文档库 最新最全的文档下载
当前位置:文档库 › 多支点轴承同轴度和垂直度光学检测

多支点轴承同轴度和垂直度光学检测

多支点轴承同轴度和垂直度光学检测
多支点轴承同轴度和垂直度光学检测

同轴度测量方法[1]

同轴度测量方法 方法一:用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备:百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax 与最小读数Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax -Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图: 数据采集仪连接百分表测量同轴度误差示意图 优势:1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差; 2)无需人工去处理数据,数据采集仪会自动计算出同轴度误差值。 3)测量结果报警,一旦测量结果不在同轴度公差带时,数据采集仪就会自动报警。

各种材料表面粗糙度

零件表面粗糙度与尺寸公差 一般,我国机械设计和加工技术常用的表面粗糙度标准是轮廓算术均匀偏差Ra 对于Ra,国标GB3508—83有明确的规定。本文仅就Ra在机械零件设计考虑加工情况时的使用作以阐述。 1图纸右上角的表面粗糙度要求留意事项 大多数设计职员在图纸右上角都会标注:其余Ra6.3、Ra1.6,等。这里所指的是,除图样上注明的机械加工面的表面粗糙度要求后,剩余未注明的机械加工面的表面粗糙度Ra的数值为6.3μm或1.6μm。对于这一要求,需留意以下几方面。 1.1对于型钢表面等非本图要求而制作的加工面 在实际工作中,为了减少不必要的加工工作和进步产品质量,可以在图纸右上角处,对用非本图加工手段取得的材料、型材外表加以表面粗糙度要求,然后再对机械加工处的表面进行表面粗糙度要求,如图1。当然,这种对用非本图加工手段取得的材料、型材外表的表面粗糙度要求必须公道,必须不经过原材料工厂特殊加工就可以达到。如,一般热轧型钢的表面粗糙度在Ra25μm~Ra12.5μm;冷拔型钢的表面粗糙度在Ra12.5μm~Ra3.2μm;冷拔铝型钢的表面粗糙度在Ra6.3μm~Ra1.6μm。所以,标注型材等的表面粗糙度要求时,必须留意不能超出以上范围。 1.2对于用铸造、铸造、焊接等本图要求而制作的毛坯件 在使用铸造、铸造、焊接制作毛坯时,尤其是型腔件,对它们的机械加工往往是一部分,而不是全部加工。此时,设计职员一般在图纸右上角处标上:其余Ra6.3。这里的Ra6.3μm仅仅是指对型腔件要求进行机械加工部分,除往图纸上已经有表面粗糙度要求的_部分外表面加以表面粗糙度要求而已,并没有对非机械加工部分(如铸造、铸造)的外表加以表面粗糙度要求。所以,为了不产生混淆,有

测量同轴度误差的方法

测量同轴度误差的方法

一、同轴度 同轴度用于控制轴类零件的被测轴线对基准轴线的同轴度误差。 二、同轴度公差带 同轴度公差带是直径为公差值t,且与基准轴线同轴的圆柱面内的区域。如下图所示。?d孔轴线必须位于直径为公差值0.1mm,且与基准轴线同轴的圆柱面内。 三、任务:测量联动轴零件的同轴度误差 任务分析:被测项目是被测要素为大圆柱面的轴线,基准要素为两端小圆柱面的公共轴线。

含义:大圆柱面的轴线必须位于直径为公差值Φt(Φ0.08mm)的圆柱面内,此圆柱面的轴线与公共基准轴线A‐B(即 两个小圆柱面的公共轴线)重合。 根据含义可知,我们选择测量方法有两种。 四、测量方法 方法一: 用两个相同的刃口状 V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状 V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状 V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状 V 形块上,基准轴线由 V 形块模拟,如图 3-77 所示。

3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数 Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面 A 、B、C、D),取各截面测得的最大读数 Mimax 与最小读数 Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ=(Mmax - Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二: 直接利用数据采集仪连接百分表实现高效测量 1、测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值, 然后由数据采集仪软件里的计算软件自动计算出所测产品的同轴度误差(Δ=(Mmax - Mmin )/2),最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度公差范围内,如果所测同轴度误差大于圆度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。 测量效果示意图:

