按照Kit的操作步骤(Cat.No:

1919)进行;最后得到的mRNA用100μl预热的THE缓冲液洗脱,利用NanoDrop 进行定量。 2.cDNA合成: cDNA合成是在Ng等2005年发表的方法基础上改进而成(文献1,图1)。第一链cDNA合成利用GsuI-oligo dT作为反转录引物,10μg的mRNA作为模板,用1000 单位的Superscript II reverse transcriptase (Invitrogen,美国)在42℃作用1小时完成;随后利用NaIO4(Sigma,美国)氧化mRNA的5’帽子结构,并连接生物素;通过Dynal M280磁珠(Invitrogen,美国)筛选连接了生物素的mRNA/cDNA,并通过碱裂解释放第一链cDNA;然后通过DNA ligase(TaKaRa,日本)在第一链cDNA的5’末端加上接头,然后通过Ex Taq polymerase (TaKaRa,日本)合成第二链cDNA。最后通过GsuI酶切去除polyA和5’端接头。 图1. 全长cDNA合成示意图 3.cDNA测序: 合成的cDNA利用超声仪(Fisher)打断到300-500bp的范围,利用Ampure beads(Agencourt,美国)进行纯化。随后纯化的cDNA利用TruSeq TM DNA XXmple Prep Kit – Set A (illumina,美国)制备文库,并利用TruSeq PE Cluster Kit (illumina,美国)进行扩增。最后在illumina机器上进行测序反应。 测序得到的数据统计见表1. 表1. Solexa测序统计 样品对照 1 2

DNA测序结果分析比对(实例)

DNA测序结果分析比对(实例) 关键词:dna测序结果2013-08-22 11:59来源:互联网点击次数:14423 从测序公司得到的一份DNA测序结果通常包含.seq格式的测序结果序列文本和.ab1格式的测序图两个文件,下面是一份测序结果的实例: CYP3A4-E1-1-1(E1B).ab1 CYP3A4-E1-1-1(E1B).seq .seq文件可以用系统自带的记事本程序打开,.ab1文件需要用专门的软件打开。软件名称:Chromas 软件Chromas下载 .seq文件打开后如下图: .ab1文件打开后如下图: 通常一份测序结果图由红、黑、绿和蓝色测序峰组成,代表不同的碱基序列。测序图的两端(下图原图的后半段被剪切掉了)大约50个碱

基的测序图部分通常杂质的干扰较大,无法判读,这是正常现象。这也提醒我们在做引物设计时,要避免将所研究的位点离PCR序列的两端太近(通常要大于50个碱基距离),以免测序后难以分析比对。 我的课题是研究基因多态性的,因此下面要介绍的内容也主要以判读测序图中的等位基因突变位点为主。 实际上,要在一份测序图中找到真正确实的等位基因多态位点并不是一件容易的事情。一般认为等位基因位点假如在测序图上出现像套叠的两个峰,就是杂合子位点。实际比对后才知道,情况并非那么简单,下面测序图中标出的两个套峰均不是杂合子位点,如图并说明如下:

说明: 第一组套峰,两峰的轴线并不在同一位置,左侧的T峰是干扰峰;第二组套峰,虽两峰轴线位置相同,但两峰的位置太靠近了,不是杂合子峰,蓝色的C峰是干扰峰通常的杂合子峰由一高一略低的两个轴线相同的峰组成,此处的序列被机器误判为“C”,实际的序列应为“A”,通常一个高大碱基峰的前面 1~2个位点很容易产生一个相同碱基的干扰峰,峰的高度大约是高大碱基峰的1/2,离得越近受干扰越大。 一个摸索出来的规律是:主峰通常在干扰峰的右侧,干扰峰并不一定比主峰低。最关键的一点是一定要拿疑似为杂合子峰的测序图位点与测序结果的文本序列和基因库中的比对结果相比较;一个位点的多个样本相比较;你得出的该位点的突变率与权威文献或数据库中的突变率相比较。 通常,对于一个疑似突变位点来说,即使是国际上权威组织大样本的测序结果中都没有报道的话,那么单纯通过测序结果就判定它是突变点,是并不严谨的,因一份 PCR产物中各个碱基的实际含量并不相同,很难避免不产生误差的。对于一个未知突变位点的发现,通常还需要用到更精确的酶切技术。 (责任编辑:大汉昆仑王)

转录组RNAseq术语解释

RNA-Seq名词解释 1.index 测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。 2.碱基质量值 (Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。碱基质量值越高 表明碱基识别越可靠,碱基测错的可能性越小。 3.Q30 碱基质量值为Q30代表碱基的精确度在99.9%。 4.FPKM(Fragments Per Kilobase of transcript per Million fragments mapped) 每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。计算公式为 公式中,cDNA Fragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数, 以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。 5.FC(Fold Change) 即差异表达倍数。 6.FDR(False Discovery Rate) 即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝 的原假设个数的比例的期望值。通过控制FDR来决定P值的阈值。 7.P值(P-value) 即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P<0.05 为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。 8.可变剪接(Alternative splicing)

华大转录组测序内部培训资料

(内部资料,请勿外传) 动植物转录组 (Transcriptome ) 产品说明书 科技服务体系 动植物研究方向

版本信息: 2011年07月08日

目录 1产品概述 (1) 1.1 什么是转录组测序 (1) 1.2 转录组测序的产品功能 (1) 1.3 转录组测序产品优势 (1) 1.4 转录组测序产品发展史 (1) 1.5 项目执行时间 (3) 1.6 产品交付结果 (3) 2转录组测序研究方法 (4) 2.1 产品策略 (4) 2.2 样品准备 (5) 2.2.1 RNA样品要求 (5) 2.2.2 RNA样品送样标准 (6) 2.2.3 RNA提取的组织用量建议 (6) 2.3 样品运输要求 (7) 2.3.1 样品包装 (7) 2.3.2 样品标识 (8) 2.3.3 样品运输条件 (8) 2.4 文库的构建及测序 (9) 2.4.1 实验流程 (9) 2.4.2 测序及数据处理 (10) 2.5 转录组生物信息学分析 (10) 2.5.1 没有参考序列的转录组De novo (10) 2.5.2 有参考序列的转录组Re-sequencing (18) 2.5.3 参考文献 (24) 3成功案例 (25)

3.1 华大成功案例 (25) 3.2 相关文献解读 (26)

1产品概述 1.1什么是转录组测序? 转录组测序的研究对象为特定细胞在某一功能状态下所能转录出来的所有RNA的总和,包括mRNA和非编码RNA。转录组测序是指用新一代高通量测序技术对物种或者组织的转录本进行测序并得到相关的转录本信息。 1.2转录组测序的产品功能 1.获得物种或者组织的转录本信息; 2.得到转录本上基因的相关信息,如:基因结构,功能等; 3.发现新的基因; 4.基因结构优化; 5.发现可变剪切; 6.发现基因融合; 7.基因表达差异分析。 1.3转录组测序产品优势 覆盖度高:检测信号是数字信号,几乎覆盖所有转录本; 检测精度高:几十到数十万个拷贝精确计数; 分辨率高:可以检测到单碱基差异,基因家族中相似基因及可变剪切造成的不同转录本的表达; 完成速度快:整个项目周期只需要50个工作日时间; 成本低:基本上每个实验室可以承担相关研究经费。 1.4转录组测序产品发展史 转录组的研究手段大体包括:EST序列构建及研究,芯片研究,运用第二代测序技术研究等。EST是从一个随机选择的cDNA 克隆进行5’端和3’端单一次sanger测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在

测序结果分析教学文案

测序结果的判读 测序结果为.abi格式,可用软件chrosmas打开,一种颜色的峰代表一个碱基,峰的高低表信号的强弱。一个正常的N表示机器没法判读是哪种碱基,原因是:杂峰的信号高于机器默认的值,机器会认为该处有两个峰,因此不能判断确定是哪个峰,需要人工判读。以下三种情况会出现N:有杂合子,有杂峰,反应已结束。

原因:测序产物纯化不够 注意:染料峰位于序列的前100 碱基以内;酒精峰位于序列的220 ~ 320 碱基之间

产生的原因是样品或毛细管内有灰尘等固体小颗粒 原因:测序反应失败。 解决办法:改进条件,重做反应。注意两个关键因素:引物与模板之间的比例:3.2 pmol: 200 ng。模板DNA 的纯度和用量:1.6 ~ 2.0

原因:残余的Dye 太多,纯化不够。有测序反应,但效率低下信号太弱 解决办法:纯化充分。避开引物峰,确定新的分析起点 1、PCR产物测序时出现重叠峰 问题图1(模板中有碱基缺失,往往是单一位点(1-1)或两个位点(1-2)碱基缺失导致测序结果移码) 解决方法:将PCR产物克隆到质粒(如T载体)中挑单克隆测序,或将PCR产物进行PAGE 纯化(至少琼脂糖充分电泳后切胶纯化)后再进行测序。 问题图2(PCR产物不纯,含部分序列一致的两种以上的片段,长度不一)

解决方法:主要原因是PCR产物没有纯化,含有部分序列一致的两种以上长度不一的片段,将PCR产物进行PAGE纯化(至少琼脂糖充分电泳后切胶纯化)后再进行测序,便可解决。 问题图3(测序引物有碱基缺失) 测序引物有碱基缺失(一般是引物的5'端缺失),和模板的碱基缺失即图1有些类似,所不同的是模板碱基缺失一般是在一段正常测序序列后才出现移码,而引物碱基缺失的话,则从测序一开始就出现移码,表面在图形上便是一开始就是严重的峰形重叠。 解决方法:重新合成引物,或将引物进行PAGE纯化 2、克隆测序时出现峰形重叠