表面粗糙度定义与检测

第五章表面粗糙度及其检测 学时:4 课次:2 目的要求: 1.了解表面粗糙度的实质及对零件使用性能的影响。 2.掌握表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.掌握表面粗糙度的标注方法。 4.初步掌握表面粗糙度的选用方法。 5.了解表面粗糙度的测量方法的原理。 重点内容: 1.表面粗糙度的定义及对零件使用性能的影响。 2.表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.表面粗糙度的标注方法。 4.表面粗糙度的选用方法。 5.表面粗糙度的测量方法 难点内容: 表面粗糙度的选用方法。 教学方法:讲+实验 教学内容:(祥见教案) 一、基本概念 1.零件表面的几何形状误差分为三类: (1)表面粗糙度:零件表面峰谷波距<1mm。属微观误差。 (2)表面波纹度:零件表面峰谷波距在1~10mm。 (3)形状公差:零件表面峰谷波距>10mm。属宏观误差。 图5-1 零件的截面轮廓形状 2.表面粗糙度对零件质量的影响: (1)影响零件的耐磨性、强度和抗腐蚀性等。 (2)影响零件的配合稳定性。 (3)影响零件的接触刚度、密封性、产品外观及表面反射能力等。 二.表面粗糙度的基本术语

1、取样长度lr : 取样长度是在测量表面粗糙度时所取的一段与轮廓总的走向一致的长度。 规定:取样长度范围内至少包含五个以上的轮廓峰和谷如图5-2所示。 图5-2 取样长度、评定长度和轮廓中线 1.评定长度ln : 评定长度是指评定表面粗糙度所需的一段长度。 规定:国家标准推荐ln = 5lr ,对均匀性好的表面,可选ln > 5lr, 对均匀性较差的表面,可选ln < 5lr 。 2.中线: 中线是指用以评定表面粗糙度参数的一条基准线。有以列两种: (1)轮廓的最小二乘中线 在取样长度内,使轮廓线上各点的纵坐标值Z (x )的平方和 为最小,如图5-2 a 所示。 (2)轮廓的算术平均中线 在取样长度内,将实际轮廓划分为上下两部分,且使上下面 积相等的直线。如图5-2 b 所示。 三.表面粗糙度的评定参数 国家标准GB/T3505—2000规定的评定表面粗糙度的参数有:幅度参数2个,间距参数1个,曲线和相关参数1个,其中幅度参数是主要的。 1、轮廓的幅度参数 (1) 轮廓的算术平均偏差Ra 在一个取样长度内,纵坐标Z (x )绝对值的算术平均值,如图5-3a 所示。 Ra 的数学表达式为: Ra = lr 1 lr x Z 0)(dx 测得的Ra 值越大,则表面越粗糙。一般用电动轮廓仪进行测量。

表面粗糙度选用标准

表面粗糙度选用 ----------------------------------------------------------- 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 ----------------------------------------------------------- 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 ----------------------------------------------------------- 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 ----------------------------------------------------------- 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 ----------------------------------------------------------- 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 ----------------------------------------------------------- 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

同轴度测量方法

同轴度测量方法 方法一: 用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax与最小读数Mmin的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax与最小读数Mimin差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax-Mmin)/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

表面粗糙度与公差等级的关系

机械零件表面粗糙度的选择 表面粗糙度是反映零件表面微观几何形状误差的一个重要技术指标,是检验零件表面质量的主要依据;它选择的合理与否,直接关系到产品的质量、使用寿命和生产成本。 机械零件表面粗糙度的选择方法有3种,即计算法、试验法和类比法。在机械零件设计工作中,应用最普通的是类比法,此法简便、迅速、有效。应用类比法需要有充足的参考资料,现有的各种机械设计手册中都提供了较全面的资料和文献。最常用的是与公差等级相适应的表面粗糙度。在通常情况下,机械零件尺寸公差要求越小,机械零件的表面粗糙度值也越小,但是它们之间又不存在固定的函数关系。例如一些机器、仪器上的手柄、手轮以及卫生设备、食品机械上的某些机械零件的修饰表面,它们的表面要求加工得很光滑即表面粗糙度要求很高,但其尺寸公差要求却很低。在一般情况下,有尺寸公差要求的零件,其公差等级与表面粗糙度数值之间还是有一定的对应关系的。 在一些机械零件设计手册和机械制造专著中,对机械零件的表面粗糙度和机械零件的尺寸公差关系的经验及计算公式都有很多介绍,并列表供读者选用,但只要细心阅来,就会发现,虽然采取完全相同的经验计算公式,但所列表中的数值也不尽相同,有的还有很大的差异。这就给不熟悉这方面情况的人带来了迷惑。同时也增加了他们在机械零件工作中选择表面粗糙度的困难。 在实际工作中,对于不同类型的机器,其零件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的。这就是配合的稳定性问题。在机械零件的设计和制造过程中,对于不同类型的机器,其零件的配合稳定性和互换性的要求是不同的。在现有的机械零件设计手册中,反映的主要有以下3种类型: 第1类主要用于精密机械,对配合的稳定性要求很高,要求零件在使用过程中或经多次装配后,其零件的磨损极限不超过零件尺寸公差值的10%,这主要应用在精密仪器、仪表、精密量具的表面、极重要零件

三坐标测量同轴度方法

三坐标测量同轴度方法 方法一同轴度测量方法 两个孔的公共轴心线是指两孔各自被测表面长度的中点连线;假使是三个或三个以上的圆柱表面,它们的公共轴心线应该在图样上另做规定。 - 几种测量机通常采用的同轴度测量方法: 一、应用系统功能法: 即测量机软件系统中自带的同轴度和同心度测量标准子程序,用户在测量时可方便地进行调用。 二、极坐标测量法: 这是一种类似于平台测量的检测方法,其基准元素可以通过圆柱、阶梯柱、直线以及圆/圆等测量后构造的直线获得。可以说,几乎所有用作基准元素的单一基准或组合基准都将包括在内,而被测要素则更为简单,通常情况只是圆的测量。 其操作步骤如下: 1、测量单一基准轴线或公共基准轴线并用其建立第一轴(同心度测量除外); 2、将基准轴线清零(即平移原点到基准中心); 3、在被测元素(孔或轴)上测若干截圆(通常测两端); 4、输出被测截圆极径(PR值); 5、取其输出较大PR值的2倍为所测同轴度误差。 三、求距法: 该方法的基本原理是通过计算圆心到基准轴线距离的方法求得同轴度误差。与极坐标测量方法不同的是,被选定的基准轴线无须清零,但评定同轴度误差时同样要取计算结果中最大距离乘以2。 - 关于两个相邻较远的短基准同轴度的测量: 这是一个比较典型困扰测量机用户的问题,事实上已经证明由此单从测量数据上来看将有相当一部分工件被视为“超差品”,而那些“超差品”经装配实验后证明大多数没有问题。这就不得不需要引起测量机操作员的注意。分析其原因,既不是机器精度太低,也不是系统软件计算错误,主要是图样标注不妥。 对此,可采用以下几种相应的测量方法: 1、当基准元素为孔时,可插入配合间隙较为合适的心棒,以延长基准轴线的实测长度; 2、采用建立公共基准的测量方法,模拟专用心棒进行检验的方法,分别测量两圆柱对公共轴心线的同轴度;(参看前面公共基准轴线的建立方法和极坐标测量法); 3、在基准圆柱表面内测量更多的点,(多用于连续扫描测头)以加大计算的信息量,使系统确定最大内接圆或最小外接圆时有充足的表面形状信息。

尺寸公差、形位公差、表面粗糙度三者的关系

尺寸公差、形位公差、表面粗糙度三者的关系 A.尺寸公差、形位公差、表面粗糙度数值上的关系 1、形状公差与尺寸公差的数值关系 当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以,在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。 2、形状公差与位置公差间的数值关系 形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。 3、形状公差与表面粗糙度的关系 形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的最大允许值。 在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数 从尺寸、形位与表面粗糙度的数值关系式不难看出,设计时要协调处理好三者的数值关系,在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值;而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及最多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。 一般情况下按以下关系确定: 1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT; 2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT; 3、形状公差为尺寸公差的25%(高相对几何精度)时,Ra≤0.012IT; 4、形状公差小于尺寸公差的25%(超高相对几何精度)时,Ra≤0.15Tf(形状公差值)。 最简单的参考值:尺寸公差是粗糙度的3-4倍,这样最为经济。