高通量测序的生物信息学分析报告

附件三生物信息学分析 一、基础生物信息学分析 1.有效测序序列结果统计 有效测序序列:所有含样品barcode(标签序列)的测序序列。 统计该部分序列的长度分布情况。 注:合同中约定测序序列条数以有效测序序列为准。 图形示例为: 2.优质序列统计 优质序列:有效测序序列中含有特异性扩增引物、不含模糊碱基、长度大于可供分析标准的序列。 统计该部分序列的长度分布情况。 图形示例为:

3.各样本序列数目统计: 统计各个样本所含有效测序序列和优质序列数目。 结果示例为: 4.OTU生成: 根据序列的相似性,将序列归为多个OTU(操作分类单元),以便后续分析。 5.稀释曲线(rarefaction 分析) 根据第4条中获得的OTU数据,做出每个样品的Rarefaction曲线。本合同默认生成OTU相似水平为0.03的rarefaction曲线。 rarefaction曲线结果示例:

6.指数分析 计算各个样品的相关分析指数,包括: ?丰度指数:ace\chao ?多样性指数:shannon\simpson ?本合同默认生成OTU相似水平为0.03的上述指数值。 多样性指数分析结果示例: 注:默认分析以上所列指数,如有特殊需要请说明。 7.Shannon-Wiener曲线 利用各样品的测序量在不同测序深度时的微生物多样性指数构建曲线,反映各样本在不同测序数量时的微生物多样性。当曲线趋向平坦时,说明测序数据量足够大,可以反映样品中绝大多数的微生物信息。绘制默认水平为:0.03。 例图:

8.Rank_Abuance 曲线 根据各样品的OTU丰度大小排序作丰度分布曲线图。结果文件默认为PDF格式(其它格式请注明)。 例图: 9.Specaccum物种累积曲线(大于10个样品) 物种累积曲线( species accumulation curves) 用于描述随着抽样量的加大物种增加的状况,是理解调查样地物种组成和预测物种丰富度的有效工具,在生物多样性和群落调查中,被广泛用于抽样量充分性的判断以及物种丰富度( species richness) 的估计。因此,通过物种累积曲线不仅可以判断抽样量是否充分,在抽样量充分的前提下,运用物种累积曲线还可以对物种丰富度进行预测。

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

真核转录组讲解及数据解读PPT

转录组结果解读 转录调控研究部 北京诺禾致源科技股份有限公司

OUTLINE 简介 实验部分 生物信息分析

概述 1 转录组是指特定组织或细胞在某个时间或某个状态下转录出来的所有RNA的总和,主要包括mRNA和非编码RNA。 转录组研究是研究基因功能和结构的基础,对生物体的发育和疾病的发生具有重要作用。 RNA-seq技术流程主要包含两个部分,建库测序和数据分析。

2 实验部分(RNA检测、建库、测序)) ?琼脂糖凝胶电泳:分析样品RNA 完整性及是否存在杂质污染。 ?NanoPhotometer spectrophotometer:检测RNA 纯度(OD260/280及 OD260/230比值)。 ?Agilent 2100 bioanalyzer:精 确检测RNA完整性。 链特异性文库优势: 相同数据量下可获取更多有效 信息;能获得更精准的基因定 量、定位与注释信息

5 ?1、一般动物样品会有三条带:28S 、18S 、5S ,如果提取过程经过过柱处理或者 利用CTAB+LiCl 方法提取,5S 可能较暗或者没有。 ?昆虫或者软体动物等样品只有1条比较明显的带,例如:牡蛎、果蝇、螨虫、蝗 虫、蚊、蚕等 ?2、植物样品有三条带:25S 、18S 、5S ,有些特殊物种或部位可能本身含条带比 较多,如果条带清晰,也可初步判定合格 ?3.原核生物中主要有5S 、16S 、23S rRNA 叶片小 鼠蚊动物植物原核