水泵机组同轴度的测量与校正

水泵机组同轴度的测量 与校正 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

水泵机组同轴度的测量与校正 状元水厂项慧均 摘要:本文主要是根据状元水厂的水泵机组的特点,叙述联轴器的配合偏差、机泵同轴度测量误差产生的原因及解决方法、主要以叙述水泵机组同轴度的测量和校正方法为主。 关键词:配合偏差,同轴度,联轴器,轴向窜动,径向偏差,轴向偏差,不同心度,不平行度。 前言:水泵机组的同轴度是指水泵轴和电机轴的装配偏差,而联轴器是电机和水泵传动的联接部件,机泵的配合偏差也就是联轴器的配合偏差,联轴器装配后都存在着配合偏差,联轴器的配合偏差过大会造成水泵机组的振动增大,是影响轴承、联轴器损坏的主要原因,因此,为了减少水泵机组的振动,就必须减少联轴器的配合偏差,把偏差调整到允许的范围内,才能有效地保证机组的机械寿命,在机泵的运行过程中,因机组自身的振动或基础与管路的沉降等等原因都会造成联轴器配合偏差变化,所以定期对水泵机组同轴度的测量与校正是机泵维护中的重要项目。 一. 联轴器配合偏差的介绍。 联轴器配合的偏差有三种:径向偏差、轴向偏差、角向偏差,径向偏差是指联轴器的两个圆心之间的偏差,可用不同心度来表示,轴向偏差是指两配合面之间的距离与标准配合距离之间的偏差,同轴度测量中用联轴器的间距来表示,间距的测量较简单,用游标尺可直接测量出来,由于轴向偏差的精度要求较低(误差为±3mm),且基座的沉降或设备的振动基本上不影响间距的变化,即使偏差超值校正也简单,所以在同轴度测量中以

测量径向偏差和角向偏差为主,角向偏差是指联轴器两端面与平行端面的角度偏差,角向偏差可用机泵轴心的不平行度来表示,定义为在轴向的一米的距离上的与基准轴中心线的偏差值。由于习惯上把联轴器的角向偏差称为机泵同轴度中的轴向偏差,所以此本文也依照习惯在接下来叙述中把联轴器的角向偏差称为“轴向偏差”,联轴器的轴向偏差用联轴器的间距来表示。 二. 机泵同轴度测量的误差原因分析 状元水厂以前测同轴度的方法是习惯上用一只百分表对联轴器的径向和轴向进行测量,往往在同一时间里多次测量的值都存在较大的偏差,而且数值有时为正偏差有时为负偏差,即使后来用激光校正仪来测,在同一时间里多次测量的值都存在偏差,因测量值不准,就无法校正机泵的同轴度。经过分析发现:我厂的机泵联轴器是膜片式联轴器,在测量中时将联轴器转动180°时,水泵或电机有轴向窜动现象出现,每次测量时其轴向窜动量都是不同的,窜动量从几丝到几十丝的之间变化,所以机泵同轴度测量的误差主要是机泵的轴向窜动造成的,轴向窜动对径向偏差的测量影响微小,对轴向偏差的测量影响很大,为了消除轴向窜动对轴向偏差测量的误差,准确地测量出轴向偏差值,通过在CAD图形上进行模拟分析,发现如在测量轴向偏差是用两只相隔180°的百分表同时测量,就可以消除掉轴向窜动引起的测量误差,如下的图1就是模拟轴向窜动时测量轴向偏差的分析图形。 图1 三. 机泵同轴度的测量只要是测量径向偏差和轴向偏差,径向偏差和轴向偏差说明如下:

尺寸公差形位公差、表面粗糙度数值上的关系

尺寸公差、形位公差、表面粗糙度数值上的关系 一、尺寸公差、形位公差、表面粗糙度数值上的关系 1、形状公差与尺寸公差的数值关系 当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以,在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。 2、形状公差与位置公差间的数值关系 形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。 3、形状公差与表面粗糙度的关系 形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的最大允许值。 在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数 从尺寸、形位与表面粗糙度的数值关系式不难看出,设计时要协调处理好三者的数值关系,在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值;而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及最多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。 一般情况下按以下关系确定: 1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT; 2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT; 3、形状公差为尺寸公差的25%(高相对几何精度)时,Ra≤0.012IT; 4、形状公差小于尺寸公差的25%(超高相对几何精度)时,Ra≤0.15Tf(形状公差值)。 最简单的参考值:尺寸公差是粗糙度的3-4倍,这样最为经济。

万能试验机同轴度检测方法

万能试验机同轴度检测方法 万能试验机(以下简称试验机)主要用于测量材料力学性能参数,适用于金属、非金属材料的拉伸、压缩、弯曲和剪切等力学性能试验。由于试验机上下试样夹持装置(以下简称夹头)的设计、加工、装配以及使用等多方面的因素,不可避免地存在同轴度定位误差。由于 同轴度定位误差的影响,在材料的拉伸试验中,会在试样承受正应力的同时因弯曲产生了附加应力,如弯曲正应力和弯曲剪应力等,从而影响到试验结果的准确性。对于某些材质或形状的拉力试验,附加应力不容忽视。为了保证拉伸试验数据受试验机同轴度的影响最小, JJG139—1999(拉力、压力和万能试验机》、JJG157—2008(非金属拉力、压力和万能试验机》、JJG475-2008《电子式万能试验机》和JJG1063—2010(电液伺服万能试验机》检定规程均对试验机的同轴度提出了技术要求和检测方法。由于各检定规程所规定的检测方法不尽相同,同样一份检定规程(女ⅡJJG139—1999、JJG157—2008、JJG475—2008)规定了 两种及以上不同测量原理的检测方法。因此,有必要就同轴度的表现形式和各种检测方法进行分析比较,供同行参考。 1、定位误差的表现形式试验机结构无论是上置式或下置式,一般上、下试样夹头设计 成固定的即轴线固定无球头夹持装置,个别试验机其中一个试样夹头可能有一定的活动间隙。为了将试样夹持牢固,夹头一般配有对称的套环、楔形块等专用夹具,由于加工、装配和使用中阻滞、磨损等因素的影响,存在同轴度定位误差。是试验机同轴度定位误差的主要形式: (1)上、下试样头部轴线平行,轴肩截面圆心不同心,即上、下试样头部产生平行位移,试样标距部分有扭转呈“S”形; (2)轴肩截面圆心同心,但上、下试样头部轴线有夹角,试样标距部分有扭转呈“S” 形; (3)下试样头部有一定的角度适应性,但上下轴线不重合,故轴肩截面圆心不同心, 试样标距部分有弯曲。 2、同轴度检测方法
同轴度检测方法,可以归纳为二种检测方式:几何量检测法和应变检测法: (1)几何量检测法包括百分表测量法和锥形重锤测量法。 (2)应变检测法主要是用同轴度自动测试仪(或其他相当准确度的测量装置)进行测量。

三坐标测量仪同轴度测量的方法

三坐标测量仪同轴度测量的方法 作者:admin 来源:未知时间:2014-03-20 08:38 查看:1640次 摘要:同轴度是表示零件的有关要素(轴与轴、孔与孔、轴与孔之间)要求同轴,即控制实际轴线与基准轴线的偏离程度。公司内部有三坐标测仪的,建议使用三坐标测量仪进行测量,三坐 同轴度是表示零件的有关要素(轴与轴、孔与孔、轴与孔之间)要求同轴,即控制实际轴线与基准轴线的偏离程度。公司内部有三坐标测仪的,建议使用三坐标测量仪进行同轴度测量,三坐标是公认的测量空间形状误差较好的精密检测设备。 1、利用三坐标测量仪进行测量并直接评价出同轴度误差,有两种方法:一种是测量轴线与基准轴线直接评价法,而另一种是公共轴线法; 一些书中介绍的以一个孔建立一个基准轴线,而评价另个孔与基准的同轴度,由于测量孔和基准孔之间存在一定的距离,因此在评价时,测量误差就会被延长。通过三坐标测量验证,这种方法得出的数据是非常大的,而用这样的数据进行校对机床,反而产生了不良的效果,因此我们采用了用公共轴线法进行评价的方法,这种方法是比较适合生产现场和装配的实际情况的。 如用公共轴线法测量距离为L 的两个孔的同轴度,我们可以分别在两个孔测量两个截面圆,如果孔比较长的情况下,建议各孔均测出两个截面圆,用两个截面圆连线找出其中点即中间截面圆,两孔中间截面圆圆心连线建立公共轴线,把零点设在公共轴线上,这样公共基准就找好了,然后用刚刚测量的单个孔的两个截面圆连线,分别与公共轴线进行比较同轴度,取最大值为两孔同轴度的误差。如图 评价1、2 连线与公共轴线同轴度, 评价4、5 连线与公共轴线同轴度, 取最大差值为同轴度 如本例中就很按照图的规律用三坐标直接评价,在两个外圆上分别取截面圆,因其外 圆的长度很短,可直接取两端A、B 基准的一个截面圆心连线为公共轴线,在坐标系中并设 为零点,然后测量两端内孔后分别与公共轴线同轴度进行比较,测得 零件标记 1# 2# 3# 4# 5# 同轴度◎ 0.164 0.228 0.173 0.260 0.093 可以看出按客户0.15 的同轴度要求,只有5#合格(5#是由远离操作者那个轴加工的),1#、2#、3#、4#超差(靠近操作者的轴加工)。机床靠近操作者的轴应该调整。