RIN 5RIN 7RIN 8RIN 9RIN 4RIN 6RIN 10RIN 2RIN 1 RIN 值范围示意图

深度测序数据分析部分

1基因数据库的建立 1.1建立病原体数据库 肺炎的发生是有很多原因所致。病因可分为以下几类:①细菌性肺炎,可分为肺炎链球菌肺炎、金黄色葡萄球菌、甲型溶血性莲球菌、肺炎克雷白杆菌、流感嗜血杆菌、铜绿假单胞菌肺炎等。②非典型病原体所致肺炎,如军团菌、支原体和衣原体等。③病毒性肺炎,如冠状病毒、腺病毒、呼吸道合胞病毒、流感病毒、麻疹病毒、巨细胞病毒、单纯疱疹病毒等。④真菌性肺炎,如白色念珠菌、曲霉、放线菌等。⑤其他病原体所致肺炎,如立克次体(如Q热立克次体)、弓形虫(如鼠弓形虫)、原虫(如卡氏肺囊虫)、寄生虫(如肺包虫、肺吸虫、肺血吸虫)等。⑥理化因系所致的肺炎如放射性损伤引起的放射性肺炎,胃酸吸入引起的化学性肺炎,对吸入或内源性脂类物质产生炎症反应的类脂性肺炎等。 凡是能引起肝脏损害、出现肝功能异常的肝脏炎症性疾病,称之为肝炎。它是一类严重危害人体健康的疾病。我们常说的肝炎,主要是指病毒性肝炎。据近几年科学研究,因其致病病原体的不同而有甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、己型肝炎、庚型肝炎等。另外,因大量、长期饮酒引起的肝炎,叫做酒精性肝炎;对肝脏有损害的药物引起的叫做药物性肝炎;还有由于机体免疫功能紊乱引起的叫做自身免疫反应性肝炎。 本项目不考虑由理化原因引起的肺炎和肝炎疾病,因此,只需建立目前已知的所有肺炎和肝炎致病基因的数据库。 1.2建立人体常见的微生物基因组数据库 人体有四个大的细菌储存库,即皮肤、口腔、结肠、泌尿生殖道。种类繁多,多与人类能和平共处,少数是条件致病菌。论个难以数计,论重量,据估计每个活的个体可达3-4公斤。 人类体表和肠道是无数微生物的居所。Elizabeth Costello及其同僚对多达27个身体部位的微生物进行了调查,其中包括肠道、口腔、耳朵、鼻子以及多达18个区域的皮肤表面。研究人员还发现,某些皮肤部位,如食指或膝盖的背侧常常比肠道或口腔能容留更为多元的微生物。他们的数据所强调的事实是,我们身体的个体化的微生物随着时间的推移仍然保持着相对的稳定,而且它们展现了在我们身体各个位置生长的可预测的模式。 人体微生物基因组计划又称第二人类基因组计划,已由美国国立卫生研究院资助,于2007年开始启动。研究人体微生物对于疾病的预防和治疗有重大意义。 1.3人体全基因组数据库 人类基因组计划于20世纪80年代提出的,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109

重测序分析简介

重测序参考手册

目录 目录 (1) 1. 重测序简介 (3) 2. 重测序实验方法 (3) 基因组DNA抽提 (3) 基因组DNA样品建库 (3) 上机前定量 (4) 3. 重测序分析内容 (4) 重测序分析流程 (5) 重测序分析内容 (5) 4. 重测序重要技术参数 (6) 5. 重测序分析内容解释 (6) 6. 重测序分析内容示例 (6) SNP、INDEL的样本差异分析 (12) 7. 成功分析案例/或已发表论文 (14) 8. 概念及常用工具链接 (14)

1. 重测序简介 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。全基因组重测序的个体,通过序列比对,可以找到大量的单核苷酸多态性位点(SNP),插入缺失位点(InDel,Insertion/Deletion)、结构变异位点(SV,Structure Variation)位点。众信可以协助客户,通过生物信息手段,分析不同个体基因组间的结构差异,同时完成注释。 2. 重测序实验方法 提取基因组DNA,利用Covaris进行随机打断,电泳回收所需长度的DNA片段(0.2~5Kb),加上接头, 进行cluster制备(Solexa)或E-PCR (SOLiD),最后利用Paired-End或者Mate-Pair的方法对插入片段进行重测序。 实验步骤主要包括以下几点: 基因组DNA抽提 不同生物(植物、动物、微生物)的基因组DNA的提取方法有所不同; 不同种类或同一种类的不同组织因其细胞结构及所含的成分不同,分离方法也有差异。在提取某种特殊组织的DNA时必须参照文献和经验建立相应的提取方法, 以获得可用的DNA大分子。尤其是组织中的多糖和酶类物质对随后的酶切、PCR反应等有较强的抑制作用,因此用富含这类物质的材料提取基因组DNA时, 应考虑除去多糖和酚类物质。 基因组DNA样品建库 这是样品准备过程中最主要的环节,也就是真正意义上的建库(通常我们所说的建库包括整个样品准备的过程)。 样品片段化(Covaris) Covaris利用超声波剪切DNA,并将传统超声波法可控制化、精确化。DNA可以在小体积中被剪切,减少了因为蒸发带来的样品损耗,并且被剪切的DNA片段大小之间的偏差较小。Covaris剪切的片段大小较小,并且片段大小范围较传统超声波法窄。选择合适的打断参数条件,使最后打断的DNA片段大小集中在300-500bp范围内。 末端修复 使用Covaris剪切的DNA片段都会形成一些杂合的末端,其中包括了3’ 端悬垂结构、

相关文档