长距离同轴度测量方法及实验

第18卷 第2期1997年4月 计 量 学 报ACTA METROLO GICA SIN ICA Vol.18,№2  April ,1997 长距离同轴度测量方法及实验 3 成相印 方仲彦 殷纯永 郭继华 (清华大学,北京 100084) 摘要 本文介绍了一种新型的自适应双频激光同轴度测量系统,该系统利用两个完全对称的渥拉斯顿棱镜,一个作为测量元件,另一个作为补偿元件。采用比相技术处理测量信号,因而测量元件可以暂时移出光路,能够进行同轴度的测量。系统的光学设计使激光光束的平漂和角漂不影响测量结果,对激光的漂移有自适应性。两束干涉光基本符合共光路原则,因而对大气湍流、空气扰动的影响具有更强的适应性,可用于长距离直线度、同轴度的测量。该系统与HP5528双频激光干涉仪在27m 的长导轨上进行了测量直线度的比对实验及挡光实验。比对实验结果表明,该系统在测量精度及稳定性上不低于HP5528。挡光实验表明,该系统挡光后,数据能够自动恢复,可用于同轴度的测量。 关键词: 直线度测量 同轴度测量 自适应系统 本文于1995-12-26收到,1996-10-16修改收到。3 国家自然科学基金资助项目 1 前言 激光在准直测量方面的应用十分广泛。利用双频激光干涉仪的直线度附件测直线度是其成功的范例,其光路如图1所示。该方案对于激光光束的平漂和角漂有自适应作用,测量精度 图1 双频激光测直线度原理图 高,工作稳定。传统的双频激光干涉仪在信号处理上采用锁相倍频计数技术,不允许光路信号中断,否则计数立即无效,因而HP5528等双频激光干涉仪不可能用于测量同轴度。 作者提出了一种新型的自适应双频激光准直系 统,该系统可以用于同轴度测量。本文介绍了该系统 的测量原理,并与HP5528测直线度系统进行了比对实验。 2 测量原理 同轴度测量系统原理如图2所示。双频激光头出射的正交线偏振光通过第一个渥拉斯顿棱镜W 1,分开一小角度,再通过第二个渥拉斯顿棱镜W 2后,变成两束平行光,经直角棱镜反射后,再依次通过W 2、W 1又变成一束光,经探测器D 2接收,形成测量信号。D 1输出的是参考

联轴器同心度校正方法

联轴器同心度检查及校正 粗调整:(首先确认检测或所调整的泵组是否完全切断电源) *泵组安装就位后、开机前必须检查并校正同心度. *联轴器找正时. 1. 粗找正测量工具-刀口尺 . 2.将联轴器找正面清理干净后,将刀口尺以一边放平找正另一边. 泵端高则将电机垫高,反之则将泵端垫高,先找等高. 3.用刀口尺在联轴器90℃夹角上测出泵及电机左右偏差和高 低偏差. 4.调整联轴器等高时采用厚薄不等的金属片垫入电机端或泵端地脚 和底座结合面之间. 5.在紧固螺母之前,须确认所垫的金属片已经垫实后再紧

固螺母,分别紧固螺母时要注意表的指针不能有移动. 精调整(检查粗调整后的精度) 1.量程为5-10mm的百分表及磁性表座。 2.盘车联轴器360 ℃,表指针摆动范围内的读数即为跳动值。 用百分表测得圆周上最大跳动值:≤0.20mm 最终检查: 所有地脚紧固后,确认和复检圆周最大跳动值是否在 ≤0.20mm范围之内。 *运行后在一段时间内检测轴承端的温升变化,如果温升 急剧上升无稳定且有超标现象并接近极限温度,此时必须 停机检查。

*运行后的泵组,必须注意轴承温度变化,如果与 前一 录有 升高 现 象, 此时 就必 须停 机再 次对 联轴 器同 心度 进行 检 查。 三 相 异步电动机的最高允许温升 (周围环境温度为+40℃)

ISO 同 心 度 不 符 合 要 求产生的故障现象: 1.噪声。(叶轮环口与泵壳口环摩擦,轴承受力不均) 2.轴承温升快。 3.轴承温度高。 4.泵组振动,抖动。 5.轴承位置有油渗出。 6.严重时弹性体磨损及掉屑和受挤压有熔化现象。 同心度跳动值超标的危害: 1.轴承在运转时受力不均产生高温。使润滑脂稀释流出使轴承球道内润滑不 足。 2.弹性体磨损后致使联轴器结合部无缓冲,联轴器金属部分相互撞击而损坏。3.轴承损坏,轴承座损坏(因润滑不畅,高温膨胀和轴承钢圈受力不均致使 轴承外钢圈跑外圆和内钢圈抱死或跑内圆) 4.叶轮环口与泵壳口环磨损(不锈钢易咬死)使泵效率下降.

水泵机组同轴度的测量与校正

水泵机组同轴度的测量与校正 状元水厂项慧均 摘要:本文主要是根据状元水厂的水泵机组的特点,叙述联轴器的配合偏差、机泵同轴度测量误差产生的原因及解决方法、主要以叙述水泵机组同轴度的测量和校正方法为主。 关键词:配合偏差,同轴度,联轴器,轴向窜动,径向偏差,轴向偏差,不同心度,不平行度。 前言:水泵机组的同轴度是指水泵轴和电机轴的装配偏差,而联轴器是电机和水泵传动的联接部件,机泵的配合偏差也就是联轴器的配合偏差,联轴器装配后都存在着配合偏差,联轴器的配合偏差过大会造成水泵机组的振动增大,是影响轴承、联轴器损坏的主要原因,因此,为了减少水泵机组的振动,就必须减少联轴器的配合偏差,把偏差调整到允许的范围内,才能有效地保证机组的机械寿命,在机泵的运行过程中,因机组自身的振动或基础与管路的沉降等等原因都会造成联轴器配合偏差变化,所以定期对水泵机组同轴度的测量与校正是机泵维护中的重要项目。 一. 联轴器配合偏差的介绍。 联轴器配合的偏差有三种:径向偏差、轴向偏差、角向偏差,径向偏差是指联轴器的两个圆心之间的偏差,可用不同心度来表示,轴向偏差是指两配合面之间的距离与标准配合距离之间的偏差,同轴度测量中用联轴器的间距来表示,间距的测量较简单,用游标尺可直接测量出来,由于轴向偏差的精度要求较低(误差为±3mm),且基座的沉降或设备的振动基本上不影响间距的变化,即使偏差超值校正也简单,所以在同轴度测量中以测量径向偏差和角向偏差为主,角向偏差是指联轴器两端面与平行端面的角度偏差,角向偏差可用机泵轴心的不平行度来表示,定义为在轴向的一米的距离上的与基准轴中心线的偏差值。由于习惯上把联轴器的角向偏差称为机泵同轴度中的轴向偏差,所以此本文也依照习惯在接下来叙述中把联轴器的角向偏差称为“轴向偏差”,联轴器的轴向偏差用联轴器的间距来表示。 二. 机泵同轴度测量的误差原因分析 状元水厂以前测同轴度的方法是习惯上用一只百分表对联轴器的径向和轴向进行测量,往往在同一时间里多次测量的值都存在较大

《公差配合及表面粗糙度》选择题

1.一孔尺寸的要求为φ30+0052,我们在加工时最理想的目标值是( D ) A.30 B.30.052 C.30.040 D.30.026 2.下列标准公差中,精度最低的是( D ) A.ITO B.IT01 C.IT10 D.IT18 3.某轴段标注尺寸为,现对四个完工零件进行测量,得到的数据分别为φ55.000mm,φ5 4.998mmφ5 5.042mm,φ55.023mm,则合格的零件有( A ) A1个 B.2个 C.3个 D.4个 4.已知某轴的公称尺寸为φ50加工后测得的实际尺寸为φ50.022mm,则实际偏差为( D ) A.0.051mm B.0.050mm C.0.025mm D.0.022mm 5.关于φ20R6、φ20R7、φ20R8三个公差带,下列说法正确的是( C ) A,上、下极限偏差均不相同 B.上、下极限偏差均相同 C.上极限偏差相同,但下极限偏差不同

D.上极限偏差不同,但下极限偏差相同 6.表面结构中,加工纹理呈两斜向交叉且与视图所在的投影面相交的是( C ) 7.表面结构中,加工纹理垂直于视图所在的投影面的是( B ) 8.以下不属于表面粗糙度对零件的使用性能影响的主要表现是( C ) A.对配合性质的影响 B对耐磨性的影响奥面 C.对材料塑性变形的影响 D.对抗腐蚀性的影响 9.Ra值测量最常用的方法是( C ) A.样板比较法 B.显微镜比较法,度 C电动轮廓仪比较法D.光切显微镜测量法工眼 10.表面粗糙度是( )误差。( B ) A.宏观几何形状 B.微观几何形状 C.宏观相互位置 D.微观相互位置 11选择表面粗糙度评定参数值时,下列论述不正确的有( A ) A.同一零件上工作表面应比非工作表面参数值大 B摩擦表面应比非摩擦表面的参数值小 C配合质量要求高,表面粗糙度参数值应小 D.受交变载荷的表面,表面粗糙度参数值应小

尺寸公差、形位公差、表面粗糙度数值上的关系

一、尺寸公差、形位公差、表面粗糙度数值上的关系 1、形状公差与尺寸公差的数值关系 当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以,在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。 2、形状公差与位置公差间的数值关系 形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。 3、形状公差与表面粗糙度的关系 形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的最大允许值。 在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数 从尺寸、形位与表面粗糙度的数值关系式不难看出,设计时要协调处理好三者的数值关系,在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值;而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及最多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。 一般情况下按以下关系确定: 1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT; 2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT;

表面粗糙度的基本概念汇总

表面粗糙度的基本概念 表面粗糙度的基本概念 表面粗糙度的定义(本站相关粗糙度仪的产品介绍:粗糙度仪) 表面粗糙度(Surface roughness)是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性性它是一种微观几何形状误差,也称为微观不平度。表面粗糙度应与形状误差(宏观几何形状误差)和表面波度区别开。通常,波距小于 1mm 的属于表面粗糙度,波距在 1~10mm 的属于表面波度,波距大于 10mm 的属于形状误差。 表面粗糙度对机械零件使用性能的影响 表面粗糙度的大小对零件的使用性能和使用寿命有很大影响。 1. 影响零件的耐磨性 表面越粗糙,摩擦系数就越大,相对运动的表面磨损得越快。然而,表面过于光滑,由于润滑油被挤出或分子间的吸附作用等原因,也会使摩擦阻力增大和加速磨损。 2. 影响配合性质的稳定性 零件表面的粗糙度对各类配合均有较大的影响。对于间隙配合,两个表面粗糙的零件在相对运动时会迅速磨损,造成间隙增大,影响配合性质;对于过盈配合,在装配时表面上微观凸峰极易被挤平,产生塑性变形,使装配后的实际有效过盈减小,降低联接强度;对于过渡配合,因多用压力及锤敲装配,表面粗糙度也会使配合变松。 3. 影响疲劳强度 承受交变载荷作用的零件的失效多数是由于表面产生疲劳裂纹造成的。疲劳裂纹主要是由于表面微观峰谷的波谷所造成的应力集中引起的。零件表面越粗糙,波谷越深,应力集中就越严重。因此,表面粗糙度影响零件的抗疲劳强度。 4. 影响抗腐蚀性 粗糙表面的微观凹谷处易存积腐蚀性物质,久而久之,这些腐蚀性物质就会渗入到金属内层,造成表面锈蚀。此外,表面粗糙度对接触刚度、密封性、产品外观、表面光学性能、导电导热性能以及表面结合的胶合强度等都有很大影响。所以,在设计零件的几何参数精度时,必须对其提出合理的表面粗糙度要求,以保证机械零件的使用性能。 公差等级与粗糙度的关系 表面粗糙度是反映零件表面微观几何形状误差的一个重要技术指标,是验证零件表面质量的主要依据;它选择的合理与否,直接关系到产品的质量,使用寿命和生产成本。 机械零件表面粗糙度的选择有3种方法,即计算法、试验法和类比法。在机械零件设计中应用最普遍的是类比法,此方法简单有效。运用类比法需要有充足的参考资料。现有的各类机械设计手册中都提供了较全面的资料和文献。最常用的是与公差等级相适应得表面粗糙度。通常情况下公差越小,机械零件的表面粗糙度值也越小,但是他们之间不存在固定的函数关系。一些装饰表面除外。 在实践工作中,对于不同类型的机器,其零件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的。这就是配合的稳定性问题。在机械零件的设计和制造过程中,对于不同类型

相关文档